43
BCS Mean-Field Theory and Beyond Andr´ e Becker Faculty of Physics TU Kaiserslautern Fermion Meeting, February 2020 A. Becker (TUK) BCS 26.02.2020 1 / 31

BCS Mean-Field Theory and Beyond

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BCS Mean-Field Theory and Beyond

BCS Mean-Field Theory and Beyond

Andre Becker

Faculty of PhysicsTU Kaiserslautern

Fermion Meeting, February 2020

A. Becker (TUK) BCS 26.02.2020 1 / 31

Page 2: BCS Mean-Field Theory and Beyond

BEC-BCS Crossover

6Li, N ∝ 105, T < 100nK: confinement in combined potential of opticaldipole and magnetic trap with aspect ratio ∝ 7

BEC BCS

Nagler et al., Rev. Sci. Instr. 89, 093105 (2018)

A. Becker (TUK) BCS 26.02.2020 2 / 31

Page 3: BCS Mean-Field Theory and Beyond

BEC-BCS CrossoverPhase diagram for fermionic superfluids:

Sa de Melo, Physics Today 61, 45 (Oct. 2008)A. Becker (TUK) BCS 26.02.2020 3 / 31

Page 4: BCS Mean-Field Theory and Beyond

Table of Contents

1 Mean-Field Theory

2 Local Density Approximation

3 Temperature Dependence

A. Becker (TUK) BCS 26.02.2020 4 / 31

Page 5: BCS Mean-Field Theory and Beyond

Table of Contents

1 Mean-Field Theory

2 Local Density Approximation

3 Temperature Dependence

A. Becker (TUK) BCS 26.02.2020 5 / 31

Page 6: BCS Mean-Field Theory and Beyond

Mean-Field Theory

Mean-Field Hamiltonian

H =∫

d3x∑σ=↑,↓

ψ†σ(x)(− ~2

2M ∆L − µ)ψσ(x)

+g∫

d3x ψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x)

anti-commutator algebra[ψσ(x), ψσ′(x ′)

]+

= 0 =[ψ†σ(x), ψ†σ′(x ′)

]+[

ψσ(x), ψ†σ′(x ′)]

+= δσ,σ′δ(x − x ′)

A. Becker (TUK) BCS 26.02.2020 6 / 31

Page 7: BCS Mean-Field Theory and Beyond

Mean-Field Theory

Mean-Field Hamiltonian

H =∫

d3x∑σ=↑,↓

ψ†σ(x)(− ~2

2M ∆L − µ)ψσ(x)

+g∫

d3x ψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x)

Mean-Field approach

ψ†↑ψ†↓ψ↓ψ↑ ≈ 〈ψ

†↑ψ↑〉ψ

†↓ψ↓ + ψ†↑ψ↑〈ψ

†↓ψ↓〉 − 〈ψ

†↑ψ↑〉〈ψ

†↓ψ↓〉

−〈ψ†↑ψ↓〉ψ†↓ψ↑ − ψ

†↑ψ↓〈ψ

†↓ψ↑〉+ 〈ψ†↑ψ↓〉〈ψ

†↓ψ↑〉

+〈ψ†↑ψ†↓〉ψ↓ψ↑ + ψ†↑ψ

†↓〈ψ↓ψ↑〉 − 〈ψ

†↑ψ†↓〉〈ψ↓ψ↑〉

A. Becker (TUK) BCS 26.02.2020 7 / 31

Page 8: BCS Mean-Field Theory and Beyond

Mean-Field Theory

Mean-Field Hamiltonian

H =∫

d3x∑σ=↑,↓

ψ†σ(x)(− ~2

2M ∆L − µ)ψσ(x)

+g∫

d3x ψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x)

