39
Bayesian calibration and Bayesian calibration and comparison of process-based comparison of process-based forest models forest models Marcel van Oijen & Ron Smith (CEH-Edinburgh) Jonathan Rougier (Durham Univ.)

Bayesian calibration and comparison of process-based forest models

  • Upload
    oliana

  • View
    49

  • Download
    3

Embed Size (px)

DESCRIPTION

Bayesian calibration and comparison of process-based forest models . Marcel van Oijen & Ron Smith (CEH-Edinburgh) Jonathan Rougier (Durham Univ.). Contents. Bayesian calibration of a forest model … what measurements to take? Bayesian comparison of forest models. - PowerPoint PPT Presentation

Citation preview

Page 1: Bayesian calibration and comparison of process-based forest models

Bayesian calibration and comparison of Bayesian calibration and comparison of process-based forest models process-based forest models

Marcel van Oijen & Ron Smith (CEH-Edinburgh)

Jonathan Rougier (Durham Univ.)

Page 2: Bayesian calibration and comparison of process-based forest models

ContentsContents

1. Bayesian calibration of a forest model

2. … what measurements to take?

3. Bayesian comparison of forest models

Page 3: Bayesian calibration and comparison of process-based forest models

1. Bayesian calibration of a forest 1. Bayesian calibration of a forest modelmodel

Page 4: Bayesian calibration and comparison of process-based forest models

Process-based forest modelsProcess-based forest models

Soil

Trees

H2OC

Atmosphere

H2O

H2OC

Nutr.

Subsoil (or run-off)

H2OC

Nutr.

Nutr.

Nutr.

Soil C

NPP

HeightEnvironmental scenarios

Initial values

Parameters

Model

Page 5: Bayesian calibration and comparison of process-based forest models

Using dataUsing data

We need a method that:

1. Quantifies how uncertainty about inputs and model structure causes output uncertainty

2. Efficiently uses data, on inputs & outputs, to reduce uncertainties

Page 6: Bayesian calibration and comparison of process-based forest models

BASic FORest model (BASFOR)BASic FORest model (BASFOR)

BASFOR 12 output variables39 parameters

Page 7: Bayesian calibration and comparison of process-based forest models

BASFOR: InputsBASFOR: Inputs

BASFOR 12 output variables

Parameter Unit Min MaxBETA (-) 0.4 0.6CL0 (kg m-2) 0.0001 0.01CLITT0 (kg m-2) 0.15 0.6CO20 (ppm) 320 380CR0 (kg m-2) 0.0001 0.01CSOMF0 (kg m-2) 5 10CSOMS0 (kg m-2) 1 3CW0 (kg m-2) 0.0001 0.01FLITTSOMF (-) 0.4 0.8FLMAX (-) 0.25 0.35FSOMFSOMS(-) 0.01 0.1FW (-) 0.52 0.62GAMMA (-) 0.4 0.6KCA (m2) 3.65 14.6KCAEXP (m2) 0.333 0.5KDL (d-1) 0.0007 0.0028KDLITT (d-1) 0.0007 0.0028KDR (d-1) 0.000135 0.00054KDSOMF (d-1) 0.000028 0.00011KDSOMS (d-1) 0.0000028 0.000011KDW (d-1) 0.00004 0.00016KH (m) 2.5 10KHEXP (-) 0.2 0.33KLAIMAX (m2 m-2 mm-1) 0.002 0.008KNMIN (kg m-2) 0.0005 0.002KNUPT (kg m-2 d-1) 0.0005 0.002KTA (degC-1) 0.02 0.04KTB (degC) 10 30KTREE (m2 m-2) 0.35 0.65LUE0 (kg MJ-1) 0.001 0.003NLCONMAX (kg kg-1) 0.03 0.05NLCONMIN (kg kg-1) 0.01 0.03NLITT0 (kg m-2) 0.005 0.02NMIN0 (kg m-2) 0.0001 0.002NRCON (kg kg-1) 0.02 0.04NSOMF0 (kg m-2) 0.2 0.4NSOMS0 (kg m-2) 0.05 0.2NWCON (kg kg-1) 0.0005 0.002SLA (m2 kg-1) 5 15

Page 8: Bayesian calibration and comparison of process-based forest models

BASFOR: Prior pdf for parametersBASFOR: Prior pdf for parameters

0 0.005 0.010

2000

4000

CL00 0.005 0.01

0

2000

4000

CR00 0.005 0.01

0

2000

4000

CW0

Prior parameter marginal probability distributions (uniform)

