beamerCompStat3-13

  • Upload
    rambori

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

  • 7/27/2019 beamerCompStat3-13

    1/5

    Implicit function theorem question: ARE prelim, 2008

    Question: A monopolist sells in two countries: 1 and 2. It produces a good at a

    constant marginal cost ofcand cannot produce more than a total of Qunits.

    Country 1 imposes a per unit tax ofunits on the good sold in that country.

    Assume that the constraint binds.

    1 For a given value of , show how the equilibrium in the two countries are

    determined.

    2 Show how these equilibrium prices change as increases.

    () August 18, 2013 1 / 5

    http://find/http://goback/
  • 7/27/2019 beamerCompStat3-13

    2/5

    Answer to ARE prelim, 2008 question

    Answer: Assume that inverse demand curves are concave in price.

    The monopolists optimization problem is

    maxp1,p2

    (p1 )D1(p1) +p2D2(p2)c(D1(p1) +D2(p2))

    s.t. D1(p1) +D2(p2)Q

    The Lagrangian is

    L(p1,p2,;) = (p1 )D1(p1) +p2D2(p2)c(D1(p1) +D2(p2))

    + (QD1(p1)D2(p2))

    Assuming capacity constraint binds, the first order conditions are

    Lp1 = D1(p1) + (p1 c)D1(p1) = 0

    Lp2 = D2(p2) + (p2 c)D2(p2) = 0

    L = QD1(p1)D2(p2) = 0

    Solution is a triple(p

    1,p

    2,

    )which solves this system,given.() August 18, 2013 2 / 5

    http://find/
  • 7/27/2019 beamerCompStat3-13

    3/5

    Q

    Marginal revenue

    (p2)

    MR2()

    c

    MR1(, )

    MR1(, )

    c+ ()

    c+ ()

    () August 18, 2013 3 / 5

    http://goforward/http://find/http://goback/
  • 7/27/2019 beamerCompStat3-13

    4/5

    Lp1 = D1(p1) + (p1 c)D1(p1) = 0

    Lp2 = D2(p2) + (p2 c)D2(p2) = 0

    L = QD1(p1)D2(p2) = 0

    The Hessian of the Lagrangian w.r.t. endog vars is:

    HLp, =

    2D

    1(p

    1 ) + (p

    1c

    )D1 (p1 ) 0 D

    1(p

    1 )

    0 2D2(p2 ) + (p

    2c

    )D2 (p2 ) D

    2(p

    2 )

    D1(p1 ) D

    2(p

    2 ) 0

    HL =

    D1(p1)0

    0

    .

    Hence from the implicit function theorem, we have

    dp1ddp2dd

    d

    = HL1(p,)

    D1(p1)

    0

    0

    = HL1(p,)

    D1(p1)

    0

    0

    () August 18, 2013 4 / 5

    http://find/
  • 7/27/2019 beamerCompStat3-13

    5/5

    Its straightforward to check that the determinant ofHL(p,) is

    D2(p

    2)

    2

    2D1(p1) + (p

    1 c

    )D1 (p1)

    +D

    1(p

    1)2

    2D

    2(p

    2) + (p

    2 c

    )D

    2 (p

    2)

    >0

    Applying Cramers rule, we have

    1

    = det

    D1(p

    1 ) 0 D

    1(p

    1 )

    0 2D2(p2 ) + (p

    2 c

    )D2 (p2 ) D

    2(p

    2 )

    0 D2(p2 ) 0

    det(HL(p,))

    = D1(p1)D2(p2)2

    det(HL(p,))> 0

    2

    = det

    2D1(p

    1 ) + (p

    1 c

    )D1 (p1) D

    1(p

    1 ) D

    1(p

    1 )

    0 0 D2(p1 )

    D1(p2 ) 0 0

    det(HL(p,))

    = D2(p1)D

    1(p

    2)

    2det(HL(p,))< 0

    = det

    2D1(p

    1 ) + (p

    1 c

    )D1 (p1) 0 D

    1(p

    1 )

    0 2D2(p2 ) + (p

    2 c

    )D2 (p2) 0

    D1(p1 ) D

    2(p

    2 ) 0

    det(

    =

    2D2(p2) + (p

    2 c

    )D2 (p2)D1(p

    2)

    2

    det(HL(p,))< 0

    () August 18, 2013 5 / 5

    http://find/