41
Billiards, heights and modular symbols Curtis T McMullen Harvard University Weil, Manin, Birch, Leutbecher, Veech, Masur, Forni, Möller, Leininger, Hubert, Lanneau, Davis, Lelievre, ….

Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Billiards, heights and modular symbols

Curtis T McMullenHarvard University

Weil, Manin, Birch, Leutbecher, Veech, Masur, Forni, Möller, Leininger, Hubert, Lanneau, Davis, Lelievre, ….

Page 2: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

A dense set of slopes are periodic.

Billiards in a regular pentagon

How do the periodic trajectories behave?

Page 3: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Slopes and lengths

sL(s) = 5

4sL(s) = 469

20sL(s) = 2338

6765sL(s) = 1025

Page 4: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Slopes, lengths and heights

s

Theorem 1The periodic slopes coincide with Q(√5)s,

and log L(xs) = O(h(x)2).

exponent 2 is sharp

Example

L(10ns) = O(10Cn2

)

Method: descent on a Hilbert modular surface

Page 5: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Every trajectory isperiodic or uniformly distributed.

Billiards in a regular pentagon

How are the periodic trajectories distributed?

Page 6: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Every trajectory isperiodic or uniformly distributed.

Billiards in a regular pentagon

How are the periodic trajectories distributed?

Davis-Lelievre: Not always uniformly!

Page 7: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Theorem IIFor each periodic slope s, the limit measures Ms form a countable set, homeomorphic to ωω + 1.

describe scarring

ComplementWe have uniform distribution iff the lengths of the golden continued fractions of the slopes tend to infinity.

Limit Measures

Method: modular symbols for Teichmüller curves

Page 8: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Limit Measures M0uniform measure

Page 9: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Modular symbols

V = H/Γ hyperbolic surface

modular symbol of degree d: formal product

σ = γ1 * γ2 * …. * γd

a0, a1, …, ad = cusps of V

γi geodesic from ai-1 to ai

a0 a1 a2 ad

γ1 γ2 γi

Page 10: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Modular symbols

S(V) = ∪ Sd(V)

degree d

= morphisms in a graded category whose objects are the cusps of V

geometric topology

Sd(V) = ∪ Se(V)e ≥ d

S(V) ≃ ωω

Page 11: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

a

b

c

γn

Modular symbols: topology

a c b

δ1 δ2

γn ⟶ δ1 * δ2

Page 12: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Modular symbols for V = H/SL2(Z)

S1(V) = { [a1, …, an] } = { 1/a1 + 1/a2 + … + 1/an }

∞ p/q in [0,1] γ ∞

2

3

S(V) = { [a1, …, an] : some ai = ∞ }

[a1, …, an] * [b1, …, bm] = [a1, …, an, ∞, b1, …, bm]

{ [a1, …, an] : n ≤ N } is compact

Page 13: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Aside: Classical Modular symbols

Q ∪ ∞ = cusps of Γ(N) in SL2(Z)X(N) = completion of H / Γ(N)

Theorem (Manin-Drinfeld)

The difference of any 2 cusps of X(N) istorsion in Jac(X(N)).

{p,q} : Q×Q ⟶ Ω(X)* ≃ H1(X(N), R)abelian

Page 14: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Teichmüller curves

(X,ω) = holomorphic 1-form of genus g

cusp of SL(X,ω) ⇔ periodic slope s for (X,|ω|)

V = H / SL(X,ω) ⟶ Mg

lattice

parabolic

⇔ cylinder system A = (A1, …, An) +

fundamental twist τA, DτA ∈ SL(X,ω)

Page 15: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Thurston’s multi curve systems

Every Teichmüller curve V can be specifiedby a pair of topological multicurves (Ai), (Bj).

Modular symbols for V organize allthe curves systems encoding V.

Usually of infinite index!

Gives ⟨DτA, DτB⟩ = Γ ⊂ SL(X,ω)

Page 16: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Thurston’s multi curve systems

Every Teichmüller curve V can be specifiedby a pair of topological multicurves (Ai), (Bj).

Usually of infinite index!

Gives ⟨DτA, DτB⟩ = Γ ⊂ SL(X,ω)

Theorem: There is a natural inclusionS1(V) ⟶ MLg × MLg / Modg

whose image is the set of all (A,B) specifying V.

Page 17: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

(X,!) + �<latexit sha1_base64="eYRa9ux4GTXjohsVn0fxcOznHYA=">AAACMXicbZBLSwMxFIUzvh1fVcGNm2ARKpYyUwVdim5cVrC20CnlTprWYB5DkpEOY/+MW935a7oTt/4J01rB14HA4Zx7SfLFCWfGBsHIm5mdm19YXFr2V1bX1jcKm1s3RqWa0DpRXOlmDIZyJmndMstpM9EURMxpI767GPeNe6oNU/LaZgltC+hL1mMErIs6hZ1SsxwpQftwgKPyYVSO+iAEdArFoBJMhP+acGqKaKpaZ9ObjbqKpIJKSzgY0wqDxLZz0JYRTod+lBqaALmDPm05K0FQ084nHxjifZd0cU9pd6TFk/T7Rg7CmEzEblKAvTW/u3H4X9dKbe+0nTOZpJZK8nlRL+XYKjymgbtMU2J55gwQzdxbMbkFDcQ6Zn40WcyFq5SpECWEksOvdJA5O8hUMgaZA+dD33fYwt+Q/pqbaiU8qlSvjotn51OAS2gX7aESCtEJOkOXqIbqiKAH9Iie0LP34o28V+/tc3TGm+5sox/y3j8AKaeoIA==</latexit>

(Y, ⌘) + [0,1]<latexit sha1_base64="CfFDxStaZUXE1me8p5ySmTw9cPI=">AAACNHicbZDLSgMxGIUz3h1vVVfiJiiCYikzutBl0Y3LCrYqnaFk0owGcxmSf8RhKL6Er+BWd76L4E7c+gymrYK3A4HDOf9Pki/JBLcQBM/eyOjY+MTk1LQ/Mzs3v1BZXGpZnRvKmlQLbc4SYpngijWBg2BnmWFEJoKdJleH/f70mhnLtTqBImOxJBeKp5wScFGnsrJ5Xo0YkC0cVbejKm4H1YirFIq4U1kPasFA+K8JP816fS3avnuuF43OojcadTXNJVNABbG2HQYZxCUxwKlgPT/KLcsIvSIXrO2sIpLZuBz8oYc3XNLFqTbuKMCD9PtGSaS1hUzcpCRwaX93/fC/rp1Duh+XXGU5MEWHF6W5wKBxHwjucsMoiMIZQg13b8X0khhCwWHzo8FiKV2lbY1qKbXqfaU3hbM3hc76LEsiRM/3HbbwN6S/prVTC3drO8eO3wEaagqtojW0iUK0h+roCDVQE1F0i+7RA3r0nrwX79V7G46OeJ87y+iHvPcPS/6r1g==</latexit>

Q

hA

hB

!= µ

hA

hB

!

