28
beam line project g-2 is statistics limited g-2 needs more muons goal x4 muons items under consideration target capture optics decay channel backward decays inflector electronic notebook at http://zero.npl.uiuc.edu:8081

beam line project

Embed Size (px)

DESCRIPTION

beam line project. g-2 is statistics limited g-2 needs more muons goal x4 muons. items under consideration target capture optics decay channel backward decays inflector …. electronic notebook at http://zero.npl.uiuc.edu:8081. V line V target to g-2 ring. 6 dipoles 29 quads. - PowerPoint PPT Presentation

Citation preview

Page 1: beam line project

beam line project

g-2 is statistics limitedg-2 needs more muons

goal x4 muons

items under consideration•target•capture optics•decay channel•backward decays•inflector•…

electronic notebook at http://zero.npl.uiuc.edu:8081

Page 2: beam line project

V line V target to g-2 ring

Page 3: beam line project

g2pimu.inp and Design Reportmagnet type B(kG) G(kG/in) Quad field at Leff (in) I(kA) R(mohm) V (V) P (kW)

radius (in) pole (kG)V1Q1 8Q48 -3.349 3.750 -12.558 52.00 2.779 35.0 97 270V1Q2 8Q32 2.657 3.750 9.965 36.00 2.118 25.6 54 115V1D1 6X18D72 -15.039 75.00 0.850 46.0 72 114V1D2 6X18C72 -14.154 75.00 1.300 35.0 46 61V1Q3 4Q16 -3.500 1.875 -6.563 18.00 0.280 183.0 51 14V1Q4 4Q16 3.555 1.875 6.667 18.00 0.307 183.0 56 17V1Q5 4Q16 3.555 1.875 6.667 18.00 0.307 183.0 56 17V1Q6 4Q16 -3.500 1.875 -6.563 18.00 0.230 183.0 51 14V1D3 3X18D72 -14.182 75.00 0.921 46.0 33 24V1D4 3X18D72 -15.387 75.00 0.990 46.0 36 30V1Q7 8Q13 2.092 3.750 7.845 28.00 1.592 21.4 34 54V1Q8 8Q13 -2.166 3.750 -8.123 28.00 1.676 21.4 35 60(VS1) 4D16 0.610 16.00 0.300 500.0 15 0.5V1Q9 4Q24 0.558 1.875 1.046 26.00 0.131 30.4 4 0.5V1Q10 4Q24 -0.555 1.875 -1.041 26.00 0.157 30.4 4 0.7V1Q11 4Q24 -0.954 1.875 -1.788 26.00 0.123 30.4 3 0.5V1P1 5D22 -4.809 36.00 0.676 40.0 27 18V1Q12 8Q24 0.954 1.875 1.788 26.00 0.123 30.4 3 0.5V1Q13 4Q24 -0.954 1.875 -1.788 26.00 0.123 30.4 3 0.5V1Q14 4Q24 0.954 1.875 1.788 26.00 0.123 30.4 3 0.5V1Q15 4Q24 -0.954 1.875 -1.788 26.00 0.123 30.4 3 0.5V1Q16 4Q24 0.954 1.875 1.788 26.00 0.123 30.4 3 0.5V1Q17 4Q24 -0.954 1.875 -1.788 26.00 0.123 30.4 3 0.5V1Q18 4Q24 0.954 1.875 1.788 26.00 0.123 30.4 3 0.5V1Q19 4Q24 -0.954 1.875 -1.788 26.00 0.123 30.4 3 0.5V1P2 5D22 -4.809 36.00 0.676 40.0 27 18V1Q20 4Q24 0.477 1.875 0.894 26.00 0.061 30.4 1 0.1V1D5 3X18D72 20.030 75.00 1.200 45.8 55 66V1Q21 4Q24 0.859 1.875 1.611 26.00 0.110 30.4 3 0.54V1Q22 4Q24 -1.222 1.875 -2.291 26.00 0.155 30.4 3 0.4V1Q23 4Q24 1.429 1.875 2.679 26.00 0.181 30.4 5 1V1Q24 4Q24 -1.222 1.875 -2.291 26.00 0.155 30.4 4 0.7V1Q25 4Q24 0.859 1.875 1.611 26.00 0.110 30.4 3 0.4V1D6 3X18D72 20.030 75.00 1.200 45.8 55 66V1Q26 4Q24 0.907 1.875 1.700 26.00 0.090 30.4 2 0.2V1Q27 4Q24 0.784 1.875 1.471 26.00 0.039 30.4 1 0.1VS6 4d16 0.610 16.00 0.030 500.0 15 0.5V1Q28 8Q24 -2.682 3.875 -10.391 28.00 2.032 30.4 3 0.5V1Q29 8Q24 2.765 3.875 10.714 28.00 2.255 30.4 3 0.5

