Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

Embed Size (px)

Citation preview

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    1/43

    5/29/20

    BehaviorandDesignof

    ConcreteFilledComposite

    Columns

    RobertoT.Leon

    VirginiaTech,Blacksburg,VA

    JeromeF.Hajjar

    NortheasternUniversity,Boston,MA

    LarryGriffis

    WalterP.Moore,Austin,TX

    Scope Briefintroductiontocompositecolumns(LG)

    Researchmotivationandexperimentalresults(RL)

    Analyticalmodelingandsystemstudies(JH)

    Conclusionsanddesignrecommendations(LG)

    Workisbasedonthedissertationsof:

    TizianoPerea,UAM,MexicoCity(MX) GeorgiaTech

    MarkDenavit,SDL,Atlanta(GA) UIUC

    InKind:

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    2/43

    5/29/20

    Compositeorhybridsystem(concrete&steel)

    Systemwhichcombinestheadvantagesofconcreteandstructuralsteel

    Concrete*Rigid *Economic

    *Fireresistant *Durable

    Structuralsteel*Highstrength *Ductile

    *Easytoassembly *Fasttoerect

    Frames with CFT columns Steel tubeconfines concrete

    Concreterestrictsthebucklingofthesteeltube

    Increaseinstrength&deformationoftheconcrete

    Delayinthebuckling ofthesteeltube

    Frames with SRC columnsSteelelementsupportstheconstructionloads

    Theconcrete givesfinalstiffnessandfireresistant

    ShearconnectionsbecomeFRonceconcreteiscast

    Systemfasttoerect&build(redundancy)

    UsesforCompositeColumns

    Extracapacityinconcretecolumnfornoincreaseindimension

    Largeunbracedlengthsintallopenspaces Lowerstoryinhighrisebuildings

    Airportterminals,conventioncenters

    Corrosion,fireproofprotectioninsteelbuildings

    Compositeframe highriseconstruction

    Transitioncolumn

    between

    steel,

    concrete

    systems Toughness,redundancyasforblast,impact

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    3/43

    5/29/20

    CompositeSystems Perimetermomentframesfor

    stiffnessinhurricanezones.

    Extensiontoseismicbasedon

    Japaneseexperience.

    Distributedsystemsvs.

    supercolumns

    BuildingswithSRCColumns (MartinezRomero,1999&2003)

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    4/43

    5/29/20

    Composite Braced Frame

    Bank of ChinaHong Kong

    Composite Column

    Bank of ChinaHong Kong

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    5/43

    5/29/20

    Composite Moment FrameTube Design

    3 Houston CenterHouston, Texas

    CompositeColumnForming

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    6/43

    5/29/20

    Tree ColumnsComposite Columns

    3 Houston CenterHouston, Texas

    CompositeErectionColumns

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    7/43

    5/29/20

    Composite ColumnsReinforcement Cage

    CompositeShearWalls

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    8/43

    5/29/20

    Composite Braced Frame

    2 Union SquareSeattle, Washington

    Composite Frame Construction

    Dallas, Texas

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    9/43

    5/29/20

    CompositeFrameConstruction

    Possibleconfigurationsincompositecolumns

    a) SRC b) Circular and Rectangular CFT

    c) Combinations between SRC and CFT

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    10/43

    5/29/20

    Flexibility

    SizesandShapes

    FilledCompositeColumn

    (CoveredinthisWebinar)

    Round HSS Square or Rectangular HSS

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    11/43

    5/29/20

    EncasedCompositeColumn

    MotivationforResearch Lackofdesigninformationforthestiffnessof

    columnstobeusedforbucklingandlateralrigiditycalculations

    Lackofknowledgeontheinteractionbetweenaxialloadandbendingatultimate(2Dand3D)

    Lackofknowledgeonsystemfactors(forcereductionanddeflectionamplificationforseismic

    design) Gapsindataforslendercolumns(localand

    overallbuckling)

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    12/43

    5/29/20

    (1)Flexuralrigidityforlateralforces

    Advancedcomputationalanalysis:

    eff s s s c c cEI EI EI

    HSS

    Section

    t

    D

    Fiberelement

    analysis

    Finiteelement

    analysis

    Semiempirical :