0.4 0.6 0.80

2000

4000

BETA300 350 4000

2000

4000

CO200.25 0.3 0.350

2000

4000

FLMAX

0.5 0.6 0.70

2000

4000

FW0.4 0.6 0.80

2000

4000

GAMMA0 2 4

0

2000

4000

KCA0 0.5 1

0

2000

4000

KCAEXP0 0.005 0.01

0

2000

4000

KDL0 0.5 1

x 10-3

0

2000

4000

KDR

2 4 6

x 10-5

0

2000

4000

KDW3 4 5

0

2000

4000

KH0.2 0.3 0.40

2000

4000

KHEXP0 0.005 0.01

0

2000

4000

KLAIMAX0 1 2

x 10-3

0

2000

4000

KNMIN0 1 2

x 10-3

0

2000

4000

KNUPT

0.02 0.03 0.040

2000

4000

KTA10 20 30

0

2000

4000

KTB0.4 0.6 0.80

2000

4000

KTREE1 2 3

x 10-3

0

2000

4000

LUE00.01 0.02 0.030

2000

4000

NLCONMIN0.04 0.05 0.060

2000

4000

NLCONMAX

0.02 0.03 0.040

2000

4000

NRCON0 1 2

x 10-3

0

2000

4000

NWCON0 20 40

0

2000

4000

SLA0 0.5 1

0

2000

4000

CLITT06 8 10

0

2000

4000

CSOMF01 2 3

0

2000

4000

CSOMS0

0 0.01 0.020

2000

4000

NLITT00.2 0.3 0.40

2000

4000

NSOMF00 0.1 0.2

0

2000

4000

NSOMS00 1 2

x 10-3

0

2000

4000

NMIN00.4 0.6 0.80

2000

4000

FLITTSOMF0 0.05 0.1

0

2000

4000

FSOMFSOMS

0 2 4

x 10-3

0

2000

4000

KDLITT0 1 2

x 10-4

0

2000

4000

KDSOMF0 1 2

x 10-5

0

2000

4000

KDSOMS

Page 9: Bayesian calibration and comparison of process-based forest models

Example: Simulating growth of Norway Example: Simulating growth of Norway sprucespruce

Skogaby

Page 10: Bayesian calibration and comparison of process-based forest models

BASFOR: Prior predictive uncertaintyBASFOR: Prior predictive uncertainty

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5N

PP

y

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntre

e

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

in

Time0 5000 10000 15000

0

50

100

150

Min

y

Time

Height Biomass Prior uncertainty for Skogaby

Page 11: Bayesian calibration and comparison of process-based forest models

BASFOR: Predictive uncertaintyBASFOR: Predictive uncertainty

BASFOR12 output variables

High output uncertainty

39 parameters

High input uncertainty

Data: measurements of output variables

Calibration of parameters

Page 12: Bayesian calibration and comparison of process-based forest models

Bayes’ TheoremBayes’ Theorem

P(|D) = P() P(D| ) / P(D) P() P(D|f())

“Posterior distribution of parameters”

“Prior distribution of parameters”

“Likelihood” of data, given mismatch with

model output

f = the model, e.g. BASFOR

Page 13: Bayesian calibration and comparison of process-based forest models

Finding the posterior: MCMCFinding the posterior: MCMC

MCMC: walk through parameter-space →set of visited points approaches the posterior parameter distribution P(|D)

[e.g. using Metropolis-Hastings random walk]

Sample of 104 -105 parameter vectors from the posterior distribution P(|D) for the parameters

P(|D) P() P(D|f())

Page 14: Bayesian calibration and comparison of process-based forest models

MCMC: Metropolis-Hastings random walkMCMC: Metropolis-Hastings random walk

Metropolis (1953) algorithm1. Start anywhere in parameter-space: p1..39(i=0)

2. Randomly choose p(i+1) = p(i) + δ

3. IF: [ P(p(i+1)) P(D|f(p(i+1))) ] / [ P(p(i)) P(D|f(p(i))) ] > Random[0,1]THEN: accept p(i+1)ELSE: reject p(i+1)i=i+1

4. IF i < 104 GOTO 2

Sample of 104 -105 parameter vectors from the posterior distribution P(|D) for the parameters

Page 15: Bayesian calibration and comparison of process-based forest models

Forest data from Skogaby (Sweden)Forest data from Skogaby (Sweden)

Planted: 1966, (2300 trees ha-1)Weather data: 1987-1995Soil data: C, N, Mineralisation rateTree data: Biomass, NPP, Height, [N], LAI