<latexit sha1_base64="F0J6+EyksmCN/E7VBrpsfpAaA1E=">AAACQnicbZA9SwMxHMZz1pd6vrU6KhIU0anc6aCLUOviIrRgVeiVI5emNpiXI8lJj6Ojo5/GpYNufgm/gk7i6mDaKmj1gcCP5/n/SfJEMaPaeN6zM5GbnJqeyc+6c/MLi0uF4vK5lonCpI4lk+oyQpowKkjdUMPIZawI4hEjF9H18SC/uCFKUynOTBqTJkdXgrYpRsZaYWG7BoNTZLJOeBQEnbDSg4cw4MmY6bphYdMreUPBv+B/wWZ5rV97vV3vV8OikwtaEiecCIMZ0rrhe7FpZkgZihnpuUGiSYzwNboiDYsCcaKb2fBHPbhlnRZsS2WPMHDo/tzIENc65ZGd5Mh09Hg2MP/LGolpHzQzKuLEEIFHF7UTBo2Eg3pgiyqCDUstIKyofSvEHaQQNrZENxguZtxGUpew5FyK3rfbTS12UxkPms0QY6Pa/PGS/sL5bsnfK+3WbH8VMFIerIINsAN8sA/K4ARUQR1gcAfuwQN4dJ6cF+fNeR+NTjhfOyvgl5yPTx6Dsls=</latexit>

TopologyGeometry

SL2(R

)<latexit sha1_base64="LYtgfBlXh69cPf2YQNWZm/VnxM0=">AAACJnicbZBLS8NAFIUnrY8aX60u3QSLoAglqQtdFt24cFHRVqEJZTKd6tB5xJmJNIT8C8Gt7vw17kS686c4SRW0emHgcM49zOULI0qUdt2JVSrPzS8sVpbs5ZXVtfVqbaOrRCwR7iBBhbwOocKUcNzRRFN8HUkMWUjxVTg6yfOreywVEfxSJxEOGLzhZEgQ1MYK/IuzfnPXNw2q9vrVuttwi3H+Cu9L1Fvb/v7DpJW0+zWr7A8EihnmGlGoVM9zIx2kUGqCKM5sP1Y4gmgEb3DPSA4ZVkFaXJ05O8YZOEMhzePaKdyfjRQypRIWmk0G9a2azXLzv6wX6+FRkBIexRpzNP1oGFNHCydH4AyIxEjTxAiIJDG3OugWSoi0AWX7RTFlJhKqgQRjgmff7jgxcpyIKKeXQkoz2zbYvFlIf0W32fAOGs1zw+8YTKcCtsA22AUeOAQtcAraoAMQuAOP4Ak8Wy/Wq/VmvU9XS9ZXZxP8GuvjE15Tp/w=</latexit>

⇣Xai ·Ai,

Xbj ·Bj

<latexit sha1_base64="fwDCEff/TOgQPpd+s6M0yyywk+A=">AAACUHicbZDNTtwwFIVvBtpCSssAy26sjiqBVI0SoCpLfjYsQWIAaTKKHI8z4+KfyL6piKJ5Ep6GLd111zfpjjphkChwJcufzrlX1z5ZIYXDKPoTdBYW37x9t7Qcvl/58HG1u7Z+7kxpGR8wI429zKjjUmg+QIGSXxaWU5VJfpFdHTX+xU9unTD6DKuCjxSdaJELRtFLafdbInmOm4krFaGpIAkbGyQHqfhKWi1Lf8y1w4asmExxK0y7vagftUVeQjyHHszrJF0LFpKxYaXiGpmkzg3jqMBRTS0KJvksTErHC8qu6IQPPWqquBvV7f9m5ItXxiQ31h+NpFWfTtRUOVepzHcqilP33GvE17xhifneqBa6KJFr9rAoLyVBQ5qwyFhYzlBWHiizwr+VsCm1lKGPNEzawVp5y7g+M0oZPXtUryuP15UpmpxrKuUsbGKLn4f0Es63+/FOf/t0t7d/OA9wCT7BZ9iEGL7DPhzDCQyAwQ3cwh38Cn4Hf4P7TvDQ+njDBvxXnfAf13GyQg==</latexit>

Q =

0 mAJ

mBJ t 0

!

<latexit sha1_base64="D0BWgUKv7nQFaq5GFiwyuhLNbtE=">AAACOnicbZDNSxtBGMZno626/Yr26MGhwdBT2LWCXgp+XEQQFIwGsnGZnUySwflYZt4tLsse+9f0am/+I169lV79A5xdI9ikDww8PM/7MjO/JBXcQhDce42FxTdvl5ZX/HfvP3z81Fxdu7A6M5R1qRba9BJimeCKdYGDYL3UMCITwS6T68Oqv/zBjOVanUOesoEkY8VHnBJwUdzcOMPfcXRCoAjaMt7Hx1Ek4wN8fAW4jYPSj5utoBPUwvMmnJoWmuo0XvUWoqGmmWQKqCDW9sMghUFBDHAqWOlHmWUpoddkzPrOKiKZHRT1T0q86ZIhHmnjjgJcp683CiKtzWXiJiWBiZ3tqvB/XT+D0e6g4CrNgCn6fNEoExg0rrDgITeMgsidIdRw91ZMJ8QQCg6eH9WLhXSVth2qpdSqfElvcmdvcp1WRAsiROlX2MJZSPPmYqsTfutsnW239g6mAJfROvqCvqIQ7aA9dIROURdR9BP9Qrfot3fnPXh/vL/Pow1vuvMZ/SPv8Qm4sqo5</latexit>

J = i(Ai,Bj)

modular symbol multicurves

heights

Page 18: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Discovering the golden table

A1

A2

B2 B1

The A4 Coxeter diagram

SL(X,ω) is a lattice, ≃ Δ(2,5,∞)i(Ai,Bj) = 0 1

1 1( )non-arithmetic group

Page 19: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Twists and limit measures

τAn(B1) τAn(B2)

Measures predicted by i(A,B)

B1

A

B2

A

Page 20: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Modular symbols to measures

We have a continuous functor I : S(V) ⟶ L(V)

category of matricesup to scale

given by I(γ) = [mod(Ai) i(Ai,Bj)].

Decouples as γ ⟶∞. ~ [h(Ai) c(Bj)]

⇒ closure of image is ωω union a finite set

⇒ limit measures form a copy of ωω + 1.

QED Theorem IIhidden multiplicative structure

Page 21: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

TheoremIf the ray generated by (X,ω) spends at least time T in a compact set K in Mg, then the unit norm positive currents

[P1(ω)] ⊂ H1(X,R)

carried by F(ω) have Hodge diameter O(exp(-C(K) T)).

⇒ decoupling

P

H1(X,R)

Page 22: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Square-tiled case

Sometimes Ms is ωω + 1, sometimes it is one point!

Figure 4. Periodic geodesics near slopes s = 0 and s = 1.

I. The square L. Consider a symmetric L–shaped polygon P made up ofthree squares. By identifying parallel edges, we obtain a square–tiled surface(X, !) 2 ⌦M2(2) with

SL(X, !) =

* 1 2

0 1

!,

0 1

�1 0

!+⇢ SL2(Z).

The corresponding Teichmuller curve V = H/ SL(X, !) is the (2, 1, 1)orbifold; in the terminology of [Mc1], it is the Weierstrass curve WD ⇢ M2

for discriminant D = 9. This is the simplest square–tiled surface of genusg > 1.

For this example, Theorem 9.1 implies:

Mp/q is a single point when p and q are both odd; otherwise,

Ms⇠= !! + 1.