    ConcreteonlyorSteelonly forcalculatingcolumncapacity,not

    forlateral

    analysis

    SelectedSystems R

    Cd

    SSMF (SteelSpecialMomentFrames): 8.0 3.0 5.5

    CSMF (CompositeSpecialMomentFrames): 8.0 3.0 5.5

    SIMF (SteelIntermediateMomentFrames;SDCB,C,D): 4.5 3.0 4.0

    CIMF (CompositeIntermediateMomentFrames;SDCB,C): 5.0 3.0 4.5

    SOMF (SteelOrdinaryMomentFrames;SDCB,C,D): 3.5 3.0 3.0

    COMF (CompositeOrdinaryMomentFrames;SDCB!!): 3.0 3.0 2.5

    SCBF (SteelConcentricallyBracedFrames): 6.0 2.0 5.0

    CSBF (CompositeSpecialBracedFrames): 5.0 2.0 4.5

    OCBF (CompositeOrdinaryConc.BracedFrames;SDCBF): 3.25 2.0 3.25

    COBF (CompositeOrdinaryBracedFrames;SDCB,C!!): 3.0 2.0 3.0

    (2)Behaviorfactorsforseismicdesign?

    ASCE/SEI710,Table1221

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    13/43

    5/29/20

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0.00 0.50 1.00 1.50 2.00 2.50 3.00

    Pexp/Po

    Pn/Po

    AISC

    P/P

    o

    CCFTcolumnsdatabase

    (3)LackofSlenderExperimentalTests

    DatabasescompiledbyLenetal.,2005andGoodeetal.,2007

    1375CircularCFT

    912columns

    463beamcolumns

    798RectangularCFT

    524columns

    274beamcolumns

    267EncasedSRC

    119columns

    148beam

    column

    (4)InteractionEquations

    Howdowegetasimplifiedexpression

    thatisclosetothedesignstrength?

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    14/43

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    15/43

    5/29/20

    ProjectObjectives Obtainandevaluateexperimentalresponse:

    Criticalload(Pcr)

    PMinteractiondiagram(uniaxialandbiaxialbending)

    Cycliclateralforce(uniaxialandbiaxialbending)

    Torsion(torsionalstrengthandrigidity)

    Wetconcretepressureduetothepouring

    Flexuralrigidity(EIeff)

    Steellocalbucklingandconcreteconfinement

    Developnewcomputationalformulationsfor

    completeframeanalysisofcompositesystems Providerecommendations onconstruction,analysis,

    anddesignofCFTs.

    NEES UMNMASTLabMASTcapabilities:

    6DOFs

    Pz=1320kip

    Px,Py=880kips

    Ux=Uy=+/16

    14

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    16/43

    5/29/20

    Specimen L Steel section Fy fc D/

    name (ft) HSS D x t (ksi) (ksi)

    1-C5-18-5 18 HSS5.563x0.134 42 5 45

    2-C12-18-5 18 HSS12.75X0.25 42 5 55

    3-C20-18-5 18 HSS20x0.25 42 5 86

    4-Rw-18-5 18 HSS20x12x0.25 46 5 67

    5-Rs-18-5 18 HSS20x12x0.25 46 5 67

    6-C12-18-12 18 HSS12.75X0.25 42 12 55

    7-C20-18-12 18 HSS20x0.25 42 12 86

    8-Rw-18-12 18 HSS20x12x0.25 46 12 67

    9-Rs-18-12 18 HSS20x12x0.25 46 12 67

    CFTTest Matrix(18specimens)

    Similarforspecimens1018butat26ft.

    CCFT

    103

    52(S)

    RCFT

    5634(S)

    Setup

    and

    Instrumentation

    VideoandStillImagesFourtowersforimagesofwhole

    specimenaswellasbase

    KryptonCoordinate

    MeasurementMachine

    StringPotsDistributedalongheight

    LVDTsSetsofthreeforbiaxialcurvature

    measurement

    StrainGagesUniaxialandrosettesdistributed

    alongheight

    Measurementsduringconcrete

    pouringandtesting

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    17/43

    5/29/20

    HydrostaticPressuresonSlenderRCFT

    FEAnalysis:max max 36.1ksimax in

    2

    Stiffenerstoreduceexpansioninthe

    RCFTsduringtheconcretepouring

    Surveyed

    Initial

    Imperfections Length (ft) Length (ft)