Skogaby

Page 16: Bayesian calibration and comparison of process-based forest models

BASFOR: Prior predictive uncertaintyBASFOR: Prior predictive uncertainty

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5N

PP

y

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntre

e

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

in

Time0 5000 10000 15000

0

50

100

150

Min

y

Time

Height Biomass Prior pred. uncertainty

Data Skogaby

Data:Göran Ågren

Page 17: Bayesian calibration and comparison of process-based forest models

MCMC parameter trace plots: 10000 stepsMCMC parameter trace plots: 10000 steps

0 5000 10000

2

4x 10

-3

CL0

0 5000 10000

246

x 10-3

CR0

0 5000 100002468

x 10-3Parameter trace plots

CW0

0 5000 10000

0.450.5

0.55 BETA

0 5000 10000

330340350360370 CO20

0 5000 100000.260.280.3

0.320.34 FLMAX

0 5000 10000

0.55

0.6 FW

0 5000 10000

0.450.5

0.55 GAMMA

0 5000 10000468

101214

KCA

0 5000 100000.350.4

0.45 KCAEXP

0 5000 100000.8

11.21.41.61.8

x 10-3

KDL

0 5000 10000

2

4

x 10-4

KDR

0 5000 10000

68

101214

x 10-5

KDW

0 5000 10000

4

6 KH

0 5000 10000

0.220.240.260.280.3

0.32 KHEXP

0 5000 1000034567

x 10-3

KLAIMAX

0 5000 100000.60.811.21.41.61.8

x 10-3

KNMIN

0 5000 100000.60.811.21.41.61.8

x 10-3

KNUPT

0 5000 10000

0.0250.03

0.035 KTA

0 5000 10000152025 KTB

0 5000 10000

0.40.50.6 KTREE

0 5000 100001.5

22.5

x 10-3

LUE0

0 5000 10000

0.0150.02

0.025 NLCONMIN

0 5000 10000

0.0350.04

0.045 NLCONMAX

0 5000 10000

0.0250.03

0.035 NRCON

0 5000 100000.60.811.21.41.61.8

x 10-3

NWCON

0 5000 1000068

101214 SLA

0 5000 100000.2

0.4CLITT0

0 5000 10000

6

8CSOMF0

0 5000 10000

1.52

2.5 CSOMS0

0 5000 100000.0060.0080.010.0120.0140.0160.018 NLITT0

0 5000 10000

0.250.3

0.35 NSOMF0

0 5000 100000.060.080.10.120.140.160.18 NSOMS0

0 5000 10000

0.51

1.5

x 10-3

Iteration

NMIN0

0 5000 10000

0.50.60.7

Iteration

FLITTSOMF

0 5000 100000.020.040.060.08

Iteration

FSOMFSOMS

0 5000 100001

1.52

2.5x 10

-3

Iteration

KDLITT

0 5000 10000

5

10x 10

-5

Iteration

KDSOMF

0 5000 10000

5

10x 10

-6

Iteration

KDSOMS

Steps in MCMC

Param. value

Page 18: Bayesian calibration and comparison of process-based forest models

Posterior marginal distributions for Posterior marginal distributions for parametersparameters

0 2 4 6

x 10-3

0

1000

2000

CL00 0.005 0.01

0

1000

2000

CR00 0.005 0.01

0

2000

4000

CW0

Parameter probability distributions

0.4 0.60

1000

2000

BETA320 340 360 3800

1000

2000

CO200.25 0.3 0.350

1000

2000

FLMAX

0.5 0.6 0.70

1000

2000

FW0.4 0.60

2000

4000

GAMMA0 5 10 15

0

1000

2000

KCA0.3 0.4 0.50

1000

2000

KCAEXP0.5 1 1.5 2

x 10-3

0

5000

10000

KDL0 2 4 6

x 10-4

0

1000

2000

KDR

0 0.5 1 1.5

x 10-4

0

2000

4000

KDW2 4 6 8

0

1000

2000

KH0.2 0.3 0.40

1000

2000

KHEXP2 4 6 8

x 10-3

0

2000

4000

KLAIMAX0.5 1 1.5 2

x 10-3

0

1000

2000

KNMIN0.5 1 1.5 2

x 10-3

0

1000

2000

KNUPT

0.02 0.03 0.040

2000

4000

KTA10 20 30

0

2000

4000

KTB0 0.5 1

0

1000

2000

KTREE1 2 3

x 10-3

0

2000

4000

LUE00.01 0.02 0.030

2000

4000

NLCONMIN0.03 0.04 0.05 0.060

1000

2000

NLCONMAX

0.02 0.03 0.040

1000

2000

NRCON0.5 1 1.5 2

x 10-3

0

1000

2000

NWCON5 10 15

0

1000

2000

SLA0 0.5 1

0

1000

2000

CLITT04 6 8 10

0

1000

2000

CSOMF01 2 3

0

1000

2000

CSOMS0

0.005 0.01 0.015 0.020

1000

2000

NLITT00.2 0.3 0.40

1000

2000

NSOMF00 0.1 0.2

0

1000

2000

NSOMS00 1 2

x 10-3

0

1000

2000

NMIN00.4 0.6 0.80

1000

2000

FLITTSOMF0 0.05 0.1

0

1000

2000

FSOMFSOMS

0 1 2 3

x 10-3

0

1000

2000

KDLITT0 0.5 1 1.5

x 10-4

0

2000

4000

KDSOMF0 0.5 1 1.5

x 10-5

0

1000

2000

KDSOMS

Page 19: Bayesian calibration and comparison of process-based forest models

Parameter correlationsParameter correlations

CL0

CR

0

CW

0

BET

A

CO

20

FLM

AX

FW GA

MM

A

KC

A

KC

AEX

P

KD

L

KD

R

KD

W

KH

KH

EXP

KLA

IMA

X

KN

MIN

KN

UPT

KTA

KTB

KTR

EE

LUE0

NLC

ON

MIN

NLC

ON

MA

X

NR

CO

N

NW

CO

N

SLA

CLI

TT0

CSO

MF0

CSO

MS0

NLI

TT0

NSO

MF0

NSO

MS0

CL0 1.00 0.60 -0.67 -0.58 0.25 -0.16 0.51 0.46 0.26 0.12 0.64 0.59 0.38 -0.42 -0.07 0.71 -0.28 0.17 -0.64 -0.32 -0.58 0.23 0.55 0.52 0.12 0.50 -0.58 0.10 0.50 -0.66 -0.57 0.55 0.62

CR0 0.60 1.00 -0.49 -0.54 0.17 0.40 0.01 0.24 0.51 0.56 0.49 0.96 -0.19 -0.09 0.06 0.55 0.07 0.83 -0.60 -0.81 -0.21 -0.17 0.61 0.67 0.20 0.65 -0.54 -0.05 0.33 -0.29 0.05 0.46 0.61

CW0 -0.67 -0.49 1.00 0.91 0.24 0.45 -0.70 -0.82 -0.23 0.03 -0.74 -0.57 -0.74 0.77 -0.31 -0.98 0.76 -0.10 0.85 0.14 0.78 -0.61 -0.84 -0.91 0.51 -0.81 0.77 -0.30 -0.38 0.84 0.33 -0.88 -0.90

BETA -0.58 -0.54 0.91 1.00 0.30 0.42 -0.78 -0.79 -0.46 -0.08 -0.79 -0.61 -0.66 0.81 0.04 -0.95 0.60 -0.32 0.94 0.17 0.61 -0.59 -0.98 -0.95 0.29 -0.94 0.84 0.01 -0.46 0.83 -0.01 -0.94 -0.96

CO20 0.25 0.17 0.24 0.30 1.00 0.05 -0.26 -0.41 -0.33 -0.28 0.11 0.09 -0.35 0.67 -0.02 -0.21 0.62 0.00 0.37 0.06 -0.22 -0.76 -0.33 -0.37 0.15 -0.19 0.57 -0.33 -0.34 -0.02 -0.28 -0.54 -0.36

FLMAX -0.16 0.40 0.45 0.42 0.05 1.00 -0.69 -0.62 0.43 0.82 -0.56 0.25 -0.87 0.54 -0.05 -0.40 0.59 0.64 0.19 -0.81 0.74 -0.49 -0.31 -0.18 0.61 -0.33 0.06 -0.14 0.21 0.75 0.36 -0.35 -0.21

FW 0.51 0.01 -0.70 -0.78 -0.26 -0.69 1.00 0.61 0.32 -0.18 0.56 0.05 0.86 -0.83 -0.28 0.77 -0.60 -0.16 -0.75 0.26 -0.55 0.76 0.68 0.58 -0.25 0.58 -0.63 -0.17 0.54 -0.77 -0.13 0.72 0.72

GAMMA 0.46 0.24 -0.82 -0.79 -0.41 -0.62 0.61 1.00 -0.05 -0.28 0.82 0.45 0.78 -0.82 0.19 0.75 -0.81 -0.06 -0.64 0.14 -0.72 0.63 0.80 0.73 -0.46 0.78 -0.65 0.49 0.06 -0.85 -0.31 0.87 0.67

KCA 0.26 0.51 -0.23 -0.46 -0.33 0.43 0.32 -0.05 1.00 0.84 -0.01 0.38 -0.10 -0.34 -0.49 0.39 0.07 0.72 -0.68 -0.69 0.35 0.30 0.49 0.51 0.47 0.37 -0.69 -0.49 0.86 0.05 0.54 0.45 0.62

KCAEXP 0.12 0.56 0.03 -0.08 -0.28 0.82 -0.18 -0.28 0.84 1.00 -0.30 0.41 -0.48 0.00 -0.24 0.07 0.24 0.76 -0.36 -0.91 0.59 0.01 0.16 0.27 0.59 0.06 -0.48 -0.22 0.68 0.42 0.44 0.16 0.32

KDL 0.64 0.49 -0.74 -0.79 0.11 -0.56 0.56 0.82 -0.01 -0.30 1.00 0.64 0.56 -0.53 -0.03 0.73 -0.39 0.17 -0.61 0.07 -0.81 0.21 0.81 0.67 -0.25 0.88 -0.48 0.10 -0.02 -0.93 -0.25 0.70 0.63

KDR 0.59 0.96 -0.57 -0.61 0.09 0.25 0.05 0.45 0.38 0.41 0.64 1.00 -0.06 -0.20 0.12 0.59 -0.07 0.75 -0.61 -0.69 -0.34 -0.10 0.70 0.72 0.09 0.75 -0.57 0.10 0.19 -0.42 -0.01 0.57 0.63

KDW 0.38 -0.19 -0.74 -0.66 -0.35 -0.87 0.86 0.78 -0.10 -0.48 0.56 -0.06 1.00 -0.84 0.12 0.70 -0.86 -0.49 -0.54 0.49 -0.73 0.81 0.54 0.50 -0.60 0.47 -0.48 0.29 0.21 -0.81 -0.41 0.67 0.56

KH -0.42 -0.09 0.77 0.81 0.67 0.54 -0.83 -0.82 -0.34 0.00 -0.53 -0.20 -0.84 1.00 0.07 -0.78 0.85 0.08 0.80 -0.07 0.44 -0.93 -0.77 -0.73 0.30 -0.64 0.84 -0.25 -0.52 0.68 0.12 -0.92 -0.79

KHEXP -0.07 0.06 -0.31 0.04 -0.02 -0.05 -0.28 0.19 -0.49 -0.24 -0.03 0.12 0.12 0.07 1.00 0.14 -0.43 -0.26 0.14 0.00 -0.40 -0.01 -0.12 0.15 -0.76 -0.05 0.12 0.72 -0.37 -0.05 -0.47 -0.02 0.00

KLAIMAX 0.71 0.55 -0.98 -0.95 -0.21 -0.40 0.77 0.75 0.39 0.07 0.73 0.59 0.70 -0.78 0.14 1.00 -0.67 0.21 -0.93 -0.21 -0.70 0.60 0.88 0.93 -0.38 0.83 -0.82 0.11 0.51 -0.83 -0.22 0.89 0.96

KNMIN -0.28 0.07 0.76 0.60 0.62 0.59 -0.60 -0.81 0.07 0.24 -0.39 -0.07 -0.86 0.85 -0.43 -0.67 1.00 0.38 0.53 -0.22 0.58 -0.86 -0.52 -0.59 0.66 -0.42 0.60 -0.63 -0.22 0.61 0.42 -0.73 -0.58

KNUPT 0.17 0.83 -0.10 -0.32 0.00 0.64 -0.16 -0.06 0.72 0.76 0.17 0.75 -0.49 0.08 -0.26 0.21 0.38 1.00 -0.43 -0.83 0.28 -0.27 0.45 0.46 0.47 0.48 -0.41 -0.38 0.33 0.10 0.58 0.26 0.41

KTA -0.64 -0.60 0.85 0.94 0.37 0.19 -0.75 -0.64 -0.68 -0.36 -0.61 -0.61 -0.54 0.80 0.14 -0.93 0.53 -0.43 1.00 0.39 0.40 -0.64 -0.92 -0.93 0.08 -0.83 0.94 0.07 -0.71 0.66 -0.05 -0.92 -0.99

KTB -0.32 -0.81 0.14 0.17 0.06 -0.81 0.26 0.14 -0.69 -0.91 0.07 -0.69 0.49 -0.07 0.00 -0.21 -0.22 -0.83 0.39 1.00 -0.33 0.16 -0.25 -0.39 -0.46 -0.21 0.47 0.05 -0.52 -0.25 -0.22 -0.21 -0.38

KTREE -0.58 -0.21 0.78 0.61 -0.22 0.74 -0.55 -0.72 0.35 0.59 -0.81 -0.34 -0.73 0.44 -0.40 -0.70 0.58 0.28 0.40 -0.33 1.00 -0.26 -0.52 -0.51 0.66 -0.58 0.24 -0.32 0.15 0.91 0.60 -0.50 -0.48

LUE0 0.23 -0.17 -0.61 -0.59 -0.76 -0.49 0.76 0.63 0.30 0.01 0.21 -0.10 0.81 -0.93 -0.01 0.60 -0.86 -0.27 -0.64 0.16 -0.26 1.00 0.52 0.53 -0.33 0.35 -0.72 0.28 0.56 -0.45 -0.13 0.73 0.62

NLCONMIN 0.55 0.61 -0.84 -0.98 -0.33 -0.31 0.68 0.80 0.49 0.16 0.81 0.70 0.54 -0.77 -0.12 0.88 -0.52 0.45 -0.92 -0.25 -0.52 0.52 1.00 0.94 -0.16 0.97 -0.85 0.00 0.41 -0.77 0.10 0.95 0.92

NLCONMAX 0.52 0.67 -0.91 -0.95 -0.37 -0.18 0.58 0.73 0.51 0.27 0.67 0.72 0.50 -0.73 0.15 0.93 -0.59 0.46 -0.93 -0.39 -0.51 0.53 0.94 1.00 -0.32 0.91 -0.87 0.11 0.46 -0.67 0.05 0.92 0.96

NRCON 0.12 0.20 0.51 0.29 0.15 0.61 -0.25 -0.46 0.47 0.59 -0.25 0.09 -0.60 0.30 -0.76 -0.38 0.66 0.47 0.08 -0.46 0.66 -0.33 -0.16 -0.32 1.00 -0.22 -0.01 -0.46 0.34 0.44 0.31 -0.23 -0.21

NWCON 0.50 0.65 -0.81 -0.94 -0.19 -0.33 0.58 0.78 0.37 0.06 0.88 0.75 0.47 -0.64 -0.05 0.83 -0.42 0.48 -0.83 -0.21 -0.58 0.35 0.97 0.91 -0.22 1.00 -0.72 -0.03 0.23 -0.79 0.12 0.86 0.85

SLA -0.58 -0.54 0.77 0.84 0.57 0.06 -0.63 -0.65 -0.69 -0.48 -0.48 -0.57 -0.48 0.84 0.12 -0.82 0.60 -0.41 0.94 0.47 0.24 -0.72 -0.85 -0.87 -0.01 -0.72 1.00 -0.13 -0.75 0.51 -0.03 -0.93 -0.92

CLITT0 0.10 -0.05 -0.30 0.01 -0.33 -0.14 -0.17 0.49 -0.49 -0.22 0.10 0.10 0.29 -0.25 0.72 0.11 -0.63 -0.38 0.07 0.05 -0.32 0.28 0.00 0.11 -0.46 -0.03 -0.13 1.00 -0.25 -0.15 -0.64 0.22 0.00

CSOMF0 0.50 0.33 -0.38 -0.46 -0.34 0.21 0.54 0.06 0.86 0.68 -0.02 0.19 0.21 -0.52 -0.37 0.51 -0.22 0.33 -0.71 -0.52 0.15 0.56 0.41 0.46 0.34 0.23 -0.75 -0.25 1.00 -0.10 0.09 0.50 0.65

CSOMS0 -0.66 -0.29 0.84 0.83 -0.02 0.75 -0.77 -0.85 0.05 0.42 -0.93 -0.42 -0.81 0.68 -0.05 -0.83 0.61 0.10 0.66 -0.25 0.91 -0.45 -0.77 -0.67 0.44 -0.79 0.51 -0.15 -0.10 1.00 0.39 -0.74 -0.68

NLITT0 -0.57 0.05 0.33 -0.01 -0.28 0.36 -0.13 -0.31 0.54 0.44 -0.25 -0.01 -0.41 0.12 -0.47 -0.22 0.42 0.58 -0.05 -0.22 0.60 -0.13 0.10 0.05 0.31 0.12 -0.03 -0.64 0.09 0.39 1.00 -0.05 0.01

NSOMF0 0.55 0.46 -0.88 -0.94 -0.54 -0.35 0.72 0.87 0.45 0.16 0.70 0.57 0.67 -0.92 -0.02 0.89 -0.73 0.26 -0.92 -0.21 -0.50 0.73 0.95 0.92 -0.23 0.86 -0.93 0.22 0.50 -0.74 -0.05 1.00 0.92

NSOMS0 0.62 0.61 -0.90 -0.96 -0.36 -0.21 0.72 0.67 0.62 0.32 0.63 0.63 0.56 -0.79 0.00 0.96 -0.58 0.41 -0.99 -0.38 -0.48 0.62 0.92 0.96 -0.21 0.85 -0.92 0.00 0.65 -0.68 0.01 0.92 1.00

NMIN0 -0.16 -0.31 -0.47 -0.41 -0.64 -0.43 0.56 0.33 0.16 -0.09 -0.06 -0.30 0.66 -0.63 0.29 0.45 -0.72 -0.33 -0.40 0.25 -0.21 0.79 0.27 0.41 -0.66 0.16 -0.39 0.14 0.33 -0.23 0.06 0.42 0.45

FLITTSOMF 0.48 0.60 -0.01 0.08 0.61 0.31 -0.43 0.03 -0.22 0.05 0.36 0.63 -0.39 0.40 0.15 -0.02 0.34 0.33 0.12 -0.39 -0.22 -0.62 0.01 -0.02 0.29 0.13 0.12 0.23 -0.28 -0.11 -0.40 -0.10 -0.10

FSOMFSOMS -0.66 -0.28 0.86 0.83 0.08 0.55 -0.89 -0.56 -0.33 0.08 -0.58 -0.27 -0.78 0.72 -0.04 -0.91 0.61 0.04 0.81 -0.03 0.69 -0.63 -0.69 -0.72 0.41 -0.62 0.65 0.07 -0.55 0.78 0.27 -0.70 -0.83

KDLITT 0.42 0.28 -0.93 -0.89 -0.55 -0.51 0.73 0.87 0.25 -0.04 0.62 0.39 0.81 -0.91 0.26 0.90 -0.88 0.02 -0.83 -0.01 -0.63 0.80 0.84 0.88 -0.56 0.77 -0.80 0.34 0.37 -0.75 -0.16 0.92 0.87

KDSOMF 0.15 -0.43 -0.39 -0.31 -0.08 -0.70 0.75 0.19 -0.03 -0.42 0.09 -0.46 0.75 -0.46 0.03 0.41 -0.49 -0.59 -0.27 0.55 -0.45 0.60 0.12 0.14 -0.51 0.04 -0.13 -0.14 0.29 -0.43 -0.25 0.20 0.29

KDSOMS -0.55 -0.18 0.83 0.81 0.13 0.80 -0.75 -0.92 0.12 0.47 -0.89 -0.35 -0.86 0.75 -0.12 -0.79 0.72 0.18 0.62 -0.32 0.89 -0.54 -0.76 -0.66 0.52 -0.77 0.51 -0.28 -0.03 0.98 0.39 -0.77 -0.65

39 parameters39

par

amet

ers

Page 20: Bayesian calibration and comparison of process-based forest models

Bayesian calibration: overviewBayesian calibration: overview

0 0.005 0.010

2000

4000

CL00 0.005 0.01

0

2000

4000

CR00 0.005 0.01

0

2000

4000

CW0

Prior parameter marginal probability distributions (uniform)