To see this, note that V has two cusps, a and b, corresponding to the slopes1 and 0 respectively. The first cusp has rank one – indeed, C(1) is a singlecylinder; and the corresponding slopes are the ratios of odd integers p/q.The second has rank two; for example, the horizontal and vertical cylindersystems A and B of (X, !) satisfy

i(Ai, Bj) =

1 1

1 0

!.

By Theorem 9.1, all closed geodesics with slopes sn ! 1 are uniformlydistributed, but some with slopes sn ! 0 are not; see Figure 4.

II. The quaternion surface. Our second example is a surface (X, !) ofgenus 3 tiled by 8 squares, studied in [HS], [FMZ, Figure 6], [Mo2] and [Mc3,

38

Page 23: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Slopes, lengths and heights

s

Theorem 1The periodic slopes coincide with Q(√5)s,

and log L(xs) = O(h(x)2).

Method: descent, using a new height on P1(K)

h(p/q + r/s √5) ≃ log max (|p|,|q|,|r|,|s|) ≥ 0

Page 24: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Curves on a Hilbert modular surface

K = real quadratic field

XK = (H⇥H)/ SL(O�O_)

<latexit sha1_base64="ufr3YCrO7lGZC8elBJnL/LDwLqY=">AAACVXicbVBdixMxFM1M624dP9quj74Ei9C+dGeWiouwUNYXQR8qbj+g6ZZMmtmG5mNIMtJh6H/ZX+Orvok/RjCdVtB2LwTOPececu+JU86MDcNfnl+pPjo5rT0Onjx99rzeaJ6NjMo0oUOiuNKTGBvKmaRDyyynk1RTLGJOx/Hq/VYff6XaMCVvbJ7SmcB3kiWMYOuoeePdZP4RXsE2WmKeQGSZoAaWTeccffnURkovqIZowbTJBNy1t4gsV515oxV2w7LgMYj2oAX2NZg3vQpaKJIJKi3h2JhpFKZ2VmBtGeF0E6DM0BSTFb6jUwcldsvMivLIDXztmAVMlHZPWliy/zoKLIzJRewmBbZLc6htyYe0aWaTy1nBZJpZKsnuoyTj0Cq4TQy60ymxPHcAE83crpAsscbEulwDVBoL4SRlukQJoeTmL7vOHVznKt2GXWDON0HgYosOQzoGo4tu1Ou++dxr9a/3AdbAS/AKtEEE3oI++AAGYAgIuAffwHfww/vp/far/slu1Pf2nhfgv/LrfwBod7Oi</latexit>

V = H/� # XK

<latexit sha1_base64="bLuul6rexNf+Ug/mA66XbkwRkE4=">AAACPHicbZBLSwMxFIUzPuv4qrp0Ey2Cqzojim6EogsFNwq2Fjql3EkzNpjHkGTEYejaX+NWd/4P9+7ErWvTWsHXhcDhnHtI8sUpZ8YGwbM3Nj4xOTVdmvFn5+YXFstLyw2jMk1onSiudDMGQzmTtG6Z5bSZagoi5vQyvj4a5Jc3VBum5IXNU9oWcCVZwghYZ3XKaw2MD3DUA55sRccgBOCICeEa1DCJm53TTrkSVIPh4L8iHIkKGs1ZZ8kbj7qKZIJKSzgY0wqD1LYL0JYRTvt+lBmaArmGK9pyUoKgpl0M/9LHG87p4kRpd6TFQ/d7owBhTC5itynA9szvbGD+l7Uym+y3CybTzFJJPi9KMo6twgMwuMs0JZbnTgDRzL0Vkx5oINbB8KNhsRAuUqZKlBBK9r/c29zJ21ylA6YFcN73fYct/A3pr2hsV8Od6u75TqV2OAJYQqtoHW2iEO2hGjpBZ6iOCLpD9+gBPXpP3ov36r19ro55o84K+jHe+wdqtazQ</latexit>

geodesic curve

Theorem I

Either V is a Shimura curve, or the cusps of Vcoincide with and satisfy quadraticheight bounds.

P1(K)

<latexit sha1_base64="5icAXsP/ey5Rm5LYsskmVF9t7es=">AAACI3icbVDLSgMxFM20Pur4anXpZrAIdVNmpKLLohvBTQX7wE4tmTRtY/MYkox0GOYv3OrOr3Enblz4L6YPQVsPBA7n3MO9OUFIidKu+2llsiura+u5DXtza3tnN1/YaygRSYTrSFAhWwFUmBKO65poiluhxJAFFDeD0eXEbz5iqYjgtzoOcYfBASd9gqA20p0fSvFw75Wuj7v5olt2p3CWiTcnRTBHrVuwsn5PoIhhrhGFSrU9N9SdBEpNEMWp7UcKhxCN4AC3DeWQYdVJpienzpFRek5fSPO4dqbq70QCmVIxC8wkg3qoFr2J+J/XjnT/vJMQHkYaczRb1I+oo4Uz+b/TIxIjTWNDIJLE3OqgIZQQadOS7U+DCTOWUGUkGBM8/VHHsaHjWIST6hJIaWrbpjZvsaRl0jgpe5Xy6U2lWL2YF5gDB+AQlIAHzkAVXIEaqAMEOHgCz+DFerXerHfrYzaaseaZffAH1tc3ZlejyQ==</latexit>

cf. M, Möller-Viehweg

Page 25: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Relation to the pentagon

Holomorphic pentagon-to-star map

FH H

(t,F(t))

H2 / SL2(Z[γ])

XK

V

Page 26: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Symmetries of Teichmüller curves

Theorem (M,Möller)SL(X,ω) a lattice with trace field K ⇒

A=Jac(X) admits real multiplication by K

(a factor of) K ⊂ End(A) ⊗ Q

Idea: g + g�1 =

a b

c d

!+

d �b

�c a

!= Tr(g) · I

<latexit sha1_base64="H1+k1yfaQmo9Ti7SQZB8AcVsEKU=">AAACXnicbZDfShwxGMWzY2vtVOtqb4TeBMXFsuwyUxS9ERa9aS8KFlwVNtvlm0x2DObPkGTEYZi38CX6NN66d32UZmcttNoDgR/nfB9JTpILbl0UzVrB0qvXy29W3obvVtfer7c3Ni+sLgxlQ6qFNlcJWCa4YkPHnWBXuWEgE8Euk5vTeX55y4zlWp27MmdjCZniU07BeWvSPs262Y+qF9f4GJNv4CroJITQTlrj7sJIcQf3EkwI7lGP0Eyem73sEyY01Q5/nbR3on7UCL+E+Al2Btukez8blGeTjdYSSTUtJFOOCrB2FEe5G1dgHKeC1SEpLMuB3kDGRh4VSGbHVfPbGu96J8VTbfxRDjfu3xsVSGtLmfhJCe7aPs/m5v+yUeGmR+OKq7xwTNHFRdNCYKfxv DqccsOoE6UHoIb7t2J6DQao8wWHpFmspI+07VMtpVb1H/eu9HhX6nzeegVC1GHoa4ufl/QSLj734/3+wXff3wlaaAV9RNtoD8XoEA3QF3SGhoiin+gBPaJZ61ewHKwF64vRoPW08wH9o2DrNwr2tZ4=</latexit>

(�+ ��1)⇤! = (Tr�)!