    Initial imperfection Initial imperfectionCCFTs, L=26ft RCFTs, L=26ft

    0 0.5 1 1.5 20

    5

    10

    15

    20

    25 10

    11

    14 1518

    o

    =L/50

    0=

    0.6

    3

    0 0.5 1 1.50

    5

    10

    15

    20

    2512 13

    16

    17

    o

    =L/50

    0=

    0.6

    3

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    18/43

    5/29/20

    LC1

    Loadprotocol

    Pcr

    0,

    PA

    ME,PE

    MB,0

    MB,PC

    MD,

    PC

    /2

    0,PAPA,PA

    LC1

    StabilityEffects

    LC1 Axialloadonly

    Loadprotocol0

    ,P

    A

    ME,PE

    MB,0

    MB,PC

    MD,

    PC

    /2

    0,PAPA,PA

    LC1

    MLC2a,2PALC2a

    unidirectional

    MLC2b,PALC2bunidirectional

    Fmax

    P

    LC2

    StabilityEffects

    LC2 AxialloadpluslateraldisplacementalongX

    attwodifferentaxialloadlevels

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    19/43

    5/29/20

    LC3

    y

    x

    Loadprotocol

    0,

    PA

    ME,PE

    MB,0

    MB,PC

    MD,

    PC

    /2

    0,PAPA,PA

    LC1

    MLC2a,2PALC2a

    unidirectional

    MLC2b,PALC2bunidirectional

    LC3a

    bidirectional

    LC3b

    bidirectional

    LC3c

    bidirectional

    Fmax

    P StabilityEffects

    LC3A Axialloadatthreelevelspluslateraldisplacement

    alongbothXandyinadiamondspikeconfiguration

    LC3

    Loadprotocol0

    ,P

    A

    ME,PE

    MB,0

    MB,PC

    MD,

    PC

    /2

    0,PAPA,PA

    LC1

    MLC2a,2PALC2a

    unidirectional

    MLC2b,PALC2bunidirectional

    LC3a

    bidirectional

    LC3b

    bidirectional

    LC3c

    bidirectional

    Fmax

    P

    -10 -5 0 5 10

    -30

    -20

    -10

    0

    10

    20

    30

    Lateral Displacement (in)

    LateralForce(kip)

    -6 -4 -2 0 2 4 6

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Lateral Drift (%)

    Crackingofconcrete

    Steelyieldingincompression

    Steelyieldingintension

    Crushing ofconcrete

    Steellocalbuckling

    y

    x

    LC3B Axialloadatthreelevelspluslateraldisplacement

    alongbothXandyinafigureeightconfiguration

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    20/43

    5/29/20

    Loadprotocol

    LC4

    T

    Pcr

    0,

    PA

    ME,PE

    MB,0

    MB,PC

    MD,

    PC

    /2

    0,PAPA,PA

    LC1

    MLC2a,2PALC2a

    unidirectional

    MLC2b,PALC2bunidirectional

    LC3a

    bidirectional

    LC3b

    bidirectional

    LC3c

    bidirectional

    T

    -10 -5 0 5 10

    -30

    -20

    -10

    0

    10

    20

    30

    Lateral Displacement (in)

    LateralForce(kip)

    -6 -4 -2 0 2 4 6

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Lateral Drift (%)

    Crackingofconcrete

    Steelyieldingincompression

    Steelyieldingintension

    Crushing ofconcrete

    Steellocalbuckling

    -600

    -400

    -200

    0

    200

    400

    600

    -10 -5 0 5 10

    P=0

    P=0.2Po

    Angleoftwist(deg)

    Tors

    iona

    lMoment

    (kip

    ft)

    CCFT20x0.2518ft5ksi

    LC4 Torsionattwolevelsofaxialload

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    21/43

    5/29/20

    Loadprotocol:LC1 Purecompression

    0 200 400 600 800 10000

    500

    1000

    1500

    2000

    2500

    3000

    Cross-section

    Beam-column

    Experimental

    P(kip)

    M(kipft)

    Stability

    Effects

    Specimen17Rs2612

    P

    M

    Loadprotocol:LC2 Uniaxialbending

    Specimen3C20185

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    22/43

    5/29/20

    Probe

    -5000

    500 -5000

    5000

    500

    1000

    1500

    Y Moment (k-ft)X Moment (k-ft)

    ZF

    orce

    (k)

    AISC Beam Column Strength (K=2)

    All Load Cases

    Experimental Interaction Points

    Loadprotocol:LC3 Biaxialbending

    CCFT Specimen20x0.25

    Fy = 42 ksi

    fc = 5 ksi

    L = 18 feet

    KL = 36 feet

    CorrectedColumnStrengths(LC1)

    MASTcapacityreached:3,5,7,9

    Largeimperfection:1,8,11,17

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    23/43

    5/29/20

    LocalBuckling 2010

    Composite Members Subject to Axial Compression

    Description of

    Element

    Width-

    Thickness

    Ratio

    pCompact/

    Noncompact

    rNoncompact/

    Slender

    Max.