Mean-Field approach

ψ†↑ψ†↓ψ↓ψ↑ ≈

Hartree channel︷ ︸︸ ︷〈ψ†↑ψ↑〉ψ

†↓ψ↓ + ψ†↑ψ↑〈ψ

†↓ψ↓〉 − 〈ψ

†↑ψ↑〉〈ψ

†↓ψ↓〉

Fock channel︷ ︸︸ ︷〈ψ†↑ψ↓〉ψ

†↓ψ↑ − ψ

†↑ψ↓〈ψ

†↓ψ↑〉+ 〈ψ†↑ψ↓〉〈ψ

†↓ψ↑〉

+ 〈ψ†↑ψ†↓〉ψ↓ψ↑ + ψ†↑ψ

†↓〈ψ↓ψ↑〉 − 〈ψ

†↑ψ†↓〉〈ψ↓ψ↑〉︸ ︷︷ ︸

Bogoliubov channel

A. Becker (TUK) BCS 26.02.2020 8 / 31

Page 9: BCS Mean-Field Theory and Beyond

Mean-Field Hamiltonian

⇒ H ≈ HMF =∫

d3x{ ∑σ=↑,↓

ψ†σ(x)[− ~

2M ∆L − µ]ψσ(x)

+[∆∗ψ↓(x)ψ↑(x) + ∆ψ†↓(x)ψ†↑(x)− ∆∗∆

g]}

Order parameter for pairing:

∆ = g〈ψ↓(x)ψ↑(x)〉, ∆∗ = g〈ψ†↑(x)ψ†↓(x)〉

A. Becker (TUK) BCS 26.02.2020 9 / 31

Page 10: BCS Mean-Field Theory and Beyond

Mean-Field and Beyond

Partition function:

Z = Tre−βH = Tre−β[HMF+(H−HMF)]

Moment expansion:

Z = ZMF

{1− β〈H − HMF〉MF + β2

2 〈(H − HMF)2〉MF + ...

}

with 〈·〉MF = Tr{· e−βHMF

}ZMF

and ZMF = Tre−βHMF

Cumulant expansion:

F =− 1β

ln ZMF

+ 〈H − HMF〉MF −β

2[〈(H − HMF

)2〉MF −(〈H − HMF〉MF

)2]+ ...

A. Becker (TUK) BCS 26.02.2020 10 / 31

Page 11: BCS Mean-Field Theory and Beyond

Order parameter as variational parameter

Extremalization of free energy

∂FMF(∆∗,∆)∂∆∗ = 0⇔ ∆ = g〈ψ↓(x)ψ↑(x)〉MF

Selfconsistency-Equations → Introducing dispersion ε = ~2k2

2MI equation for order parameter

∂∆∗FMF(∆∗,∆) = 0

⇒ ∆[

1g + 1√

π

(M

2π~2

)3/2 ∫ ∞0

dε√ε

tanh(√

(ε− µ)2 + ∆2 β2

)√

(ε− µ)2 + ∆2

]= 0

I particle-number equation

n = − 1V ∂µFMF

A. Becker (TUK) BCS 26.02.2020 11 / 31

Page 12: BCS Mean-Field Theory and Beyond

Order parameter as variational parameter

Extremalization of free energy

∂FMF(∆∗,∆)∂∆∗ = 0⇔ ∆ = g〈ψ↓(x)ψ↑(x)〉MF

Selfconsistency-Equations → Introducing dispersion ε = ~2k2

2MI equation for order parameter

∂∆∗FMF(∆∗,∆) = 0

⇒ ∆[

1g + 1√

π

(M

2π~2

)3/2 ∫ ∞0

dε√ε

tanh(√

(ε− µ)2 + ∆2 β2

)√

(ε− µ)2 + ∆2

]= 0

I particle-number equation

n = − 1V ∂µFMF

A. Becker (TUK) BCS 26.02.2020 11 / 31

Page 13: BCS Mean-Field Theory and Beyond

Order parameter as variational parameter

Order parameter

UV-divergency → Renormalization 1g = − M

4π~2as+ 1√

π

(M

2π~2

) 32 ∫∞

0 dε 1√ε

M2π~2aS

= 2√π

( M2π~2

)3/2 ∫ ∞0

dε√ε

[1ε−

tanh(√

(ε− µ)2 + ∆2 β2

)√

(ε− µ)2 + ∆2

]

Particle-number equation

n = 2√π

(M

2π~2

) 32 ∫ ∞

0dε√ε

[1−

ε tanh(√

(ε− µ)2 + ∆2 β2

)√

(ε− µ)2 + ∆2

]