<latexit sha1_base64="/u63UJ9NTiu2GzlraBBMgEkEPws=">AAACSXicdVDNThsxGPQm/QlLfwI9crFASIGoqzVqm3CoFNELRyqRBCkbIq/jJBb+WdneitVq3yJPwxVuPEEegxvqCW8SpBa1I1kezXyjz5444czYMFx4leqr12/e1jb8zXfvP3ysb233jEo1oV2iuNIXMTaUM0m7lllOLxJNsYg57cdXP0q//4tqw5Q8t1lChwJPJZswgq2TRvWgESUzBpuwvC7zz6g4uDyEkRJ0iuF32IjOdekcrKVRfS8MwjBECMGSoNa30JHj4/YRakNUWg57nd2oOV90srPRlleNxoqkgkpLODZmgMLEDnOsLSOcFn6UGppgcoWndOCoxIKaYb78WAH3nTKGE6XdkRYu1T8TORbGZCJ2kwLbmXnpleK/vEFqJ+1hzmSSWirJatEk5dAqWLYEx0xTYnnmCCaaubdCMsMaE+u69KNlMBfOUiYgSggli2f1OnP0OlNJWXCOOS9839X23A38P+kdBehL8PWn6+8ErFADO2AXNAACLdABp+AMdAEBc3ADbsGdd+89eI/e79VoxVtnPoG/UKk+AR2Nsys=</latexit>

Page 27: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

H1(A,Q) ⇠= K2

K ⇢ End(A)⌦Q

The projective lineHeight HA(x) on P1A(K)

<latexit sha1_base64="HUQzPwwCiFOluMoG5bqH1g+WjhA=">AAACU3icdZDNThsxFIU9Ay10Wkqgy24sokphE40RhSA2QDeRuqESAaRMOvI4TuLin5F9B2U0yqvwNGzbXRd9FjZ4kiBB1R7J0tH57pXtk+VSOIjjP0G4svrq9dr6m+jtu433m42t7UtnCst4jxlp7HVGHZdC8x4IkPw6t5yqTPKr7OZLza9uuXXC6Asocz5QdKzFSDAKPkobnQT4FKouF+MJzHBynBx309PWdHduF9DoBcBJbs2P9PQ7aX3dTRvNuB3HMSEE14YcHsTeHB119kgHkxp5NdFS5+lWsJIMDSsU18Akda5P4hwGFbUgmOSzKCkczym7oWPe91ZTxd2gmn9xhj/5ZIhHxvqjAc/T5xsVVc6VKvOTisLE/c3q8F+sX8CoM6iEzgvgmi0uGhUSg8F1X3goLGcgS28os8K/FbMJtZSBbzVK5ouV8si4NjNK+bKe0mnp7bQ0eV11RaWcRZGv7akb/H9zudcm++3P3/abJ2fLAtfRR7SDWoigQ3SCuugc9RBDd+ge/US/gt/BQxiGq4vRMFjufEAvFG48AryLssI=</latexit>

Height HA(x) on P1A(K)

<latexit sha1_base64="HUQzPwwCiFOluMoG5bqH1g+WjhA=">AAACU3icdZDNThsxFIU9Ay10Wkqgy24sokphE40RhSA2QDeRuqESAaRMOvI4TuLin5F9B2U0yqvwNGzbXRd9FjZ4kiBB1R7J0tH57pXtk+VSOIjjP0G4svrq9dr6m+jtu433m42t7UtnCst4jxlp7HVGHZdC8x4IkPw6t5yqTPKr7OZLza9uuXXC6Asocz5QdKzFSDAKPkobnQT4FKouF+MJzHBynBx309PWdHduF9DoBcBJbs2P9PQ7aX3dTRvNuB3HMSEE14YcHsTeHB119kgHkxp5NdFS5+lWsJIMDSsU18Akda5P4hwGFbUgmOSzKCkczym7oWPe91ZTxd2gmn9xhj/5ZIhHxvqjAc/T5xsVVc6VKvOTisLE/c3q8F+sX8CoM6iEzgvgmi0uGhUSg8F1X3goLGcgS28os8K/FbMJtZSBbzVK5ouV8si4NjNK+bKe0mnp7bQ0eV11RaWcRZGv7akb/H9zudcm++3P3/abJ2fLAtfRR7SDWoigQ3SCuugc9RBDd+ge/US/gt/BQxiGq4vRMFjufEAvFG48AryLssI=</latexit>

= space of K-lines in

H1(A,Q)

Page 28: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Classical height on Pn(K)

For example, if v is an real place of K, and ⇢ : K ! Kv = R is the associatedcompletion, then

|x|v = |⇢(x)|1/g.

Heights on projective space. The absolute multiplicative height onPn(K) is given by

H(x) = H(x0 : x1 : · · · : xn) =Y

v

maxi

|xi|v.

It is well–defined by the product formula, which also implies that H(x) � 1.Our normalizations were chosen so that H(x) remains constant under finiteextensions.

A closely related height can be defined by

eH(x) = infa

Y

v|1

maxi

|ai|v, (2.1)

where the infimum is taken over vectors of integers a 2 On+1 such that

[a0 : · · · : an] = [x]. This height is comparable to the standard one; indeed,using finiteness of the class number, one can show that

H(x) eH(x) C(K, n)H(x)

for all x, and equality holds when O is a UFD.

Abelian varieties. Let A be a polarized Abelian variety of dimension g.We can naturally identify A with the quotient space

A = ⌦(A)⇤/H1(A,Z),

where ⌦(A) ⇠= Cg is the space of holomorphic 1–forms on A, and its paring

with H1(A,Z) ⇠= Z2g is given by hC, !i =

RC !.

The polarization of A is recorded by a positive–definite Hermitian innerproduct on ⌦(A)⇤, with the property that the symplectic form

[C, D] = � ImhC, Di (2.2)

takes integral values on H1(A,Z). We denote the associated Hodge norm onH1(A,R) by kCkA = hC, Ci

1/2. The polarization also determines a normand inner product on ⌦(A), via duality.

11

For example, if v is an real place of K, and ⇢ : K ! Kv = R is the associatedcompletion, then

|x|v = |⇢(x)|1/g.

Heights on projective space. The absolute multiplicative height onPn(K) is given by

H(x) = H(x0 : x1 : · · · : xn) =Y

v

maxi

|xi|v.

It is well–defined by the product formula, which also implies that H(x) � 1.Our normalizations were chosen so that H(x) remains constant under finiteextensions.

A closely related height can be defined by

eH(x) = infa

Y

v|1

maxi

|ai|v, (2.1)

where the infimum is taken over vectors of integers a 2 On+1 such that

[a0 : · · · : an] = [x]. This height is comparable to the standard one; indeed,using finiteness of the class number, one can show that

H(x) eH(x) C(K, n)H(x)

for all x, and equality holds when O is a UFD.

Abelian varieties. Let A be a polarized Abelian variety of dimension g.We can naturally identify A with the quotient space

A = ⌦(A)⇤/H1(A,Z),

where ⌦(A) ⇠= Cg is the space of holomorphic 1–forms on A, and its paring

with H1(A,Z) ⇠= Z2g is given by hC, !i =

RC !.

The polarization of A is recorded by a positive–definite Hermitian innerproduct on ⌦(A)⇤, with the property that the symplectic form

[C, D] = � ImhC, Di (2.2)

takes integral values on H1(A,Z). We denote the associated Hodge norm onH1(A,R) by kCkA = hC, Ci

1/2. The polarization also determines a normand inner product on ⌦(A), via duality.

11

For example, if v is an real place of K, and ⇢ : K ! Kv = R is the associatedcompletion, then

|x|v = |⇢(x)|1/g.

Heights on projective space. The absolute multiplicative height onPn(K) is given by

H(x) = H(x0 : x1 : · · · : xn) =Y

v

maxi

|xi|v.

It is well–defined by the product formula, which also implies that H(x) � 1.Our normalizations were chosen so that H(x) remains constant under finiteextensions.

A closely related height can be defined by

eH(x) = infa

Y

v|1

maxi

|ai|v, (2.1)

where the infimum is taken over vectors of integers a 2 On+1 such that

[a0 : · · · : an] = [x]. This height is comparable to the standard one; indeed,using finiteness of the class number, one can show that

H(x) eH(x) C(K, n)H(x)

for all x, and equality holds when O is a UFD.

Abelian varieties. Let A be a polarized Abelian variety of dimension g.We can naturally identify A with the quotient space

A = ⌦(A)⇤/H1(A,Z),

where ⌦(A) ⇠= Cg is the space of holomorphic 1–forms on A, and its paring

with H1(A,Z) ⇠= Z2g is given by hC, !i =

RC !.

The polarization of A is recorded by a positive–definite Hermitian innerproduct on ⌦(A)⇤, with the property that the symplectic form

[C, D] = � ImhC, Di (2.2)

takes integral values on H1(A,Z). We denote the associated Hodge norm onH1(A,R) by kCkA = hC, Ci

1/2. The polarization also determines a normand inner product on ⌦(A), via duality.

11

(ai are integers)

comparable to

only requires knowledge of integers andinfinite places

Page 29: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Height HA(x) on P1A(K)

<latexit sha1_base64="HUQzPwwCiFOluMoG5bqH1g+WjhA=">AAACU3icdZDNThsxFIU9Ay10Wkqgy24sokphE40RhSA2QDeRuqESAaRMOvI4TuLin5F9B2U0yqvwNGzbXRd9FjZ4kiBB1R7J0tH57pXtk+VSOIjjP0G4svrq9dr6m+jtu433m42t7UtnCst4jxlp7HVGHZdC8x4IkPw6t5yqTPKr7OZLza9uuXXC6Asocz5QdKzFSDAKPkobnQT4FKouF+MJzHBynBx309PWdHduF9DoBcBJbs2P9PQ7aX3dTRvNuB3HMSEE14YcHsTeHB119kgHkxp5NdFS5+lWsJIMDSsU18Akda5P4hwGFbUgmOSzKCkczym7oWPe91ZTxd2gmn9xhj/5ZIhHxvqjAc/T5xsVVc6VKvOTisLE/c3q8F+sX8CoM6iEzgvgmi0uGhUSg8F1X3goLGcgS28os8K/FbMJtZSBbzVK5ouV8si4NjNK+bKe0mnp7bQ0eV11RaWcRZGv7akb/H9zudcm++3P3/abJ2fLAtfRR7SDWoigQ3SCuugc9RBDd+ge/US/gt/BQxiGq4vRMFjufEAvFG48AryLssI=</latexit>

H(x) = infC

Y

v|1

|C|v

<latexit sha1_base64="lVKHQHKV656JTXcba//MGRkp+Yo=">AAACP3icbVDLSgMxFM1Yn+Or6tJNsAq6KTOi6EYoduNSwbZCpwyZNKPBPIYkUzpM5wf8Gre68zP8Anfi1p2ZWsHXgcDJOfdwkxMljGrjec/OVGV6ZnZufsFdXFpeWa2urbe1TBUmLSyZVFcR0oRRQVqGGkauEkUQjxjpRLfN0u8MiNJUikuTJaTH0bWgMcXIWCmsbp/tDvfgCQyoiMMmDBIl+2E+GJV3kxVw1ByFg7Ba8+reGPAv8SekBiY4D9ecStCXOOVEGMyQ1l3fS0wvR8pQzEjhBqkmCcK36Jp0LRWIE93Lx98p4I5V+jCWyh5h4Fj9nsgR1zrjkZ3kyNzo314p/ud1UxMf93IqktQQgT8XxSmDRsKyG9inimDDMksQVtS+FeIbpBA2tkE3GAdzbi2p61hyLkXxpQ4zS4eZTMpac8RY4bq2Nv93SX9Je7/uH9QPLw5qjdNJgfNgE2yBXeCDI9AAZ+ActAAGd+AePIBH58l5cV6dt8/RKWeS2QA/4Lx/AA0qrrU=</latexit>

A

<latexit sha1_base64="F7eoiDocQEvANtySk2UjPAeoqJk=">AAACHHicbVDLSgMxFM20Pur4anXpJlgEV8OMVHRZdeOyoq2FtpRMmmlD8xiSjHQY6h+41Z1f407cCv6N6UPQ1gOBwzn3cG9OGDOqje9/Obn8yuraemHD3dza3tktlvYaWiYKkzqWTKpmiDRhVJC6oYaRZqwI4iEj9+HwauLfPxClqRR3Jo1Jh6O+oBHFyFjp9rF70S2Wfc+fAi6TYE7KYI5at+Tk2z2JE06EwQxp3Qr82HQypAzFjIzddqJJjPAQ9UnLUoE40Z1seusYHlmlByOp7BMGTtXfiQxxrVMe2kmOzEAvehPxP6+VmOi8k1ERJ4YIPFsUJQwaCScfhz2qCDYstQRhRe2tEA+QQtjYetz2NJhxa0ntYcm5FOMfdZRaOkplPOksQ4yNXdfWFiyWtEwaJ15Q8U5vKuXq5bzAAjgAh+AYBOAMVME1qIE6wKAPnsAzeHFenTfn3fmYjeaceWYf/IHz+Q2ow6Ff</latexit>

|C|v =

����Z

C!v

����1/g

<latexit sha1_base64="F/mPzVeNBZcH5IfhFIwTWBHbjFk=">AAACRXicbZDNahRBFIWrk6ix/cmMLt0UCYK4GLvFoBshOhuXCWSSwPTYVNfc7ilSP03V7SFNT7+D7yK4VHc+gwsfIbuQbVIzk4AmHig4nHMvVfVlpRQOo+h3sLK6dufuvfX74YOHjx5vdLpPDpypLIcBN9LYo4w5kELDAAVKOCotMJVJOMyO+/P+cArWCaP3sS5hpFihRS44Qx+lnZez/iyd0vc0kZDjLBEa0z5NjIKCpdPEimKCs89N/Kpo085W1IsWordNfGW2dj5EX/90v+vdtBusJmPDKwUauWTODeOoxFHDLAouoQ2TykHJ+DErYOitZgrcqFl8qqXPfTKmubH+aKSL9O+NhinnapX5ScVw4m528/B/3bDC/N2oEbqsEDRfXpRXkqKhc0J0LCxwlLU3jFvh30r5hFnG0XMMk8Vio3xlXI8bpYxur9OT2tuT2pRzuA2Tsg1Djy2+Cem2OXjdi9/0tvc8v49kqXXyjGySFyQmb8kO+UR2yYBw8oV8Iz/Iz+BXcBqcBefL0ZXgaucp+UfBxSWGmrU4</latexit>