    Permitted

    Sides of rectangular

    box and hollow

    structural sections

    of uniform thickness

    b/t 2.26 3.00 5.00

    Round filled sectionsD/t 0.15 E/Fy 0.19E/Fy 0.35 E/Fy

    yF

    E

    yF

    E

    yF

    E

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    24/43

    5/29/20

    ExtractionofEI fromtheexperimentalM curves

    M (kip-ft)

    (10-4/in)

    Specimen 4-Rw-18-5

    0 1 2 3 4 50

    100

    200

    300

    400

    500

    600EI

    eff=21081046 kip-i n2

    EIexpL

    =21865004 k ip -in2

    EIexpL

    /EIeff

    =1.0372

    EIexpU

    =21868261 ki p-in2

    EIexpU

    /EIeff

    =1.0373

    Specimen13Rs265,LC2

    M(kipft)

    (1/in)

    Loadprotocol:LC4Torsion

    PT

    Specimen3C20185

    -600

    -400

    -200

    0

    200

    400

    600

    -10 -5 0 5 10

    P=0

    P=0.2Po

    T(

    kip-ft)

    z(deg)

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    25/43

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    26/43

    5/29/20

    Analysis of Composite Frames:

    Mixed BeamColumn Element

    Mixedbeamfiniteelementformulationwasdevelopedusingbothdisplacementandforceshapefunctions

    Distributedplasticityfiberformulation: stressandstrainmodeledexplicitlyateachfiberofcrosssection

    Perfectcompositeactionassumed(i.e.,slipneglected)

    TotalLagrangian corotationalformulation

    ImplementedintheOpenSeesframework

    0 L

    0

    1Shape Functions

    Transverse

    Disp

    lacemen

    t

    0 L0

    1

    Ben

    ding

    Momen

    t

    Constitutive Relations Constitutiveformulations,calibration, andvalidationdevelopedforfive

    separatesteelandsteelconcretecompositecrosssectionsplusconnections CCFT,RCFT,andSRCbeamcolumns

    WFbeams

    WFandRect.HSSbraces

    Momentframeandbracedframeconnections

    ProposedforBehaviorconstitutivemodel Aimstocapturethebehaviorasaccuratelyaspossible

    ProposedforDesignconstitutivemodel Followstypicalassumptionscommoninthedevelopmentofdesign

    recommendations(e.g.,nosteelstrainhardening,noconcretetension)

    Calibratedandvalidatedagainstdetailedresultsofover100monotonicallyandcyclicallyloadedexperimentsofcompositebeamcolumns,connections,andframes

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    27/43

    5/29/20

    Uniaxial Cyclic Concrete Constitutive

    Relations for CFTs and SRCs ProposedforBehaviorconstitutive relation: BasedontherulebasedmodelofChangandMander(1994)

    BackbonestressstraincurvefortheconcreteisbasedonTsaisEquation,whichisdefinedby:

    InitialstiffnessEc Peakcoordinate(cc,fcc)

    r,whichactsasashapefactorforTsaisequationandenablescalibrationforconfinementinCFTs,betweentheflangesinSRCs,etc.

    ProposedforDesignconstitutiverelation:simplifiedversionofPB

    -10 00 0 -90 00 -80 00 -70 00 -60 00 -50 00 -40 00 -30 00 -20 00 -10 00 0 1 00 0-5

    -4

    -3

    -2

    -1

    0

    1

    Strain (strain)

    Stress(

    ks

    i)

    -10 00 0 -90 00 -80 00 -70 00 -60 00 -50 00 -40 00 -30 00 -20 00 -10 00 0 1 00 0-5

    -4

    -3

    -2

    -1

    0

    1

    Strain (strain)

    Stress(

    ks

    i)

    Uniaxial Cyclic Steel ConstitutiveRelations for CFTs, SRCs, WFs, Rebar FortheProposedfor

    Behaviormodel,basedontheboundingsurfaceplasticitymodelofShen etal.(1995).

    Modificationsfortheanalysisofcompositemembers Localbuckling

    Residualstressdefinedwithinitialplasticstrain

    FortheProposedforDesignmodel,eitherelasticperfectlyplastic(SRCWFs;rebar)orbasedonthemodelofAbdelRahman &Sivakumaran 1997(CFTs)

    0 2 4 6 8 100

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    Normalized Strain (/y,flat

    )

    Norma

    lize

    dStress

    (/F

    y,f

    lat)

    Et1 = Es/2

    Et2 = Es/10

    Et3 = Es/200

    Et1

    Et2Et3

    Flat

    Corner

    Elastic Unloading

    Es

    Fp = 0.75 Fy

    Fym = 0.875 Fy

    Et3

    Et1

    Et2

    Fp

    Fym

    Fy

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    28/43

    5/29/20

    SRC BeamColumn ValidationRicles and Paboojian 1994

    -150 -100 -50 0 50 100 150-400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    Lateral Displacement (mm)

    Test #4: 4 (Ricles and Paboojian 1994)

    La

    tera

    lLoa

    d(kN)

    Expt.