A. Becker (TUK) BCS 26.02.2020 12 / 31

Page 14: BCS Mean-Field Theory and Beyond

Order parameter as variational parameter

Order parameter

UV-divergency → Renormalization 1g = − M

4π~2as+ 1√

π

(M

2π~2

) 32 ∫∞

0 dε 1√ε

M2π~2aS

= 2√π

( M2π~2

)3/2 ∫ ∞0

dε√ε

[1ε−

tanh(√

(ε− µ)2 + ∆2 β2

)√

(ε− µ)2 + ∆2

]

Particle-number equation

n = 2√π

(M

2π~2

) 32 ∫ ∞

0dε√ε

[1−

ε tanh(√

(ε− µ)2 + ∆2 β2

)√

(ε− µ)2 + ∆2

]

A. Becker (TUK) BCS 26.02.2020 12 / 31

Page 15: BCS Mean-Field Theory and Beyond

Evaluation of self-consistency equation for T = 0

Particle NumberApproximation ∆ = 0

n = k3F

12π2 , EF = ~2k2F

2M

Order ParameterApproximation

∆ = 8e2 EFe−

π2kF |as |

Orso et al., PRL 99, 250402 (2007)

A. Becker (TUK) BCS 26.02.2020 13 / 31

Page 16: BCS Mean-Field Theory and Beyond

Table of Contents

1 Mean-Field Theory

2 Local Density Approximation

3 Temperature Dependence

A. Becker (TUK) BCS 26.02.2020 14 / 31

Page 17: BCS Mean-Field Theory and Beyond

Introducing harmonic trapping potential

Harmonic trapping potential

V (x) = M2

∑i=x ,y ,z

ω2i x2

i

LDA: µ→ µ(x) = µ− V (x)

ConsequencesLimitation of density cloud by Thomas-Fermi radii

A. Becker (TUK) BCS 26.02.2020 15 / 31

Page 18: BCS Mean-Field Theory and Beyond

Introducing harmonic trapping potential

Harmonic trapping potential

V (x) = M2

∑i=x ,y ,z

ω2i x2

i

LDA: µ→ µ(x) = µ− V (x)

ConsequencesLimitation of density cloud by Thomas-Fermi radii

A. Becker (TUK) BCS 26.02.2020 15 / 31

Page 19: BCS Mean-Field Theory and Beyond

How can we calculate Thomas-Fermi radii?

Fermi momentum (BCS limit)

kF(x) =√

2M~2[µ− V (x)

]vanishes at Thomas-Fermi radii kF(RTF) = 0

Thomas-Fermi approximation (BEC limit)Time-independent Gross-Pitaevskii equation

µψ(x) =[− ~2

2(2M)∆L︸ ︷︷ ︸=0

+V (x)]ψ(x) + 4π~2(0.6as)

(2M)︸ ︷︷ ︸≡g

|ψ(x)|2ψ(x)

A. Becker (TUK) BCS 26.02.2020 16 / 31

Page 20: BCS Mean-Field Theory and Beyond

How can we calculate Thomas-Fermi radii?

Fermi momentum (BCS limit)

kF(x) =√

2M~2[µ− V (x)

]vanishes at Thomas-Fermi radii kF(RTF) = 0

Thomas-Fermi approximation (BEC limit)Time-independent Gross-Pitaevskii equation

µψ(x) =[− ~2

2(2M)∆L︸ ︷︷ ︸=0

+V (x)]ψ(x) + 4π~2(0.6as)

(2M)︸ ︷︷ ︸≡g

|ψ(x)|2ψ(x)

A. Becker (TUK) BCS 26.02.2020 16 / 31

Page 21: BCS Mean-Field Theory and Beyond

Calculation of Thomas-Fermi radii

BCS-limit: kF(RTF) = 0⇒ EF = M2 ω

2i R2

TFi

⇒ RTFi =√

2EF

Mω2i

BEC-limit: |ψTF(x)|2 ≡ nTF(x) = µ−V (x)g ⇒ nTF(x) = µ−V (x)