Hodge norm at vx ∈ PA1(K)

C ∈ H1(X, Z)

x = [K・C]

Page 30: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Why a height?

eH(x) = infa

Y

v|1

maxi

|ai|v

<latexit sha1_base64="C58TjfnIuHdxwH3GjqN8l98tis8=">AAACUHicbZDNTtwwFIVvhtJCoO1Al2ysjpBgM0oqULtBQmXDkkodQJqMohvHAQv/RLYzmiiTJ+FpuoVdd32T7lpnGKQWuJLlz+fcK9snKwW3Lop+Bb2VV6uv36ythxubb9+9729tn1tdGcpGVAttLjO0THDFRo47wS5Lw1Bmgl1kNyedfzFlxnKtvru6ZBOJV4oXnKLzUto/TBwXOWtO273ZPjkiCVdFiiQpjc7TZjrvzq5uSSJxlnIyx5TP02naH0TDaFHkOcRLGMCyztKtYCXJNa0kU44KtHYcR6WbNGgcp4K1YVJZViK9wSs29qhQMjtpFv9rya5XclJo45dyZKH+O9GgtLaWme+U6K7tU68TX/LGlSu+TBquysoxRR8uKipBnCZdWCTnhlEnag9IDfdvJfQaDVLnIw2TxWAjvaXtkGoptWof1VntcVbrssu5QSHaMPSxxU9Deg7nn4bxwfDw28Hg+OsywDXYgY+wBzF8hmM4hTMYAYVb+AF3cB/8DH4Hf3rBQ+vjDh/gv+qFfwF447RV</latexit>

Theorem. Given a linear isomorphism

◆ : P1A(K) ! P1(K)

<latexit sha1_base64="csZLLm/BwJMx1nQJ/h9xG7xeYZI=">AAACQXicbZDLSgMxGIUz3h1vVZdugkXRTZkRRXHlZSO4UbAqdGr5J001NpchyajD0DfwadzqzqfwEdyJWzem0wreDgQO3/l/kpw44czYIHjxBgaHhkdGx8b9icmp6ZnS7NypUakmtEoUV/o8BkM5k7RqmeX0PNEURMzpWdze7+ZnN1QbpuSJzRJaF3ApWYsRsA41SssRUxbwNo4Sra4buxfhyuEqjkBrddtjBWmUykElKIT/mrBvyqivo8asNxg1FUkFlZZwMKYWBomt56AtI5x2/Cg1NAHShktac1aCoKaeFx/q4CVHmriltDvS4oJ+38hBGJOJ2E0KsFfmd9aF/2W11La26jmTSWqpJL2LWinHVuFuO7jJNCWWZ84A0cy9FZMr0ECs69CPisVcuEiZClFCKNn5oneZs3eZSrrF5sB5x/ddbeHvkv6a07VKuF7ZOF4v7+z1CxxDC2gRraAQbaIddICOUBURdI8e0CN68p69V+/Ne++NDnj9nXn0Q97HJ4aJrj4=</latexit>

H(◆(x)) ⇣ HA(x)

<latexit sha1_base64="T1cdcrHE/toAln+X+OpK2Z3m9fc=">AAACMnicbVDLSgMxFM34dny1unDhJliEuikzUtFl1U2XCrYKnVLupKkG8xiSjHQY5mvc6s6f0Z249SNMawWtHgicnHMPNzlxwpmxQfDizczOzS8sLi37K6tr6xul8mbbqFQT2iKKK30dg6GcSdqyzHJ6nWgKIub0Kr47G/lX91QbpuSlzRLaFXAj2YARsE7qlbab1YgpC9Xh/j6OYohxs3fiLr1SJagFY+C/JJyQCprgvFf2ZqO+Iqmg0hIOxnTCILHdHLRlhNPCj1JDEyB3cEM7jkoQ1HTz8Q8KvOeUPh4o7Y60eKz+TOQgjMlE7CYF2Fsz7Y3E/7xOagfH3ZzJJLVUkq9Fg5Rjq/CoDtxnmhLLM0eAaObeisktaCDWleZH42AunKVMjSghlCy+1WHm6DBTyajJHDgvfN/VFk6X9Je0D2phvXZ4Ua80TicFLqEdtIuqKERHqIGa6By1EEEFekCP6Ml79l69N+/9a3TGm2S20C94H58xgKgX</latexit>

we have .

H(x) = infC

Y

v|1

|C|v

<latexit sha1_base64="lVKHQHKV656JTXcba//MGRkp+Yo=">AAACP3icbVDLSgMxFM1Yn+Or6tJNsAq6KTOi6EYoduNSwbZCpwyZNKPBPIYkUzpM5wf8Gre68zP8Anfi1p2ZWsHXgcDJOfdwkxMljGrjec/OVGV6ZnZufsFdXFpeWa2urbe1TBUmLSyZVFcR0oRRQVqGGkauEkUQjxjpRLfN0u8MiNJUikuTJaTH0bWgMcXIWCmsbp/tDvfgCQyoiMMmDBIl+2E+GJV3kxVw1ByFg7Ba8+reGPAv8SekBiY4D9ecStCXOOVEGMyQ1l3fS0wvR8pQzEjhBqkmCcK36Jp0LRWIE93Lx98p4I5V+jCWyh5h4Fj9nsgR1zrjkZ3kyNzo314p/ud1UxMf93IqktQQgT8XxSmDRsKyG9inimDDMksQVtS+FeIbpBA2tkE3GAdzbi2p61hyLkXxpQ4zS4eZTMpac8RY4bq2Nv93SX9Je7/uH9QPLw5qjdNJgfNgE2yBXeCDI9AAZ+ActAAGd+AePIBH58l5cV6dt8/RKWeS2QA/4Lx/AA0qrrU=</latexit>

A

<latexit sha1_base64="F7eoiDocQEvANtySk2UjPAeoqJk=">AAACHHicbVDLSgMxFM20Pur4anXpJlgEV8OMVHRZdeOyoq2FtpRMmmlD8xiSjHQY6h+41Z1f407cCv6N6UPQ1gOBwzn3cG9OGDOqje9/Obn8yuraemHD3dza3tktlvYaWiYKkzqWTKpmiDRhVJC6oYaRZqwI4iEj9+HwauLfPxClqRR3Jo1Jh6O+oBHFyFjp9rF70S2Wfc+fAi6TYE7KYI5at+Tk2z2JE06EwQxp3Qr82HQypAzFjIzddqJJjPAQ9UnLUoE40Z1seusYHlmlByOp7BMGTtXfiQxxrVMe2kmOzEAvehPxP6+VmOi8k1ERJ4YIPFsUJQwaCScfhz2qCDYstQRhRe2tEA+QQtjYetz2NJhxa0ntYcm5FOMfdZRaOkplPOksQ4yNXdfWFiyWtEwaJ15Q8U5vKuXq5bzAAjgAh+AYBOAMVME1qIE6wKAPnsAzeHFenTfn3fmYjeaceWYf/IHz+Q2ow6Ff</latexit>

