102
Bayesian Networks Graphical Models Graphical Models Siamak Ravanbakhsh Winter 2018

Bayesian Networks Graphical Models - cs.ubc.casiamakx/532R/slides/directed_models.pdf · Learning objectives what is a Bayesian network? factorization conditional independencies how

  • Upload
    dinhanh

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Bayesian Networks

Graphical ModelsGraphical Models

Siamak Ravanbakhsh Winter 2018

Learning objectivesLearning objectives

what is a Bayesian network?factorizationconditional independencies

how to read it from the graphequivalent class of Bayesian networks

how are they related?

Representing distributionsRepresenting distributions

give a large number of random variables X , … ,X1 n

how to represent

number of parameters exponential in n (curse of dimensionality)

need to leverage some structure in P

P (X , … ,X )1 n

IndependenceIndependence & representation & representation

for discrete domains

representation ofexponential in n:

P (X = x , … ,x ) = θ1 n i ,…,i1 n

V al(X ) = {1, … ,D} ∀ii

O(D }n

IndependenceIndependence & representation & representation

X ⊥ X ∀i, ji j

for discrete domains

representation ofexponential in n:

P (X = x , … ,x ) = P (X = x ) = θ1d

nd ∏i i i

d ∏i i,d

P (X = x , … ,x ) = θ1 n i ,…,i1 n

assuming independence

linear-sized representation:

a particular assignment (d) in discrete domain

V al(X ) = {1, … ,D} ∀ii

O(D }n

IndependenceIndependence & representation & representation

X ⊥ X ∀i, ji j

for discrete domains

representation ofexponential in n:

P (X = x , … ,x ) = P (X = x ) = θ1d

nd ∏i i i

d ∏i i,d

P (X = x , … ,x ) = θ1 n i ,…,i1 n

assuming independence

linear-sized representation:

a particular assignment (d) in discrete domain

independence assumption is too restrictive

V al(X ) = {1, … ,D} ∀ii

O(D }n

Independence and representationIndependence and representation

For a Gaussian distribution: 

from quadratic  

to a linear-sized representation 

P (X = x , … ,x ) = exp − (x − μ )1 n ∏i √ 2πσi2

1 ( 2σi2

1i i

2)

P (X = x , … ,x ) = exp − (x− μ) Σ (x− μ)1 n √ ∣2πΣ∣ 1 ( 2

1 T −1 )n x n matrix

Using the Using the chain rulechain rule

P (X) = P (X )P (X ∣ X ) …P (X ∣ X , … ,X )1 2 1 n 1 n−1

pick an ordering of the variables

Using the Using the chain rulechain rule

parameterize each termdoes it compress the representation?

P (X) = P (X )P (X ∣ X ) …P (X ∣ X , … ,X )1 2 1 n 1 n−1

original #params D − 1n

pick an ordering of the variables

Using the Using the chain rulechain rule

parameterize each termdoes it compress the representation?

P (X) = P (X )P (X ∣ X ) …P (X ∣ X , … ,X )1 2 1 n 1 n−1

original #params D − 1n

new #params (D − 1) + (D − D) + … + (D − D ) = D − 12 n n−1 n

pick an ordering of the variables

P (X )1 P (X ∣ X )2 1 P (X ∣ X , … ,X )n 1 n−1

Using the Using the chain rulechain rule

P (X) = P (X )P (X ∣ X ) …P (X ∣ X , … ,X )1 2 1 n 1 n−1

simplify the conditionals

flexible compression of P

Using the Using the chain rulechain rule

P (X) = P (X )P (X ∣ X ) …P (X ∣ X , … ,X )1 2 1 n 1 n−1

simplify the conditionals

flexible compression of P

A Bayesian network!