    PfB

    -150 -100 -50 0 50 100 150-500

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    500

    Lateral Displacement (mm)

    Test #8: 8 (Ricles and Paboojian 1994)

    La

    tera

    lLoa

    d(kN)

    Expt.

    PfB

    H=406mm;B=406mm

    W8x40Fy=372MPa

    4#9;Fyr=448MPa

    fc=31MPa

    P/Pno=0.19

    L/H= 4.8

    H=406mm;B=406mm

    W8x40Fy=372MPa

    12#7;Fyr=434MPa

    fc=63MPa

    P/Pno=0.11

    L/H= 4.8

    RCFT BeamColumn ValidationVarma 2000

    -100 -80 -60 -40 -20 0 20 40 60 80 100-500

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    500

    Lateral Displacement (mm)Test #5: CBC-32-46-10 (Varma 2000)

    La

    tera

    lLoa

    d(kN)

    Expt.

    PfB

    -80 -60 -40 -20 0 20 40 60 80-500

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    500

    Lateral Displacement (mm)Test #8: CBC-48-46-20 (Varma 2000)

    La

    tera

    lLoa

    d(kN)

    Expt.

    PfB

    H/t=B/t=35

    Fy=269MPa

    fc=110MPa

    P/Pno=0.11

    L/H=4.9

    H/t=B/t=53

    Fy=471MPa

    fc=110MPa

    P/Pno=0.18

    L/H=4.9

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    29/43

    5/29/20

    CCFT BeamColumn Validation

    Specimen 11 Load Case 3a

    L=7.9m;D=508mm.;t=5.9mm.;D/t=85.8;Fy=305MPa; fc=55.9MPa

    Benchmark Frame Studies forComposite Frames: Schematic

    L =oe1g EIgross

    Pno,gross

    ktop =6 EIgrossGg,topL

    kbot =

    6 EIgross

    Gg,botL

    P P P

    HM

    M

    EIelasticEIelastic

    x

    EIgross = EsIs + EsIsr + EcIcPno,gross = AsFy + AsrFysr + Acfc

    Initial Imperfections:

    Out-of-plumbness o = L/500Out-of-straightness o = L/1000 (sinusoidal)

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    30/43

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    31/43

    5/29/20

    AISC 36010 Section I2: Calculation

    of Axial Compressive Strength: EIeff10.5 (SRC)eff s s s sr c cEI E I E I C E I

    1 0.1 2 0.3s

    c s

    AC

    A A

    3 (CFT)eff s s s sr c cEI E I E I C E I

    3 0.6 2 0.9s

    c s

    AC

    A A

    / 2

    0/

    Composite Axial Compressive Strength

    from Benchmark Study

    CCFT RCFT

    SRC(strongaxis)

    SRC(weakaxis)

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    32/43

    5/29/20

    Proposed Formula for Axial

    Compressive Strength of SRCs, 1, (SRC)eff proposed s s s sr proposed c cEI E I E I C E I

    1,

    20.60 0.75sproposed

    g

    AC

    A

    SRC(strongaxis) SRC(weakaxis)

    Axial Compressive Strength of SRCColumns: Experimental Validation

    , 1, (SRC)eff proposed s s s sr proposed c cEI E I E I C E I

    1,

    20.60 0.75sproposed

    g

    AC

    A

    0 0.5 1 1.50

    0.5

    1

    1.5

    oe,proposed

    Pexp

    /Pno,p

    ropose

    d

    Column Curv e

    Anslijn & Janss 1974

    Chen, Astaneh-Asl, & Moehle 1992

    Han & Kim 1995

    Han, Kim, & Kim 1992

    Roderick & Loke 1975

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    33/43

    5/29/20

    Benchmark Study Results:

    Secant Values of EIelastic for Elastic Analysis

    0 0.5 1 1.50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    Normalized Bending Moment (M/Mn)

    Section 13: RCFT-E-4, Frame 37: UA-67-g1

    Norma

    lize

    dAx

    ialCompress

    ion

    (P/P

    no

    )