Page 31: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Case of a torus

K = Q

<latexit sha1_base64="oMhE2aOnHXf5DUK+vAOKyTwbu/c=">AAACI3icbVDLSgMxFM20Pur4anXpJlgEV2VGFN0IRTeCmwr2gZ1SMmnahuYxJBnpMPQv3OrOr3Enblz4L6btCNp6IHA45x7uzQkjRrXxvE8nl19ZXVsvbLibW9s7u8XSXkPLWGFSx5JJ1QqRJowKUjfUMNKKFEE8ZKQZjq6nfvORKE2luDdJRDocDQTtU4yMlR5u4SUMFDJMd4tlr+LNAJeJn5EyyFDrlpx80JM45kQYzJDWbd+LTCdFylDMyMQNYk0ihEdoQNqWCsSJ7qSzkyfwyCo92JfKPmHgTP2dSBHXOuGhneTIDPWiNxX/89qx6V90Uiqi2BCB54v6MYNGwun/YY8qgg1LLEFYUXsrxEOkEDa2JTeYBVNuLakrWHIuxeRHHSeWjhMZTatLEWMT17W1+YslLZPGScU/rZzdnZarV1mBBXAADsEx8ME5qIIbUAN1gIEAT+AZvDivzpvz7nzMR3NOltkHf+B8fQNu9KPR</latexit>

A = C/Z� Z⌧

<latexit sha1_base64="6tptk376kWH2P3SOCq6Mnq8cVn4=">AAACOXicbVBJSwMxGM20LnXcWj0KEiyCpzojFb0IVS8eK9gFOqVk0lRDswxJRjoOc/PXeNWbv8SjN/HqHzBdBLcHgZf3vkfyvTBiVBvPe3Fy+bn5hcXCkru8srq2XixtNLWMFSYNLJlU7RBpwqggDUMNI+1IEcRDRlrh8Hzst26J0lSKK5NEpMvRtaADipGxUq+4fQpPYIBH+8Ed6cOgT5WOOZxeDIp7xbJX8SaAf4k/I2UwQ71XcvJBX+KYE2EwQ1p3fC8y3RQpQzEjmRvEmkQID9E16VgqECe6m04WyeCuVfpwIJU9wsCJ+j2RIq51wkM7yZG50b+9sfif14nN4LibUhHFhgg8fWgQM2gkHLcC7d4EG5ZYgrCi9q8Q3yCFsLHducEkmHJrSV3BknMpsi91lFg6SmQ0LjRFjGWua2vzf5f0lzQPKn61cnhZLdfOZgUWwBbYAXvAB0egBi5AHTQABvfgATyCJ+fZeXXenPfpaM6ZZTbBDzgfn2miq9g=</latexit>

H1(A,Z) ⇠= Z2

<latexit sha1_base64="0Gy3RKO5S5Vxwu8ernsHMvrINws=">AAACM3icbZDLSgMxGIUz1ksdb61uBDfBIlSQMiMVXXrZuFSwF+jUkknTGsxlSDLiONSncas7H0bciVvfwUxbQVsPBD7O+X+SnDBiVBvPe3NmcrNz8wv5RXdpeWV1rVBcr2sZK0xqWDKpmiHShFFBaoYaRpqRIoiHjDTC27Msb9wRpakUVyaJSJujvqA9ipGxVqewed7xyyd7wQPp7sKAaslhxtf7nULJq3hDwWnwx1ACY110ik4u6EoccyIMZkjrlu9Fpp0iZShmZOAGsSYRwreoT1oWBeJEt9PhFwZwxzpd2JPKHmHg0P29kSKudcJDO8mRudGTWWb+l7Vi0ztqp1REsSECjy7qxQwaCbM+YJcqgg1LLCCsqH0rxDdIIWxsa24wXEy5jaSuYMm5FIMf9z6xeJ/IKKsyRYwNXNfW5k+WNA31/YpfrRxcVkvHp+MC82ALbIMy8MEhOAbn4ALUAAaP4Ak8gxfn1Xl3PpzP0eiMM97ZAH/kfH0D0yCo/A==</latexit>

Hτ(x) = length of geodesic with slope x = a/b

kCk2A =

����Z

C!

����2

=|a+ b⌧ |2

Im ⌧

<latexit sha1_base64="qWYQYAgtzhP49ZTWZhkpnaz0hOU=">AAACZXicbZBdaxNBFIYnWz/qam2q4o0XDgZBEMJuqbQ3QjU36lUF0xYyMZydzCZD52OZOStddvc/+WsEr/TOv+FsEkFbDwy8877ncGaerFDSY5J870VbN27eur19J757b+f+bn/vwam3peNizK2y7jwDL5Q0YowSlTgvnACdKXGWXYy6/OyLcF5a8wmrQkw1LIzMJQcM1qz/gTUj1szefN6nrylTIseGSYOzEWVWiwVQ5uRiic06zx3wugH6kmYMoQxuW7P3mnaXdtYfJMNkVfS6SDdiQDZ1MtvrbbG55aUWBrkC7ydpUuC0BoeSK9HGrPSiAH4BCzEJ0oAWflqvPt3S58GZ09y6cAzSlfv3RA3a+0pnoVMDLv3VrDP/l01KzI+mtTRFicLw9aK8VBQt7QjSuXSCo6qCAO5keCvlSwhkMHCO2Wqw1iGyfsit1ta0f9zLKsjLyhYd/BqUauM4YEuvQrouTveH6cHw1ceDwfHbDcBt8oQ8Iy9ISg7JMXlHTsiYcPKVfCM/yM/er2gnehQ9XrdGvc3MQ/JPRU9/A7UGuWw=</latexit>

Hodge norm

Page 32: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Level sets of height

decreases like exp(-s) alonggeodesic rays descending to a/b

a/b

Ht(a/b)

t ∈ H

g=1

Page 33: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

a/b

Descent on aHilbert modular surface

t = γ(s) ∈ H

a/b ∈ Q(√D)Holomorphic pentagon-to-star map

F

γ(s)

Hτ(a/b) τ = (t,F(t))

Aτ = C2 / O ⊕ τOv

g=2

Page 34: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

To show a/b is a cusp

When t lies over Vthick :

Hτ(a/b) ≥ 1|F´(t)| < δ < 1

So γ spends only a finite amount of time over Vthick

Hτ(a/b) ~ (t term) x (F(t) term)

≤ exp(-s) exp(|F´| s)

⇒a/b is a cusp

Page 35: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Cor: Triangle groups

0 γ11/γ

The cusps of the (2,5,∞) triangle group Γ coincide with K.

� = hz 7! �1/z and z 7! z + �i

<latexit sha1_base64="obmvrPzGiEhV3qR3wALhNr0XxP0=">AAACV3icdVBdaxNBFJ3dao3rR5P66MtgEAQx7pRgU7BQP0CfpIJpC9kQ7k4m6dD5WGZmpdtl/4y/xld966/Ru2mKH+iFgTPn3MO99+SFkj6k6WUUb9y4uXmrczu5c/fe/a1ub/vI29JxMeZWWXeSgxdKGjEOMihxUjgBOlfiOD970+rHn4Xz0ppPoSrEVMPSyIXkEJCadV9m70BroPs0yx3wMxF8fUEzDYUPlj5jz/Hz6sNb+ou7oE9ptmxNzazbTwdpmjLGaAvY7osUwd7eaIeNKGslrD5Z1+GsF21kc8tLLUzgCryfsLQI0xpckFyJJslKLwpcA5ZigtCAFn5ar85s6GNk5nRhHT4T6Ir93VGD9r7SOXZqCKf+b60l/6VNyrAYTWtpijIIw68GLUpF8do2MzqXTvCgKgTAncRdKT8FjCtgskm2MtYaJesH3GptTXPNnlcIzytbtHHXoFSTJBjbdTb0/+BoZ8CGg+HHYf/g9TrADnlIHpEnhJFdckDek0MyJpx8IV/JN/I9uox+xJtx56o1jtaeB+SPins/AfY3tFE=</latexit>

Page 36: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Cor: Continued fractions1. The cusps of �(2, 5,1) coincide with Q(�) [ {1} (see Figure 1).