g ≥ 0

⇒RTFi = 15 15

(0.6asN2

L

) 15L

with oscillator length L ≡√

~(2M)ω

A. Becker (TUK) BCS 26.02.2020 17 / 31

Page 22: BCS Mean-Field Theory and Beyond

Calculation of Thomas-Fermi radii

BCS-limit: kF(RTF) = 0⇒ EF = M2 ω

2i R2

TFi

⇒ RTFi =√

2EF

Mω2i

BEC-limit: |ψTF(x)|2 ≡ nTF(x) = µ−V (x)g ⇒ nTF(x) = µ−V (x)

g ≥ 0

⇒RTFi = 15 15

(0.6asN2

L

) 15L

with oscillator length L ≡√

~(2M)ω

A. Becker (TUK) BCS 26.02.2020 17 / 31

Page 23: BCS Mean-Field Theory and Beyond

Which particle cloudis the smaller one?

Fermi pressure vs. Boson-Boson interaction

A. Becker (TUK) BCS 26.02.2020 18 / 31

Page 24: BCS Mean-Field Theory and Beyond

Which particle cloudis the smaller one?

Fermi pressure vs. Boson-Boson interaction

A. Becker (TUK) BCS 26.02.2020 18 / 31

Page 25: BCS Mean-Field Theory and Beyond

Comparison of Thomas-Fermi radii

particle number: N = 106

frequencies: ωx = 2π× 195 Hz, ωy = 2π× 22.6 Hz andωz = 2π× 129 Hzscattering length: aS = 4510 · a0 (fermionic),

0.6 · aS = 2706 · a0 (bosonic)

BCSRTF,x = 37 µmRTF,y = 315 µmRTF,z = 55 µm

BECRTF,x = 29 µmRTF,y = 68 µmRTF,z = 34 µm

Result:BCS-limit: particle cloud ⇒ larger volume compared to BEC-limit

A. Becker (TUK) BCS 26.02.2020 19 / 31

Page 26: BCS Mean-Field Theory and Beyond

Comparison of Thomas-Fermi radii

particle number: N = 106

frequencies: ωx = 2π× 195 Hz, ωy = 2π× 22.6 Hz andωz = 2π× 129 Hzscattering length: aS = 4510 · a0 (fermionic),

0.6 · aS = 2706 · a0 (bosonic)

BCSRTF,x = 37 µmRTF,y = 315 µmRTF,z = 55 µm

BECRTF,x = 29 µmRTF,y = 68 µmRTF,z = 34 µm

Result:BCS-limit: particle cloud ⇒ larger volume compared to BEC-limit

A. Becker (TUK) BCS 26.02.2020 19 / 31

Page 27: BCS Mean-Field Theory and Beyond

BEC-BCS Crossover

6Li, N ∝ 105, T < 100nK: confinement in combined potential of opticaldipole and magnetic trap with aspect ratio ∝ 7

BEC BCS

Widera et al., Rev. Sci. Instr. 89, 093105 (2018)

A. Becker (TUK) BCS 26.02.2020 20 / 31

Page 28: BCS Mean-Field Theory and Beyond

Table of Contents

1 Mean-Field Theory

2 Local Density Approximation

3 Temperature Dependence

A. Becker (TUK) BCS 26.02.2020 21 / 31

Page 29: BCS Mean-Field Theory and Beyond

Temperature dependence of particle-number equation

Starting from Fermi-Dirac statistics:

n(T ) = 4√π

( M2π~2

) 32∫ ∞

0dε√ε

1eβ[ε−µ(T )] + 1

=(MkBT

2π~2

) 32ξ+

32

(eβµ(T )

)

LDA:

n(x,T ) =(MkBT

2π~2

) 32ξ+

32

(eβ[µ(T )−V (x)]

)

A. Becker (TUK) BCS 26.02.2020 22 / 31

Page 30: BCS Mean-Field Theory and Beyond

Temperature dependence of particle-number equation

Starting from Fermi-Dirac statistics:

n(T ) = 4√π

( M2π~2

) 32∫ ∞

0dε√ε

1eβ[ε−µ(T )] + 1

=(MkBT

2π~2

) 32ξ+

32

(eβµ(T )

)

LDA:

n(x,T ) =(MkBT

2π~2

) 32ξ+

32

(eβ[µ(T )−V (x)]

)

A. Becker (TUK) BCS 26.02.2020 22 / 31

Page 31: BCS Mean-Field Theory and Beyond

Approximation of temperature dependence for fermions

Sommerfeld expansion

ξ+ν (eβµ) = 1

Γ(ν)

{(βµ)ν

ν+ 2

∞∑k=1

(ν − 1)(ν − 2) · ...

·(ν − 2k + 1)(βµ)ν−2k

ζ(2k)(

1− 122k−1

)

+(−1)ν−1∞∑

k=1(−1)k−1 e−βµk

}

Considering T → 0:

ξ+ν (eβµ) = 1

Γ(ν + 1)

kBT

)ν{1 + ν(ν − 1)ζ(2)

(kBTµ

)2

+74ν(ν − 1)(ν − 2)(ν − 3)ζ(4)

(kBTµ

)4+ ...

}A. Becker (TUK) BCS 26.02.2020 23 / 31

Page 32: BCS Mean-Field Theory and Beyond

Sommerfeld expansion for particle-number density

2nd order Sommerfeld expansionAssumption: T

TTF� 1

ξ+32

(eβ[µ(T )−V (x)]) = 1

Γ( 52 )

(µ(T )− V (x)

kBT

) 32

·[

1 + 32 ·

12 ζ(2)︸︷︷︸

π26

( kBTµ(T )− V (x)

)2+ ...

]

Temperature dependent particle-number density

n(x,T ) = 43√π

( M2π~2

) 32{[µ(T )− V (x)

] 32 + π2

8(kBT )2√

µ(T )− V (x)

}

A. Becker (TUK) BCS 26.02.2020 24 / 31

Page 33: BCS Mean-Field Theory and Beyond

Sommerfeld expansion for particle-number density

2nd order Sommerfeld expansionAssumption: T

TTF� 1

ξ+32

(eβ[µ(T )−V (x)]) = 1

Γ( 52 )

(µ(T )− V (x)

kBT

) 32

·[

1 + 32 ·

12 ζ(2)︸︷︷︸

π26

( kBTµ(T )− V (x)

)2+ ...

]

Temperature dependent particle-number density

n(x,T ) = 43√π

( M2π~2

) 32{[µ(T )− V (x)

] 32 + π2

8(kBT )2√

µ(T )− V (x)

}

A. Becker (TUK) BCS 26.02.2020 24 / 31

Page 34: BCS Mean-Field Theory and Beyond

Temperature dependency of...

Chemical potential:

µ(T ) = EF

[1− π2

3

( TTF

)2]

Thomas-Fermi radii:

RTF,i (T ) =√

2EF

Mω2i

[1− π2

6

( TTF

)2]

⇒ Shrinking of Thomas-Fermi radii for increasing temperature

A. Becker (TUK) BCS 26.02.2020 25 / 31

Page 35: BCS Mean-Field Theory and Beyond

Temperature dependent density cloud in x -y direction

Performing integration within Thomas-Fermi radius in z-direction:

n(x , y ,T ) =∫ √ 2χ(x,y,T )

Mω2z

−√

2χ(x,y,T )Mω2

z

dz n(x , y , z ,T )

with χ(x , y ,T ) ≡ µ(T )− M2 (ω2

xx2 + ω2y y2)

2nd order expression:

n(x , y ,T ) = M12π~3ωz

{3[µ(T )− M

2 (ω2xx2 + ω2

y y2)]2

+ π2(kBT )2}

A. Becker (TUK) BCS 26.02.2020 26 / 31

Page 36: BCS Mean-Field Theory and Beyond

Temperature dependent density cloud in x -y direction

Performing integration within Thomas-Fermi radius in z-direction:

n(x , y ,T ) =∫ √ 2χ(x,y,T )

Mω2z

−√

2χ(x,y,T )Mω2

z

dz n(x , y , z ,T )

with χ(x , y ,T ) ≡ µ(T )− M2 (ω2

xx2 + ω2y y2)

2nd order expression:

n(x , y ,T ) = M12π~3ωz

{3[µ(T )− M

2 (ω2xx2 + ω2

y y2)]2

+ π2(kBT )2}

A. Becker (TUK) BCS 26.02.2020 26 / 31

Page 37: BCS Mean-Field Theory and Beyond

T = 0 vs. T = 0.2TF

n(x , y ,T ) = M12π~3ωz

3[µ(T )− M

2 (ω2xx2 + ω2

yy 2)]2

+ π2(kBT )2

A. Becker (TUK) BCS 26.02.2020 27 / 31

Page 38: BCS Mean-Field Theory and Beyond

Temperature dependent density cloud in x direction

Performing integration within Thomas-Fermi radius in y -direction:

n(x ,T ) =∫ √ 2ξ(x,T )

Mω2y

−√

2ξ(x,T )Mω2

y

dy n(x , y ,T )

with ξ(x ,T ) = µ(T )− M2 ω

2xx2

2nd order expression:

n(x ,T ) =√

M2

√µ(T )− M

2 ω2xx2

π~3ωyωz

{8

15

[µ(T )− M

2 ω2xx2

]2+ π2

3 (kBT )2}

A. Becker (TUK) BCS 26.02.2020 28 / 31

Page 39: BCS Mean-Field Theory and Beyond

Temperature dependent density cloud in x direction

Performing integration within Thomas-Fermi radius in y -direction:

n(x ,T ) =∫ √ 2ξ(x,T )

Mω2y

−√

2ξ(x,T )Mω2

y

dy n(x , y ,T )

with ξ(x ,T ) = µ(T )− M2 ω

2xx2

2nd order expression:

n(x ,T ) =√

M2

√µ(T )− M

2 ω2xx2

π~3ωyωz

{8

15

[µ(T )− M

2 ω2xx2

]2+ π2

3 (kBT )2}

A. Becker (TUK) BCS 26.02.2020 28 / 31

Page 40: BCS Mean-Field Theory and Beyond

n(x ,T ) =√

M2

√µ(T )− M

2 ω2xx2

π~3ωyωz

{8

15

[µ(T )− M

2 ω2xx2

]2+ π2

3 (kBT )2}

A. Becker (TUK) BCS 26.02.2020 29 / 31

Page 41: BCS Mean-Field Theory and Beyond

Calculation of temperature and particle number

Thomas-Fermi radius:RTF,i (T )→ µ(T ) = M

2 ω2i RTF,i (T )2

Particle-number density in x direction:

n(x ,T ) =√

M2

√µ(T )−M

2 ω2x x2

π~3ωyωz

{8

15

[µ(T )− M

2 ω2xx2

]2+ π2

3 (kBT )2}

Temperature:

⇒ n(0,T ) = M2ωxRTF,x (T )π~3ωyωz

{8

15

[M2 ω

2xRTF,x (T )2

]2+ π2

3 (kBT )2}

Particle-number:

M2 ω

2i RTF,x (T )2 = µ(T ) = EF

{1− π2

3

( TTF

)2}⇒ EF = ~ω(6N) 1

3

A. Becker (TUK) BCS 26.02.2020 30 / 31

Page 42: BCS Mean-Field Theory and Beyond

Calculation of temperature and particle number

Thomas-Fermi radius:RTF,i (T )→ µ(T ) = M

2 ω2i RTF,i (T )2

Particle-number density in x direction:

n(x ,T ) =√

M2

√µ(T )−M

2 ω2x x2

π~3ωyωz

{8

15

[µ(T )− M

2 ω2xx2

]2+ π2

3 (kBT )2}

Temperature:

⇒ n(0,T ) = M2ωxRTF,x (T )π~3ωyωz

{8

15

[M2 ω

2xRTF,x (T )2

]2+ π2

3 (kBT )2}

Particle-number:

M2 ω

2i RTF,x (T )2 = µ(T ) = EF

{1− π2

3

( TTF

)2}⇒ EF = ~ω(6N) 1

3

A. Becker (TUK) BCS 26.02.2020 30 / 31

Page 43: BCS Mean-Field Theory and Beyond

Summary1 Mean-Field Theory

2 Local Density ApproximationThomas-Fermi radii comparisonBCS-limit: particle cloud ⇒ larger volume compared to BEC-limit

3 Temperature Dependence

Temperature and particle number:

n(0,T ),RTF,x (T )⇔ N,T

A. Becker (TUK) BCS 26.02.2020 31 / 31