    0.4

    0.6

    0.8

    1

    elastic

    s s c c

    EI

    E I E I

    Serviceability Level

    Strength/1.6

    0 0.5 1 1.50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    Normalized Bending Moment (M/Mn)

    Section 4: RCFT-B-4, Frame 37: UA-67-g1

    Norma

    lize

    dAx

    ialCompress

    ion

    (P/P

    no

    )

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1First-OrderApplied Load

    Interaction

    elastic

    s s c c

    EI

    E I E I

    EIelasticvalue provides comparable deflection to fully nonlinear

    analysis for forces shown

    CalculationofRequiredStrengthsAnalysisRequirements

    SecondOrderElastic Analysis

    ConsiderationofInitialImperfections

    AdjustmentstoStiffness

    CalculationofAvailableStrengthsChaptersDthoughKwithoutfurther

    considerationofoverallstructurestability

    0.8

    0.8

    DA b elastic

    DA elastic

    EI EI

    EA EA

    0.002i i

    N Y

    AISC 36010 Direct Analysis MethodChapter C

    1K

    Mr

    Pr

    cPn,K=1

    cPn,K=K

    EffectiveLength

    FactorMethod

    DirectAnalysis

    Method

    Distributed

    Plasticity

    Analysis

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    34/43

    5/29/20

    Direct Analysis

    Fromapracticalstandpointitisbestto

    maintainastiffnessreductionof0.8b

    Thus,differencesbetweencompositeand

    steelmaybeembodiedinproposedEIelastic:

    0.8DA b elasticEI EI

    1.0 for 0.5

    4 1 for 0.5

    r no

    b

    r no r no r no

    P P

    P P P P P P

    10.75 (SRC)elastic s s s sr c cEI E I E I C E I

    30.75 (CFT)elastic s s c cEI E I C E I

    Composite Interaction StrengthP

    M

    (PA,0)

    (PA,0)

    (PC,MC)

    (PC,MC)

    (0,MB)

    Nominal

    Section

    Strength

    Nominal

    Beam-Column

    Strength

    = Pn/Pno

    (PA,0)

    (PA,0)

    (PC,MC)

    (CPA,0.9BMB)

    (0,BMB) (0,MB)

    Nominal

    Beam-Column

    Strength

    P

    M

    = Pn/PnoNominal

    Section

    Strength

    for 0.5

    0.2 0.5 for 0.5 1.5

    0.2 for 1.5

    C A oe

    C C A C A oe oe

    oe

    P P

    P P P P

    1 for 1

    1 0.2 1 for 1 2

    0.8 for 2

    oe

    B oe oe

    oe

    AISC2010 Proposed

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    35/43

    5/29/20

    Variation of the Composite Interaction

    Diagram with Slenderness

    0

    1

    2

    30 0.5 1 1.5

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    NormalizedBendingMoment(M/Mn)

    No

    rmalizedAxialLoad(P/P

    no

    )

    CFTBondProvisionsinAISC36010

    ForCCFT:

    Rn=0.25D2CinFin

    ForRCFT:

    Rn=B2CinFin

    where,

    Rn =nominalbondstrength,kips

    Cin =2iftheCFTextendstoonesideofthepointofforcetransfer

    =4iftheCFTextendstobothsidesofthepointofforcetransfer

    Fin =nominalbondstress=60psi

    B =overallwidthofrectangularsteelsectionalongfacetransferringload,in.

    D =outsidediameteroftheroundsteelsection,in.

    =0.45=3.33

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    36/43

    5/29/20

    ExperimentalSetupsfor

    AssessingBondStrength

    (a) Push-off test(b) Push-out test

    without shear tabs

    (c) Push-out test

    with shear tabs

    (d) Typical CFT

    connection

    Air Gap

    Air Gap

    ProposedDesignProvisionsForCCFT:

    Rn=DLbondFin

    Lbond=CinD

    Fin=30.9(t/D2)0.2

    ForRCFT:

    Rn=2(B+H)LbondFin

    Lbond=CinH

    Fin=12.8(t/H2)0.1

    where,

    Rn =nominalbondstrength,kipsFin =nominalbondstress,ksi

    t =designwallthicknessofsteelsection,in.

    B =overallwidthofrectangularsteelsection(B H),in.

    H =overallheightofrectangularsteelsection(H B),in.

    D =outsidediameterofroundsteelsection,in.

    Lbond =lengthofthebondregion(thebondregionofadjacentconnectionsshallnotoverlap),in.