2. Every s 2 Q(�) can be expanded as a finite golden continued fraction,

s = [a1, a2, a3, . . . , aN ] = a1� +1

a2� +1

a3� + · · ·1

aN�

with ai 2 Z.

3. Every s 2 Q(�) can be expressed as a golden fraction s = a/c, charac-terized by the property that

�a bc d

�2 � for some b, d. This expression

is unique up to a sign change, s = (�a)/(�c).

Let us elaborate the last point. Since K has class number one, we cancertainly write s = A/B as a ratio of relatively integers A, B 2 Z[�]. Infact, since � is a unit, there are many such expressions: we also have s =(�kA)/(�kB) for any k 2 Z.

The golden fraction expression s = a/c uses the thin group � to pick outa particular value of k. The complexity of this expression is controlled bythe height bounds in Theorem 1.1; in this case, they yield:

Corollary 1.3 The height of any nonzero golden fraction s = a/c satisfies

h(a) + h(c) = O(h(s)2). (1.1)

Here h(x) is the absolute logarithmic height on K = Q�Q�; it satisfies

h((p/q) + (r/s)�) ⇣ log max{1, |p|, |q|, |r|, |s|}.

One can readily verify that for k � 0 the denominator of the goldenfraction for s = �2k is c = �k2�k+1, so the exponent 2 in equation (1.1) issharp. We will also see that the length of the golden continued fraction fors satisfies N = O(h(s)).

Matrix coe�cients. Let M ⇢ Z[�] denote the set of all matrix entriesthat occur in �. The discussion of golden fractions above shows that

Z[�] =[

k

�kM.

As noted by Leutbecher in the 1970s [Le], there is no known characteri-zation of the elements of M . The next result gives a qualitative descriptionof M and also reveals its hidden multiplicative structure.

3

Height bounds: length N and ai are O(1+h(x)) .

Page 37: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Theorem

The cusps of the (p,q,∞) triangle group coincidewith P1(K) whenever deg(K/Q) = 1 or 2.

non arithmetic

Open problem

Converse? For triangle groups and for Veech groups?

(2,q,∞) known

Page 38: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Cor: Billiards in a pentagon

The periodic slopes coincide with Q(√5)s, and log L(xs) = O(h(x)2).

s = tan(2π/5)

Page 39: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

1

1�

<latexit sha1_base64="9FK2Il/H0P4Byx47hspd81Kc8YY=">AAACH3icbVDLSgMxFM20Pur4anXpZrAIrsqMFHRZdOOygn1AW8qdNG1j8xiSjHQY+g9udefXuBO3/RszbQVtPRA4nHMP9+aEEaPa+P7cyeW3tnd2C3vu/sHh0XGxdNLUMlaYNLBkUrVD0IRRQRqGGkbakSLAQ0Za4eQu81vPRGkqxaNJItLjMBJ0SDEYKzW7I+Ac+sWyX/EX8DZJsCJltEK9X3Ly3YHEMSfCYAZadwI/Mr0UlKGYkZnbjTWJAE9gRDqWCuBE99LFuTPvwioDbyiVfcJ4C/V3IgWudcJDO8nBjPW6l4n/eZ3YDG96KRVRbIjAy0XDmHlGetnfvQFVBBuWWAJYUXurh8egABvbkNtdBFNuLakrWHIuxexHnSaWThMZZbWlwNjMdW1twXpJm6R5VQmqlepDtVy7XRVYQGfoHF2iAF2jGrpHddRAGD2hF/SK3px358P5dL6WozlnlTlFf+DMvwFBn6K9</latexit>

<latexit sha1_base64="9FK2Il/H0P4Byx47hspd81Kc8YY=">AAACH3icbVDLSgMxFM20Pur4anXpZrAIrsqMFHRZdOOygn1AW8qdNG1j8xiSjHQY+g9udefXuBO3/RszbQVtPRA4nHMP9+aEEaPa+P7cyeW3tnd2C3vu/sHh0XGxdNLUMlaYNLBkUrVD0IRRQRqGGkbakSLAQ0Za4eQu81vPRGkqxaNJItLjMBJ0SDEYKzW7I+Ac+sWyX/EX8DZJsCJltEK9X3Ly3YHEMSfCYAZadwI/Mr0UlKGYkZnbjTWJAE9gRDqWCuBE99LFuTPvwioDbyiVfcJ4C/V3IgWudcJDO8nBjPW6l4n/eZ3YDG96KRVRbIjAy0XDmHlGetnfvQFVBBuWWAJYUXurh8egABvbkNtdBFNuLakrWHIuxexHnSaWThMZZbWlwNjMdW1twXpJm6R5VQmqlepDtVy7XRVYQGfoHF2iAF2jGrpHddRAGD2hF/SK3px358P5dL6WozlnlTlFf+DMvwFBn6K9</latexit>

Figure 3. Long periodic billiard paths, each with over 200 segments, withinitial slopes 5 and 8

p3 respectively.

Computer experimental quickly reveal that even small, rational slopeslead to very long trajectories in P ; for example, L(5) ⇡ 479, while L(6765)is on the order of 1025. This suggest that the exponent 2 in (1.2) is sharp,and indeed this is the case.

The 1–form associated to this polygon satisfies SL(X, !) = �(2, 5,1).Using this connection, we will give a simple dynamical proof that

a + b� 2 M =) ab � 0

and hence���2

m0/m 1 (1.3)

for all matrix entries m 6= 0 in �(2, 5,1). Equality arises is when m = 1and m = �.

Example 2. The golden arrow. A second lattice polygon, also based onthe golden ratio, is shown at the right in Figure 3; its internal angles are⇡(1, 1, 2, 8)/6, and its periodic slopes are given by S(P ) =

p3 ·Q(�)[ {1}.

Both examples belong to infinite families, discussed in [Mc1, §9] and[EMMO, §8] respectively, and their side lengths can be varied to produceinfinitely many di↵erent quadratic trace fields.

6

Applies to all families of optimal billiards

…since these are quadratic: Eskin - Filip - Wright

Page 40: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

Open problem

In a regular heptagon, (i) characterize the periodic slopes, and (ii) bound L(x s), x in K.

Shown: L(s)=7, L(2 s) =

s = tan(2π/7)

K = Q(cos(2π/7))(cubic)

2190

Page 41: Billiards, heights and modular symbolspeople.math.harvard.edu/.../home/.../bistro/bistro.pdfSlopes, lengths and heights s Theorem 1 The periodic slopes coincide with Q(√5)s, and

References

Teichmüller dynamics and unique ergodicity via currents and Hodge theory

Modular symbols for Teichmüller curves

Billiards, heights, and the arithmetic of non-arithmetic groups in preparation

math.harvard.edu/~ctm/papers

Preprints, 2019/2020