Chain rule; Chain rule; simplificationsimplification

P (X) = P (X )P (X ∣ X )P (X ∣ X ,X ) …P (X ∣ X , … ,X )1 2 1 3 1 2 n 1 n−1

an extreme form of simplification

P (X) = P (X )P (X ∣ X )P (X ∣ X ) …P (X ∣ X )1 2 1 3 1 n 1

Chain rule; Chain rule; simplificationsimplification

P (X) = P (X )P (X ∣ X )P (X ∣ X ,X ) …P (X ∣ X , … ,X )1 2 1 3 1 2 n 1 n−1

an extreme form of simplification

P (X) = P (X )P (X ∣ X )P (X ∣ X ) …P (X ∣ X )1 2 1 3 1 n 1

# params (D − 1) + (n − 1)(D − D)2

O(nD )2 instead of O(D )n

Idiot BayesIdiot Bayes

OrOr naive Bayes naive Bayes

P (class,X) = P (class)P (X ∣ class)P (X ∣ class) …P (X ∣ class)2 3 n

independence assumption: X ⊥ X ∣ classi −i

for classification (use Bayes rule)

P (class ∣ X) ∝ P (class)P (X ∣ class)P (X ∣ class) …P (X ∣ class)2 3 n

Example: medical diagnosis (what if two symptoms are correlated?)

Simplifying the chain rule; Simplifying the chain rule; general casegeneral case

P (X) = P (X )P (X ∣ X ) …P (X ∣ X , … ,X )1 2 1 n 1 n−1

simplify the full conditionals:

Directed Acyclic Graph (DAG)

Simplifying the chain rule; Simplifying the chain rule; general casegeneral case

P (X) = P (X )P (X ∣ X ) …P (X ∣ X , … ,X )1 2 1 n 1 n−1

simplify the full conditionals:

represent it using a 

P (X) = P (X ∣ Pa )∏i i Xi

 Bayesian network

a topological ordering

identifying a DAGhas a topological ordering?no directed path from a node to itself?

DAG; DAG; identificationidentification

identifying a DAGhas a topological ordering?no directed path from a node to itself?

Example:is this a DAG?a topological ordering: G,A,B,D,C,E,F

DAG; DAG; identificationidentification

identifying a DAGhas a topological ordering?no directed path from a node to itself?

Example:is this a DAG?a topological ordering: G,A,B,D,C,E,F

DAG; DAG; identificationidentification

A,B,C,G,D,E,F

identifying a DAGhas a topological ordering?no directed path from a node to itself?

Example:is this a DAG?a topological ordering: G,A,B,D,C,E,F how about this?

DAG; DAG; identificationidentification

A,B,C,G,D,E,F

Bayesian network (BN); Bayesian network (BN); exampleexample

P (I,D,G,S,L) = P (I)P (D)P (G ∣ I,D)P (S ∣ I)P (L ∣ G)more intelligent

A B C

better SAT score

more difficult

better

Bayesian network (BN); Bayesian network (BN); exampleexample

P (I,D,G,S,L) = P (I)P (D)P (G ∣ I,D)P (S ∣ I)P (L ∣ G)

Conditional Probability Table (CPT)

more intelligent

A B C

better SAT score

more difficult

better

Bayesian network (BN); Bayesian network (BN); exampleexample

P (I,D,G,S,L) = P (I)P (D)P (G ∣ I,D)P (S ∣ I)P (L ∣ G)

P (i , d , g , s , l ) = P (i )P (d )P (g ∣ i , d )P (s ∣ i )P (l ∣ g )1 0 2 1 0 1 0 2 1 0 1 0 0 2

Conditional Probability Table (CPT)

more intelligent

A B C

better SAT score

more difficult

better

= .7 × .6 × .08 × .05 × .4 ≈ .0006

answering probabilistic queries

P (Y = y ∣ E = e) ?evidence

Intuition for reasoning in a BNIntuition for reasoning in a BN

answering probabilistic queries

P (Y = y ∣ E = e) ?evidence

Intuition for reasoning in a BNIntuition for reasoning in a BN

P (L = l ∣ S = s ) =1 1P (S=s )1

P (L=l ,S=s )1 1

answering probabilistic queries

P (Y = y ∣ E = e) ?evidence

an inference problem

how to calculate? ... later

Intuition for reasoning in a BNIntuition for reasoning in a BN

P (L = l ∣ S = s ) =1 1P (S=s )1

P (L=l ,S=s )1 1

P (S = s ) = P (d, i, g, s, l)1 ∑d,i,g,l

 

marginal (prior) probabilityof getting a good letter

  

marginal posteriorgiven low intelligence

... and an easy exam

causal reasoning  (top­down)

P (l ) ≈ .501

P (l ∣ i ) ≈ .3891 0

P (l ∣ i , d ) ≈ .521 0 0

Intuition for reasoning in a BNIntuition for reasoning in a BN

more intelligent

A B C

better SAT score

more difficult

better

 