    Cin =4ifloadisappliedtothesteeltubeandtheCFTextendstobothsidesofthepointofforcetransfer

    =2otherwise

    ForRCFT:BothLbondandFinarebased

    onthelargerlateraldimensionofthetube(H B)

    =0.50,=3.00

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    37/43

    5/29/20

    Seismic Performance Factors:

    FEMA P695 Archetype Frame Study:

    Selection and Design of Archetype Frames

    = Location of Braced Frame= Fully Restrained Connections

    = Shear Connections

    MomentFrames BracedFrames

    Selected Composite Archetype FramesDesign

    Gravity

    Load

    Bay

    Width

    Design

    Seismic

    Load

    Conc.

    Strength

    (fc)

    Index

    MomentFrames BracedFrames

    RCFT RCFT SRC RCFTCd CCFT CCFT

    3Stories 9Stories 3Stories 3Stories 3Stories 9Stories

    High 20 Dmax 4 ksi 1

    High 20 Dmax 12ksi 2

    High 20 Dmin 4 ksi 3

    High 20 Dmin 12ksi 4

    High 30 Dmax 4 ksi 5

    High 30 Dmax 12ksi 6

    High 30 Dmin 4 ksi 7

    High 30 Dmin 12ksi 8

    Low 20 Dmax 4 ksi 9

    Low 20 Dmax 12ksi 10

    Low 20 Dmin 4 ksi 11

    Low 20 Dmin 12ksi 12

    Low 30 Dmax 4 ksi 13

    Low 30 Dmax 12ksi 14

    Low 30 Dmin 4 ksi 15

    Low 30 Dmin 12ksi 16

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    38/43

    5/29/20

    Typical Composite Connection Region Modeling:

    Validated Against Tests

    Rigid Links

    Zero Length Spring

    Representing the

    Panel Zone Shear

    Behavior

    Nonlinear

    Column

    Element

    Nonlinear

    Beam

    Element

    Elastic

    Beam

    Element

    Nonlinearstressresultantspacemultisurface

    kinematichardeningmodelusedforrotational

    springformulation(afterMuhummud 2003)

    Rigid

    Links

    Nonlinear

    Column

    Element

    Nonlinear

    Beam

    Element

    Nonlinear

    Brace

    Element

    Moment

    Release

    Modelingassumptionsestablished

    byHsiaoetal.(2012)

    Evaluation ofSeismic Performance Factors

    Archetypeframesarecategorizedintoperformance

    groupsbasedonbasicstructuralcharacteristics

    Group

    Number

    Design

    GravityLoad

    Level

    Design

    SeismicLoad

    Level

    Period

    Domain

    Numberof

    CSMFs

    Number of

    CSCBFs

    PG1 High Dmax Short 6 4

    PG2 High Dmax Long 2 2

    PG3 High Dmin Short 6 4

    PG4 High Dmin Long 2 2

    PG5 Low Dmax Short 6 4

    PG6 Low Dmax Long 2 2

    PG7 Low Dmin Short 6 4

    PG8 Low Dmin Long 2 2

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    39/43

    5/29/20

    Typical Static Pushover Analysis

    0 10 20 30 40 50 600

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    Roof Displacement (in)

    Base

    Shear

    (kips

    )

    Vmax

    = 879.3 kips

    V80

    = 703.4 kips

    V = 153.9 kips

    u

    =50

    .8in

    SFRS: C-SMF, Frame: RCFT-3-1

    System Overstrength Factor, o

    BytheFEMAP695methodology,oshouldbetakenasthelargestaveragevalueoffromanyperformancegroup Roundedtonearest0.5

    Upperlimitsof1.5Rand3.0

    HighoverstrengthforCSMFs Displacementcontrolleddesign

    Currentvalue(o=3.0)isupperlimitandisacceptable

    OverstrengthforCSCBFsnearcurrentvalue(o=2.0) HigherforPG3andPG4(Highgravity

    load,SDCDmin)

    Group

    Number

    Average

    CSMF CSCBF

    PG1 5.9 2.1

    PG2 5.3 1.9

    PG3 7.6 2.8

    PG4 9.9 2.7

    PG5 6.2 1.8

    PG6 5.5 1.7

    PG7 7.5 2.3

    PG8 6.5 2.2

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    40/43

    5/29/20

    Typical Dynamic Time History Analyses:

    Incremental Dynamic Analysis

    0% 5% 10% 15%0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    Maximum Story Drift

    ST

    =S

    MT

    SF

    2(g)