6 dipoles29 quads

Page 4: beam line project

V line V target to Q10

QQDDQQ|QQDD QQQQ

Page 5: beam line project

V line Q11 to Q 20

Q Q Q Q Q Q Q Q Q QD F D F D F D F D F

Page 6: beam line project

V line D5 to g-2 ring

DQQ Q QQD QQQQ

Page 7: beam line project
Page 8: beam line project

storage ring apertureinflector aperture

inflector and storage ring apertures

downstreamview

Page 9: beam line project

TRANSPORT formalism I

11 12 16 0

21 22 26 0

0 0 1

x R R R x

R R R

( ) ( )( )0X R X= ( ) ( )( )0Y R Y=

033 34

43 44 0

yR Ry

R Rffæ öæ öæö

=ç ÷ ç ÷ç ÷è ø è øè ø

11 0 11 0 16x R x R Rq d= + +

21 0 21 0 26R x R Rq q d= + +

33 0 34 0y R y R j= +

43 0 44 0R y Rj f= +

first order TRANSPORT linearizes equations of motion

every beam line element is represented by a matrix

assuming a median plane transverse motions are uncoupled

/p pd =D

useful to follow rays with or with 1

0

æöç ÷è ø

0

1

æöç ÷è ø

Page 10: beam line project

TRANSPORT formalism II

11maxx s= 22maxq s=

( ) ( )( )( )Tnew initialR Rs s=

( ) 11 21

21 22

s ss

s sæ ö

=ç ÷è ø

( )( ) 1, 1

xx q s

q- æö

=ç ÷è ø2 2

22 21 112 det( )x xs s q s q s- + =

( ) 1 22 212

21 11

1 s ss

s se- -æ ö= ç ÷-è ø

beam is represented by ellipse in phase space

TRANSPORT of ellipse via same R matrix

useful to follow ellipse or beam envelope

Page 11: beam line project
Page 12: beam line project

TRANSPORT formalism III

11 21

21 22

beam ellipse can be expressed in terms of CSL parametersoften called accelerator notation

11

11,max max

max maxx

important relations:

Page 13: beam line project

Q1a

-12.558

Q2a

9.965

D1

15.039

D2

14.154

Q3

-6.562

Q5

6.666

D3

14.182

D4

15.387

Q7

7.845

Q8

-8.123

Q9a

1.045

Q10

-1.041

Q11

-1.788

P1

4.809

Q12

1.788

Q13

-1.788

Q14

1.788

Q15

-1.788

Q16

1.788

Q17

-1.788

Q18

1.788

Q19

-1.788

P2

4.809

Q20

0.894

D5

20.030

Q21

1.611

Q22

-2.291

Q23

2.679

Q24

-2.291

Q25

1.611

D6

20.030

Q26

1.700

Q27

1.471

Q28

-10.391

Q29

10.714

K1K2

W409

W430

W450

W470

SWP

W608

K3K4

W646

W678

W712

FBAK

HOLE

ENTR

EXIT

bend (xz) plane (horizontal)

non-bend (yz) plane (vertical)

FODO lattice

Transport calculation V target to g-2 ringparameters from btraf g2pimu.inp

beam envelope

Page 14: beam line project

accelerator physics notation Ifor FODO lattice

0

nX R X

2

11 22

2

11 22 11 22

det 0

1 0

1 2

R X X

R I

R R

R R R R

real, one eigenvalue is > 1

for stability, must be complex

Page 15: beam line project

F O D O

f f 2L2L

accelerator physics notation IFODO lattice Transport matrix

2

2

2 2

11 0 1 02 41 1

2 1 2 11 1

0 1 0 1 122 4

L LLL L

f f a b

c dL L Lf fff f

Page 16: beam line project

accelerator physics notation IIfor FODO lattice

cos sini

cos sin sin

sin cos sin

a bR

c d

2

2

1Tr cos 1

2 8L

Rf

sin2 4

Lf

14Lf

phase advance

Page 17: beam line project

accelerator physics notation IIIfor FODO lattice

CSL parameters(i.e. values of , , at F)

14

2sin 14

14

2sin 1

4

La d f

Lf

Lb f

fLf

2

1 1sin

14

sin2 4

cf L

f

Lf

Page 18: beam line project

max

1 sin22

1 sin2

f

accelerator physics notation IVfor FODO lattice

beta function

sin2 4

Lf

1 gf B

min

1 sin22

1 sin2

f

g

B

gradient

length

rigidity

Page 19: beam line project

0 1 2 3 4 50

50

100

150

forwardbackward

beta max vs quad field

quad field (kG)

beta

max

(m

)

0 1 2 3 4 50

50

100

150

forwardbackward

beta min vs quad field

quad field (kG)

beta

min

(m

)

max and min of beta function vs quad field

L = 12.446 m

forward 3.15 GeV/c

backward 5.22 GeV/c

g-2 operating point

Page 20: beam line project

effect of increasing number of quads, I

double

triple

quadruple

12.446 m

0.660 m

Page 21: beam line project

effect of increasing number of quads, II

2

max,0 max,0x

max,0 max,0 2

max,0 max,0 2x x

max,0 max,0 max,0x x

max,0 max,02x x

Suppose

then

and

beam smaller

divergence larger

Page 22: beam line project

phase space calculation of effect of change in beta functionMorse g-2 #448

X2 quads

X4 quads

Page 23: beam line project

Q1a

Q2a

D1

D2Q3

Q5

D3

D4Q7Q8

Q9a

Q10

Q11-

Q11

Q12-

P1Q12

Q13-

Q13

Q14-

Q14

Q15-

Q15

Q16-

Q16

Q17-

Q17

Q18-

Q18

Q19-

Q19

Q20-

P2Q20

D5Q21

Q22

Q23

Q24

Q25

D6

Q26

Q27

Q28

Q29

K1K2

W409

W430

W450

W470

SWP

W608

K3K4

W646

W678

W712

FBAK

HOLE

ENTR

EXIT

Transport calculation V target to g-2 ringbtraf g2pi.inp with doubled lattice

Page 24: beam line project

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.010

0.002

0.004

0.006

0.008lab muon angle vs lab muon momentum

lab muon momentum / pion momentum

lab

muo

n an

gle

(rad

)

x at every five degrees in com

g-2 operating point

+/- 0.5 %

~ 1 mr

muon lab angle vs muon lab momentum

Page 25: beam line project

p / p e+/SEC F A

1.005 179 80 % 0.22

1.010 77 30 % 0.26

1.015 37 6.5 % 0.30

1.017 30 1.6 % 0.30

1.020 22 0.9 % 0.30

g-2 operating point

4 mr

pion momentum, stored muonsoperating point

source PRD draft

Page 26: beam line project

1.5 2 2.5 3 3.5 4 4.5 5 5.50.04

0.02

0

0.02

0.04momentum ellipse for/backward decay

muon longitudinal momentum (GeV/c)

muo

n tr

ansv

erse

mom

entu

m (

GeV

/c)

pmagic

momentum ellipses for for/backward decays

pfor = 3.15 GeV/c pfor = 5.22 GeV/c

Page 27: beam line project

what changes for backward decays?

simple scaling 5.22/3.11

new new newB (kG) g (kG/in) field at pole (kG)

(dipole) (quad) (quad)V1Q1 -5.546 -20.797V1Q2 4.403 16.510V1D1 -24.901V1D2 -25.115V1Q3 -5.795 -10.866V1Q4 5.887 11.039V1Q5 5.887 11.039V1Q6 -5.795 -10.866V1D3 -23.483V1D4 -25.478V1Q7 3.459 12.971V1Q8 -3.583 -13.436

Page 28: beam line project

possible factors improvement

increase number of quads in lattice x2

backward decays x4

open up inflector x1.7

goal x4 muons