(marginal) priorof a high intelligence

 

(marginal) posteriorgiven a bad letter

... and a bad grade

evidential reasoning (bottom­up)

P (i ) ≈ .301

P (i ∣ l ) ≈ .141 0

P (i ∣ l , g ) ≈ .081 0 3

Intuition for reasoning in a BNIntuition for reasoning in a BN

more intelligent

A B C

better SAT score

more difficult

better

 

priorof a high intelligence

posteriorgiven a bad letter

... and a bad grade

a difficult exam explains away the grade

Explaining away (v­structure)

P (i ) ≈ .301

P (i ∣ l ) ≈ .141 0

P (i ∣ l , g ) ≈ .081 0 3

Intuition for Reasoning in BNIntuition for Reasoning in BN

P (i ∣ l , g , d ) ≈ .111 0 3 1

more intelligent

A B C

better SAT score

more difficult

better

DAG; DAG; semanticssemantics

associating P with a DAG: 

factorization of the joint probability:  

conditional independencies in P from the DAG

P (X) = P (X ∣ Pa )∏i i Xi

Bayesian networks; Bayesian networks; factorizationfactorization

P (I,D,G,S,L) = P (I)P (D)P (G ∣ I,D)P (S ∣ I)P (L ∣ G)

more intelligent

A B C

better SAT score

more difficult

better

P (X) = P (X ∣ Pa )∏i i Xi

In general

L ⊥ D, I,S ∣ G

quality of the letter (L) only depends on the grade (G)

Bayesian networks;Bayesian networks; conditioinal independencies conditioinal independencies

L ⊥ D, I,S ∣ G

D ⊥ S ?

quality of the letter (L) only depends on the grade (G)

How about the following assertions?

Bayesian networks;Bayesian networks; conditioinal independencies conditioinal independencies

L ⊥ D, I,S ∣ G

D ⊥ S ?

quality of the letter (L) only depends on the grade (G)

How about the following assertions?

Bayesian networks;Bayesian networks; conditioinal independencies conditioinal independencies

L ⊥ D, I,S ∣ G

D ⊥ S ?D ⊥ S ∣ I ?

quality of the letter (L) only depends on the grade (G)

How about the following assertions?

Bayesian networks;Bayesian networks; conditioinal independencies conditioinal independencies

L ⊥ D, I,S ∣ G

D ⊥ S ?D ⊥ S ∣ I ?

quality of the letter (L) only depends on the grade (G)

How about the following assertions?

Bayesian networks;Bayesian networks; conditioinal independencies conditioinal independencies

L ⊥ D, I,S ∣ G

D ⊥ S ?D ⊥ S ∣ I ?

quality of the letter (L) only depends on the grade (G)

How about the following assertions?

D ⊥ S ∣ L ?

Bayesian networks;Bayesian networks; conditioinal independencies conditioinal independencies

L ⊥ D, I,S ∣ G

D ⊥ S ?D ⊥ S ∣ I ?

quality of the letter (L) only depends on the grade (G)

How about the following assertions?

D ⊥ S ∣ L ?

Bayesian networks;Bayesian networks; conditioinal independencies conditioinal independencies

why?

L ⊥ D, I,S ∣ G

D ⊥ S ?D ⊥ S ∣ I ?

quality of the letter (L) only depends on the grade (G)

How about the following assertions?

D ⊥ S ∣ L ?

Bayesian networks;Bayesian networks; conditioinal independencies conditioinal independencies

read from the graph?

why?

Conditional independencies (CI); Conditional independencies (CI); notationnotation

1. set of all CIs of the distribution P

2. set of local CIs from the graph (DAG)

3. set of all (global) CIs from the graph

I(P )

I (G)ℓ

I(G)

LocalLocal conditional independencies (conditional independencies (CICIs)s)

X ⊥ NonDescendents ∣ Parentsi Xi Xifor any node Xi

A ⊥ G ∣ ∅

B ⊥ G ∣ A

C ⊥ G,D,A ∣ B

G ⊥ A,B,C

D ⊥ A,C ∣ B,G

E ⊥ A,G ∣ B,C,DF ⊥ A,B,C,D,G ∣ E

graph G

I (G) = {ℓ

}

LocalLocal CIs CIs

X ⊥ NonDescendents ∣ Parentsi Xi Xifor any node Xi

D ⊥ I,SI ⊥ D

G ⊥ S ∣ IS ⊥ G,L,D ∣ I

L ⊥ D, I,S ∣ G

graph G

I (G) = {ℓ

}

use the factorized form

Local CIsLocal CIs from factorizationfrom factorization

P (X) = P (X ∣ Pa )∏i i Xi

P (X ,NonDesc ∣ Pa ) = P (X ∣ Pa )P (NonDesc ∣ Pa )i Xi Xi i Xi Xi Xi

to show

X ⊥ NonDesc ∣ Pai Xi Xiwhich means

∀Xi

S ⊥ G ∣ I P (D, I,G,S,L) = P (D)P (I)P (G ∣ D, I)P (S ∣ I)P (L ∣ G)

Local CIsLocal CIs from factorization; from factorization; example example

given

S ⊥ G ∣ I P (D, I,G,S,L) = P (D)P (I)P (G ∣ D, I)P (S ∣ I)P (L ∣ G)

P (G,S ∣ I) = =P (D,I,G,S,L)∑d,g,s,l

P (D,I,G,S,L)∑d,l

Local CIsLocal CIs from factorization; from factorization; example example

given

S ⊥ G ∣ I P (D, I,G,S,L) = P (D)P (I)P (G ∣ D, I)P (S ∣ I)P (L ∣ G)

=P (D)P (I)P (G∣D,I)P (S∣I)P (L∣G)∑d,g,s,l

P (D)P (I)P (G∣D,I)P (S∣I)P (L∣G)∑d,lP (G,S ∣ I) = =P (D,I,G,S,L)∑d,g,s,l

P (D,I,G,S,L)∑d,l

Local CIsLocal CIs from factorization; from factorization; example example

given

S ⊥ G ∣ I P (D, I,G,S,L) = P (D)P (I)P (G ∣ D, I)P (S ∣ I)P (L ∣ G)

=P (D)P (I)P (G∣D,I)P (S∣I)P (L∣G)∑d,g,s,l

P (D)P (I)P (G∣D,I)P (S∣I)P (L∣G)∑d,lP (G,S ∣ I) = =P (D,I,G,S,L)∑d,g,s,l

P (D,I,G,S,L)∑d,l

=P (I) P (D)P (G∣D,I)P (S∣I)P (L∣G)∑d,g,s,l

P (I)P (S∣I) P (D)P (G∣D,I)P (L∣G)∑d,l

Local CIsLocal CIs from factorization; from factorization; example example

given

S ⊥ G ∣ I P (D, I,G,S,L) = P (D)P (I)P (G ∣ D, I)P (S ∣ I)P (L ∣ G)

=P (D)P (I)P (G∣D,I)P (S∣I)P (L∣G)∑d,g,s,l

P (D)P (I)P (G∣D,I)P (S∣I)P (L∣G)∑d,lP (G,S ∣ I) = =P (D,I,G,S,L)∑d,g,s,l

P (D,I,G,S,L)∑d,l

=P (I) P (D)P (G∣D,I)P (S∣I)P (L∣G)∑d,g,s,l

P (I)P (S∣I) P (D)P (G∣D,I)P (L∣G)∑d,l

= P (S ∣ I)P (G ∣ I)1P (S∣I) P (D)P (G∣D,I)P (L∣G)∑d,l

Local CIsLocal CIs from factorization; from factorization; example example

given

FactorizationFactorization from local CIsfrom local CIs

from local CIs I (G) = {X ⊥ NonDesc ∣ Pa ∣ i}ℓ i Xi Xi

find a topological ordering  (parents before children):

use the chain rule

 

 

simplify using local CIs

X , … ,Xi1 in

P (X) = P (X ) P (X ∣ X , … ,X )i1 ∏j=2n

ij i1 ij−1

P (X) = P (X ) P (X ∣ Pa )i1 ∏j=2n

ij Xij

FactorizationFactorization from local CIs;from local CIs; example example

local CIs (D ⊥ I,S), (I ⊥ D) , (G ⊥ S ∣ I),

(S ⊥ G,L,D ∣ I), (L ⊥ D, I,S ∣ G)

I (G) = {ℓ

}

P (D, I,G,S,L) = P (D)P (I ∣ D)P (G ∣ D, I)P (L ∣ D, I,G)P (S ∣ D, I,G,L)

a topological ordering:  D, I, G, L, S

I (G)ℓ

P (D, I,G,S,L) = P (D)P (I)P (G ∣ D, I)P (L ∣ G)P (S ∣ I)

use the chain rule

simplify using

Factorization            local CIsFactorization            local CIs

P factorizes according to     G

P (X) = P (X ∣ Pa )∏i i Xi

G

⇔ holds in PI (G)ℓ

Factorization            local CIsFactorization            local CIs

P factorizes according to     G I (G) ⊆ I(P )ℓ

P (X) = P (X ∣ Pa )∏i i Xi

G

⇔ holds in PI (G)ℓ

Factorization            local CIsFactorization            local CIs

P factorizes according to     G I (G) ⊆ I(P )ℓ

P (X) = P (X ∣ Pa )∏i i Xi

G

is an I-map for PG

it does not mislead usabout independencies in P

⇔ holds in PI (G)ℓ

Independence map (I-map); Independence map (I-map); exampleexample

GG ′

A B

C

A B

C

P (A,B,C) = P (C)P (A ∣ C)P (B ∣ C)P (A,B,C) = P (C)P (A ∣ C)P (B)

the term is used for both graphs and distributions.

easy to checkfactorization of P over

both           are I-maps for P

Independence map (I-map); Independence map (I-map); exampleexample

I (G ) ⊆ I(P )ℓ′G ′

GG ′

I (G) ⊆ I (G )ℓ ℓ′

A B

C

A B

C

P (A,B,C) = P (C)P (A ∣ C)P (B ∣ C)P (A,B,C) = P (C)P (A ∣ C)P (B)

⇒G,G ′

the term is used for both graphs and distributions.

Summary Summary so farso far

simplification of the chain rule P (X) = P (X ∣ Pa )∏i i Xi

Bayes-net represented using a DAGnaive Bayeslocal conditional independencies

hold in a Bayes-netimply a Bayes-net

I = {X ⊥ NonDesc ∣ Pa ∣ i}i Xi Xi

GlobalGlobal CIs CIs from the graphfrom the graph

for any subset of vars X, Y and Z,  we can ask X ⊥ Y ∣ Z?

global CI: the set of all such CIs

GlobalGlobal CIs CIs from the graphfrom the graph

factorized form of P              global CIs I (G) ⊆ I(G) ⊆ I(P )ℓ⇒

for any subset of vars X, Y and Z,  we can ask X ⊥ Y ∣ Z?

global CI: the set of all such CIs

GlobalGlobal CIs CIs from the graphfrom the graph

factorized form of P              global CIs I (G) ⊆ I(G) ⊆ I(P )ℓ⇒

algorithm: directed separation (D-separation)

C ⊥ D ∣ B,F ?

for any subset of vars X, Y and Z,  we can ask X ⊥ Y ∣ Z?

global CI: the set of all such CIs

 Example:

Three canonical settingsThree canonical settings

1. causal / evidence trail

P (X,Y ,Z) = P (X)P (Y ∣X)P (Z ∣ Y )

P (Z ∣ X,Y ) = = = P (Z ∣ Y )P (X,Y )

P (X,Y ,Z)P (X)P (Y ∣X)

P (X)P (Y ∣X)P (Z∣Y )

conditional Independence:

marginal independence: P (X,Z) ≠ P (X)P (Z)

XYZ

for three random variables

Three canonical settingsThree canonical settings

2. common cause

P (X,Y ,Z) = P (Y )P (X ∣ Y )P (Z ∣ Y )

P (X,Z ∣ Y ) = = P (X ∣ Y )P (Z ∣ Y )P (Y )

P (X,Y ,Z)

conditional independence:

marginal independence: P (X,Z) ≠ P (X)P (Z)

X

Y

Z

Three canonical settingsThree canonical settings

3. common effect

P (X,Y ,Z) = P (X)P (Z)P (Y ∣ X,Z)

P (X,Z ∣ Y ) = ≠ P (X ∣ Y )P (Z ∣ Y )P (Y )

P (X,Y ,Z)

conditional independence:

marginal independence:P (X,Z) = P (X,Y ,Z) = P (X)P (Z) P (Y ∣ X,Z) = P (X)P (Z)∑Y ∑Y