    SFRS: C-SMF, Frame: RCFT-3-1

    5.72CTS g

    1.50MTS g

    Response Modification Factor, R ACMR10%=AcceptablevalueoftheAdjusted

    CollapseMarginRatiofor10%collapse

    probability

    ACMR10%=1.96forbothCSMFandCSCBF

    andarelessthantheACMRshownforeach

    performancegroupinthetable

    SimilarlypositiveresultsforACMR20%per

    frame

    ACMRvaluesshowcorrelationwiththe

    overstrength

    CSMFs

    Currentvalue(R=8.0)isacceptable

    CSCBFs

    Currentvalue(R=5.0)isacceptable

    Group

    Number

    ACMR

    CSMF CSCBF

    PG1 4.8 3.3

    PG2 3.7 2.3

    PG3 7.5 5.1

    PG4 8.5 5.4

    PG5 4.9 2.6

    PG6 3.9 2.9

    PG7 7.1 3.8

    PG8 6.9 3.7

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    41/43

    5/29/20

    Deflection Amplification Factor, Cd

    BytheFEMAP695methodology,Cd=Rforthesesystems

    WouldrepresentaminorchangeforCSCBF Currentvalues:Cd=4.5,R=5.0

    Typicallystrengthcontrolleddesign

    WouldrepresentasignificantchangeforCSMF Currentvalues:Cd=5.5,R=8.0

    Typicallyalreadydisplacementcontrolleddesign

    FourCSMFarchetypeframesdesignedwiththecurrentC

    dvalue

    LoweroverstrengthwithcurrentCd(average4.9vs.6.4withCd=R)

    AcceptableperformancewithcurrentCd

    KeyConclusionsfromtheResearch

    ExperimentalResearch

    Acomprehensiveanduniquedatasetforaxialstrengthandbeamcolumn

    strengthhasbeengeneratedforslenderCCFTsandRCFTs.

    CFTsdemonstratedgreattoughnessundercomplexcyclicloadings.

    Localbucklingdidnotleadtosubstantialstrengthorstiffnesslosses.

    ComputationalResearch

    Newmixedelementanalysisformulationdevelopedforcompositebeam

    columns Compositebeamcolumnsexhibitrobustperformanceunderseverecyclic

    loading

    Analysisformulationenablesbenchmarkstudiesofstabilityandstrength

    ofcompositeframes(nonseismicandseismic)

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    42/43

    5/29/20

    ProposalsforAISC36016(2016)

    SpecificationforStructuralSteelBuildings

    Newcommentaryonaddressingwetweightofconcreteduringconcrete

    pourforCFTs

    NewEIeffvalueforcalculatingcolumnstrengthofSRCstobetterreflect

    computationaldata

    Newrecommendations forEIelastic valuetouseforcalculatingelastic

    stiffnessofCFTsandSRCsforuseinelasticanalysisanduseinDirect

    Analysis

    Newinteractionequationthataddressespossibleunconservative errors

    forveryslendercompositemembers

    NewCFTbondprovisionsthatmoreaccuratelyreflectthechangeinbond

    strengthwithCFTdiameterandthatclarifyhowtocomputebondstrength

    inloadtransferregions

    ValidationofcurrentseismicperformancefactorsinASCE710and

    recommendationtoconsiderincreasingthedeflectioncriteriaforCSMFs

    ifCd=R

    FutureWork

    FinalizerecommendationsforAISC36016

    Prequalifiedcompositeconnections

    Incorporatecreepandshrinkageeffectsintodesignof

    compositesystems

    Effectsofelevatedtemperatureincompositesystems,and

    effectsofinternalreinforcement

    Innovativecompositeframingsystems:

    Prefabricatedcompositeconstructionsystems Integrationofnewmaterials,includinghigherstrength

    materials

    Etc.

  • 8/11/2019 Behavior and Design of Concrete-Filled Beam-Columns Webinar Slides

    43/43

    5/29/20

    ThankYouNEESProjectWarehouse:https://nees.org/warehouse/project/440

    440 SystemBehaviorFactorsforCompositeandMixedStructuralSystem

    RobertoT.Leon,JeromeF.Hajjar,Nakin Suksawang

    ReferencesandalistofpapersandpublicationsforthisworkareavailableattheNEES

    siteforthiswebinar: https://nees.org/events/details/190

    TheworkdescribedhereispartofaNEESRprojectsupportedbytheNationalScienceFoundationunderGrantNo.CMMI0619047,theAmericanInstituteofSteel

    Construction,theGeorgiaInstituteofTechnology,andtheUniversityofIllinoisat

    UrbanaChampaign. TheseexperimentswereconductedattheMultiaxial

    Subassemablage TestingSystem(MAST)attheUniversityofMinnesota.

    InKind: