20
Nisku Carbonate Bennion, Bachu SAMPLE PROPERTIES EXPERIMENTAL PROPER Rock Type Carbonate Temperature [C] Length [cm] 3.200 Pore Pressure [kPag] Flow Area [cm2] 11.400 Interfacial Tension [mN/m] verage Porosity 0.097 Experimental Method ore Volume [cc] 3.540 rmeability [mD] 84.000 RELATIVE PERMEABILITY Brine Saturation CO2 Saturation rg (CO2 Drainage Krw (Brine Drainage) 1.0000 0.0000 0.0000 1.0000 0.9660 0.0340 0.0066 0.8670 0.9330 0.0670 0.0141 0.7461 0.8990 0.1010 0.0220 0.6365 0.8660 0.1340 0.0302 0.5380 0.8320 0.1680 0.0385 0.4499 0.7990 0.2010 0.0471 0.3716 0.7650 0.2350 0.0558 0.3028 0.7320 0.2680 0.0646 0.2428 0.6980 0.3020 0.0735 0.1911 0.6650 0.3350 0.0825 0.1471 0.6320 0.3680 0.0917 0.1103 0.5980 0.4020 0.1008 0.0801 0.5650 0.4350 0.1101 0.0558 0.5310 0.4690 0.1195 0.0370 0.4980 0.5020 0.1289 0.0229 0.4640 0.5360 0.1383 0.0129 0.4310 0.5690 0.1479 0.0064 0.3970 0.6030 0.1575 0.0026 0.3640 0.6360 0.1671 0.0007 0.3300 0.6700 0.1768 0.0000

Bennion, Bachu 2005 Nisku Carbonate

Embed Size (px)

Citation preview

Page 1: Bennion, Bachu 2005 Nisku Carbonate

Nisku CarbonateBennion, Bachu

SAMPLE PROPERTIES EXPERIMENTAL PROPERTIESRock Type Carbonate Temperature [C]

Length [cm] 3.200 Pore Pressure [kPag]Flow Area [cm2] 11.400 Interfacial Tension [mN/m]

Average Porosity 0.097 Experimental MethodPore Volume [cc] 3.540

Permeability [mD] 84.000

RELATIVE PERMEABILITYBrine Saturation CO2 Saturation Krg (CO2 Drainage) Krw (Brine Drainage)

1.0000 0.0000 0.0000 1.00000.9660 0.0340 0.0066 0.86700.9330 0.0670 0.0141 0.74610.8990 0.1010 0.0220 0.63650.8660 0.1340 0.0302 0.53800.8320 0.1680 0.0385 0.44990.7990 0.2010 0.0471 0.37160.7650 0.2350 0.0558 0.30280.7320 0.2680 0.0646 0.24280.6980 0.3020 0.0735 0.19110.6650 0.3350 0.0825 0.14710.6320 0.3680 0.0917 0.11030.5980 0.4020 0.1008 0.08010.5650 0.4350 0.1101 0.05580.5310 0.4690 0.1195 0.03700.4980 0.5020 0.1289 0.02290.4640 0.5360 0.1383 0.01290.4310 0.5690 0.1479 0.00640.3970 0.6030 0.1575 0.00260.3640 0.6360 0.1671 0.00070.3300 0.6700 0.1768 0.0000

Page 2: Bennion, Bachu 2005 Nisku Carbonate

Relative Permeability Explorer, Benson Lab - Stanford Universityhttp://pangea.stanford.edu/research/bensonlab/relperm

EXPERIMENTAL PROPERTIES ABSTRACT56 Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. 17400 This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.-

Unsteady-state CITATIONBennion, B., Bachu, S., Relative Permeability Characteristics for Supercritical CO2 Displacing Water in a Variety of Potential Sequestration Zones in the Western Canada Sedimentary Basin. Paper SPE 95547, presented at the 2005 SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, October 9-12, 2005.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.2

0.4

0.6

0.8

1.0

Krw (Brine Drainage)Krg (CO2 Drainage)

Brine Saturation

Rel

ativ

e P

erm

eabi

lity

Page 3: Bennion, Bachu 2005 Nisku Carbonate

Relative Permeability Explorer, Benson Lab - Stanford University

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.

Bennion, B., Bachu, S., Relative Permeability Characteristics for Supercritical CO2 Displacing Water in a Variety of Potential Sequestration Zones in the Western Canada Sedimentary Basin. Paper SPE 95547, presented at the 2005 SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, October 9-12, 2005.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.2

0.4

0.6

0.8

1.0

Krw (Brine Drainage)Krg (CO2 Drainage)

Brine Saturation

Rel

ativ

e P

erm

eabi

lity

Page 4: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.

Bennion, B., Bachu, S., Relative Permeability Characteristics for Supercritical CO2 Displacing Water in a Variety of Potential Sequestration Zones in the Western Canada Sedimentary Basin. Paper SPE 95547, presented at the 2005 SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, October 9-12, 2005.

Page 5: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.

Bennion, B., Bachu, S., Relative Permeability Characteristics for Supercritical CO2 Displacing Water in a Variety of Potential Sequestration Zones in the Western Canada Sedimentary Basin. Paper SPE 95547, presented at the 2005 SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, October 9-12, 2005.

Page 6: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.

Bennion, B., Bachu, S., Relative Permeability Characteristics for Supercritical CO2 Displacing Water in a Variety of Potential Sequestration Zones in the Western Canada Sedimentary Basin. Paper SPE 95547, presented at the 2005 SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, October 9-12, 2005.

Page 7: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.

Page 8: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.

Page 9: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.

Page 10: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.

Page 11: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites. This paper reviews the experimental protocol and presents detailed water-CO2 relative permeability data for three sandstone and three carbonate formations in the Wabamun Lake area southwest of Edmonton in Alberta, western Canada, where four major coal-fired power plants which produce large volumes of CO2 are located. These formations are in general representative of the in-situ temperature, pressure, salinity, porosity and intercrystalline permeability characteristics of deep saline aquifers in on-shore North American sedimentary basins. The data will allow detailed numerical simulations of CO2 injection and sequestration processes both at this specific location, and for similar operations planned elsewhere and around the world.

Page 12: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites.

Page 13: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites.

Page 14: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites.

Page 15: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites.

Page 16: Bennion, Bachu 2005 Nisku Carbonate

Sequestration in deep underground formations of large amounts of CO2, captured from large stationary sources, such as power plants, oil upgraders and refineries, is one method that is under consideration for reducing greenhouse gas emissions to the atmosphere in both Canada and United States. In hydrocarbon- producing regions, such as Texas in the United States and Alberta in Canada, CO2 geological sequestration is likely to first occur in depleted or abandoned oil and gas reservoirs. However, in many regions, including oil and gas producing areas, this is insufficient because either the sequestration capacity of oil and gas reservoirs is lower than the amount of CO2 emissions from large stationary sources, or because this capacity is not available until the reservoirs are depleted. Deep saline aquifers provide a very large capacity for CO2 sequestration that is immediately accessible, and they are found in all sedimentary basins in the North American mid-continent. Proper understanding of the relative-permeability character of such systems is essential in ascertaining CO2 injectivity and migration, and in assessing the suitability and safety of prospective CO2 sequestration sites.