X

Y

Z

a.k.a. collider, v-structure

Three canonical settingsThree canonical settings

3. common effect

P (X,Z ∣ W ) ≠ P (X ∣ W )P (Z ∣ W )

conditional Independence:w

even observing a descendant of Y makes X, Z dependent

X

Y

Z

Putting the three cases togetherPutting the three cases together

consider all paths between variables in X and Y 

X ,X ⊥ Y ∣ Z ,Z ?1 2 1 1 2

X1

X2

Y1

Z1

Z2

X1

X2

Y1

Z1

Z2

so far X ⊥ Y ∣ Z

consider all paths between variables in X and Y 

X ,X ⊥ Y ∣ Z ,Z ?1 2 1 1 2

Putting the three cases togetherPutting the three cases together

X1

X2

Y1

Z1

Z2

consider all paths between variables in X and Y 

X ,X ⊥ Y ∣ Z ,Z ?1 2 1 1 2

Putting the three cases togetherPutting the three cases together

had we not observed    Z1

(X ,X ⊥ Y ∣ Z ) ∈ I(G)1 2 1 2

(a.k.a. Bayes-Ball algorithm)

See whether at least one ball from X reaches Y

X ⊥ Y ∣ Z ?

image from:https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Z is shaded

D-seperationD-seperation

D-separation; D-separation; algorithmalgorithm

input: graph G and X, Y, Z

output: mark the variables in Z and all of their ancestors in Gbreadth-first-search starting from X

stop any trail that reaches a blocked node

a node in Y is reached?

X ⊥ Y ∣ Z ?

unmarked middle of a collider (V-structure)

in Z otherwise

Linear time complexity

D-separation D-separation quizquiz

D-separation D-separation quizquiz

G ⊥ S ∣ ∅?

D-separation D-separation quizquiz

G ⊥ S ∣ ∅?

D-separation D-separation quizquiz

G ⊥ S ∣ ∅?

D ⊥ L ∣ G?

D-separation D-separation quizquiz

G ⊥ S ∣ ∅?

D ⊥ L ∣ G?

D-separation D-separation quizquiz

G ⊥ S ∣ ∅?

D ⊥ L ∣ G?

D ⊥ I,S ∣ ∅?

D-separation D-separation quizquiz

G ⊥ S ∣ ∅?

D ⊥ L ∣ G?

D ⊥ I,S ∣ ∅?

D-separation D-separation quizquiz

G ⊥ S ∣ ∅?

D ⊥ L ∣ G?

D ⊥ I,S ∣ ∅?

D,L ⊥ S ∣ I,G?

D-separation D-separation quizquiz

G ⊥ S ∣ ∅?

D ⊥ L ∣ G?

D ⊥ I,S ∣ ∅?

D,L ⊥ S ∣ I,G?

I-map I-map quizquiz

is G an I-MAP for the following distribution?

P (D, I,G,S,L) = P (L)P (S)P (G ∣ D, I)P (D)P (I)

I-map I-map quizquiz

is G an I-MAP for the following distribution?

P (D, I,G,S,L) = P (L)P (S)P (G ∣ D, I)P (D)P (I)

yes!

conditional independencies of the distributioninferred from the graph

local CI:global CI: D-separation

Summary Summary so farso far

graph and distribution are combined:

factorization of the distributionaccording to the graph 

 

X ⊥ NonDescendents ∣ Parentsi Xi Xi

P (X) = P (X ∣ Pa )∏i i Xi

G

Summary Summary so farso far

factorization of the distributionlocal conditional independenciesglobal conditional independencies

identify the samefamily of distributions

Equivalence class of DAGsEquivalence class of DAGs

Two DAGs are I-equivalent if I(G) = I(G )′

P factorizes on both of these graphs

Equivalence class of DAGsEquivalence class of DAGs

Two DAGs are I-equivalent if I(G) = I(G )′

From d-separation algorithm it is sufficient

same undirected skeletonsame v-structures

P factorizes on both of these graphs

Equivalence class of DAGsEquivalence class of DAGs

Two DAGs are I-equivalent if I(G) = I(G )′

different v-structures, yet I(G) = I(G ) = ∅′

Equivalence class of DAGsEquivalence class of DAGs

Two DAGs are I-equivalent if I(G) = I(G )′

different v-structures, yet I(G) = I(G ) = ∅′

here, v-structures are irrelevant for I-equivalent because:

parents are connected (moral parents!)

Equivalence class of DAGsEquivalence class of DAGs

Two DAGs are I-equivalent if I(G) = I(G )′

I(G) = I(G ) ⇔′ same undirected skeletonsame immoralities

Equivalence class of DAGsEquivalence class of DAGs

Two DAGs are I-equivalent if I(G) = I(G )′

I(G) = I(G ) ⇔′ same undirected skeletonsame immoralities

X ⊥ Y ∣ Z ?ZZ

XXY Y

I-Equivalence I-Equivalence quizquiz

do these DAGs have the same set of CIs?

X X YY

Z Z

W W

I-Equivalence I-Equivalence quizquiz

do these DAGs have the same set of CIs? no!

X X YY

Z Z

W W

I-Equivalence I-Equivalence quizquiz

do these DAGs have the same set of CIs? no!

X X YY

Z Z

W W

X ⊥ Z ∣ W

MinimalMinimal I-map I-map G is minimal I-map for P:

G is an I-map for P:removing any edge destroys this property

P (X,Y ,Z,W ) = P (X ∣ Y ,Z)P (W )P (Y ∣ Z)P (Z) Example:

I(G) ⊆ I(P )

which graph G to use for P?

X X X

Z Z ZY Y Y

WWW

I­MAP 

X

Z Y

W

min. I­MAP  min. I­MAP  NOT an I­MAP 

Minimal I-map Minimal I-map from CIfrom CI

input:             or an oracle; an orderingoutput: a minimal I-map G   for i=1...n

find minimal                                      s.t.set

which graph G to use for P?

I(P ) X , … ,X1 n

(X ⊥ X , … ,X −U ∣ U)i 1 i−1U ⊆ {X , … ,X }1 i−1

X1 XnXi

Pa ← UXi X ⊥ NonDesc ∣ Pai Xi Xi

Minimal I-map from CIMinimal I-map from CI

input:             or an oracle; an orderingoutput: a minimal I-map G

which graph G to use for P?

I(P ) X , … ,X1 n

different orderings give different graphs

Minimal I-map from CIMinimal I-map from CI

input:             or an oracle; an orderingoutput: a minimal I-map G

which graph G to use for P?

I(P ) X , … ,X1 n

different orderings give different graphs Example:

D,I,S,G,L(a topological ordering)

L,S,G,I,D L,D,S,I,G

Perfect MAP (Perfect MAP (P-MAPP-MAP))which graph G to use for P?

D,I,S,G,L L,S,G,I,D L,D,S,I,G

all the graphs above are minimal I-MAPsPerfect MAP:

I(G) ⊆ I(P )I(G) = I(P )

Perfect map (Perfect map (P-mapP-map))which graph G to use for P?

Perfect MAP: I(G)=I(P )P may not have a P-map in the form of BN

Perfect map (Perfect map (P-mapP-map))which graph G to use for P?

Perfect MAP: I(G)=I(P )P may not have a P-map in the form of BN

 Example:P (x, y, z) = {1/12,

1/6,if x ⊗ y ⊗ z = 0if x ⊗ y ⊗ z = 1

(X ⊥ Y ), (Y ⊥ Z), (X ⊥ Z) ∈ I(P )(X ⊥ Y ∣ Z), (Y ⊥ Z ∣ Z), (X ⊥ Z ∣ Y ) ∉ I(P )

Perfect map (Perfect map (P-mapP-map))which graph G to use for P?

Perfect MAP: I(G)=I(P )P may not have a P-map in the form of a BNif P has a P-map: is it unique?

 Example:

I(P ) = {(X ⊥ Y ,Z ∣ ∅), (X ⊥ Y ∣ Z), (X ⊥ Z ∣ Y )}X XY Y

ZZ

unique up to I-equivalence

Perfect map (Perfect map (P-mapP-map))which graph G to use for P?

Perfect MAP: I(G)=I(P )P may not have a P-map in the form of a BNif P has a P-map: is it unique?

 Example:

I(P ) = {(X ⊥ Y ,Z ∣ ∅), (X ⊥ Y ∣ Z), (X ⊥ Z ∣ Y )}X XY Y

ZZ

How to find P-MAPs?  discussed in learning BNs

unique up to I-equivalence

SummarySummary

factorization of the dist.local CIsglobal CIs

can be represented using an equivalent class of graphs:

alternative factorizationdifferent local CIssame global CIs

identify the samefamily of distributions