0.4 0.6 0.80

2000

4000

BETA300 350 4000

2000

4000

CO200.25 0.3 0.350

2000

4000

FLMAX

0.5 0.6 0.70

2000

4000

FW0.4 0.6 0.80

2000

4000

GAMMA0 2 4

0

2000

4000

KCA0 0.5 1

0

2000

4000

KCAEXP0 0.005 0.01

0

2000

4000

KDL0 0.5 1

x 10-3

0

2000

4000

KDR

2 4 6

x 10-5

0

2000

4000

KDW3 4 5

0

2000

4000

KH0.2 0.3 0.40

2000

4000

KHEXP0 0.005 0.01

0

2000

4000

KLAIMAX0 1 2

x 10-3

0

2000

4000

KNMIN0 1 2

x 10-3

0

2000

4000

KNUPT

0.02 0.03 0.040

2000

4000

KTA10 20 30

0

2000

4000

KTB0.4 0.6 0.80

2000

4000

KTREE1 2 3

x 10-3

0

2000

4000

LUE00.01 0.02 0.030

2000

4000

NLCONMIN0.04 0.05 0.060

2000

4000

NLCONMAX

0.02 0.03 0.040

2000

4000

NRCON0 1 2

x 10-3

0

2000

4000

NWCON0 20 40

0

2000

4000

SLA0 0.5 1

0

2000

4000

CLITT06 8 10

0

2000

4000

CSOMF01 2 3

0

2000

4000

CSOMS0

0 0.01 0.020

2000

4000

NLITT00.2 0.3 0.40

2000

4000

NSOMF00 0.1 0.2

0

2000

4000

NSOMS00 1 2

x 10-3

0

2000

4000

NMIN00.4 0.6 0.80

2000

4000

FLITTSOMF0 0.05 0.1

0

2000

4000

FSOMFSOMS

0 2 4

x 10-3

0

2000

4000

KDLITT0 1 2

x 10-4

0

2000

4000

KDSOMF0 1 2

x 10-5

0

2000

4000

KDSOMS

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5

NP

Py

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntr

ee

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

in

Time0 5000 10000 15000

0

50

100

150

Min

y

Time

Height Biomass

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5

NP

Py

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntr

ee

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

in

Time0 5000 10000 15000

0

50

100

150

Min

y

Time

Height BiomassHeight Biomass

0 2 4 6

x 10-3

0

1000

2000

CL00 0.005 0.01

0

1000

2000

CR00 0.005 0.01

0

2000

4000

CW0

Parameter probability distributions

0.4 0.60

1000

2000

BETA320 340 360 3800

1000

2000

CO200.25 0.3 0.350

1000

2000

FLMAX

0.5 0.6 0.70

1000

2000

FW0.4 0.60

2000

4000

GAMMA0 5 10 15

0

1000

2000

KCA0.3 0.4 0.50

1000

2000

KCAEXP0.5 1 1.5 2

x 10-3

0

5000

10000

KDL0 2 4 6

x 10-4

0

1000

2000

KDR

0 0.5 1 1.5

x 10-4

0

2000

4000

KDW2 4 6 8

0

1000

2000

KH0.2 0.3 0.40

1000

2000

KHEXP2 4 6 8

x 10-3

0

2000

4000

KLAIMAX0.5 1 1.5 2

x 10-3

0

1000

2000

KNMIN0.5 1 1.5 2

x 10-3

0

1000

2000

KNUPT

0.02 0.03 0.040

2000

4000

KTA10 20 30

0

2000

4000

KTB0 0.5 1

0

1000

2000

KTREE1 2 3

x 10-3

0

2000

4000

LUE00.01 0.02 0.030

2000

4000

NLCONMIN0.03 0.04 0.05 0.060

1000

2000

NLCONMAX

0.02 0.03 0.040

1000

2000

NRCON0.5 1 1.5 2

x 10-3

0

1000

2000

NWCON5 10 15

0

1000

2000

SLA0 0.5 1

0

1000

2000

CLITT04 6 8 10

0

1000

2000

CSOMF01 2 3

0

1000

2000

CSOMS0

0.005 0.01 0.015 0.020

1000

2000

NLITT00.2 0.3 0.40

1000

2000

NSOMF00 0.1 0.2

0

1000

2000

NSOMS00 1 2

x 10-3

0

1000

2000

NMIN00.4 0.6 0.80

1000

2000

FLITTSOMF0 0.05 0.1

0

1000

2000

FSOMFSOMS

0 1 2 3

x 10-3

0

1000

2000

KDLITT0 0.5 1 1.5

x 10-4

0

2000

4000

KDSOMF0 0.5 1 1.5

x 10-5

0

1000

2000

KDSOMS

DataBayesiancalibration

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5

NP

Py

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntre

e

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

inTime

0 5000 10000 150000

50

100

150

Min

y

Time

Height Biomass

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5

NP

Py

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntre

e

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

inTime

0 5000 10000 150000

50

100

150

Min

y

Time

Height BiomassHeight Biomass

Page 21: Bayesian calibration and comparison of process-based forest models

Prior & posterior predictive uncertaintyPrior & posterior predictive uncertainty

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5N

PP

y

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntre

e

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

in

Time0 5000 10000 15000

0

50

100

150

Min

y

Time

Height Biomass Prior pred. uncertainty

Posterior uncertainty (using data Skogaby)

Page 22: Bayesian calibration and comparison of process-based forest models

Partial corr. coefficients (PCC) parameters – Partial corr. coefficients (PCC) parameters – outputsoutputs

Tree

Den

s

Cw

Cl

Cr

Clit

t

Cso

mf

Cso

ms

Nl

Nlit

t

Nso

mf

Nso

ms

Nm

in

Rai

nCum

NP

Py

Nim

eral

isat

iony

H CA

LAI

Ctre

e

Cso

il

Ntre

e

Nso

il

NlC

l

Rso

il

CL0 0.00 -0.04 0.05 -0.06 -0.18 -0.04 -0.02 0.05 -0.16 0.21 -0.21 -0.09 0.00 -0.08 -0.03 -0.06 0.00 0.02 -0.05 -0.11 -0.05 0.06 -0.05 -0.03

CR0 0.00 0.02 -0.04 -0.05 -0.02 0.01 -0.05 -0.01 0.00 0.00 0.10 0.00 0.01 0.01 -0.01 0.00 0.00 0.02 0.00 0.00 -0.04 0.06 0.01 0.02

CW0 0.01 -0.06 0.01 0.01 0.03 0.02 0.13 -0.01 0.00 -0.02 0.01 0.04 0.00 0.00 0.01 0.00 0.00 -0.04 -0.04 0.05 0.02 -0.02 -0.02 0.00

BETA 0.00 0.05 0.08 0.02 -0.03 0.07 0.00 0.06 -0.02 -0.06 0.06 0.03 0.00 0.09 0.06 0.00 0.00 -0.01 0.06 0.05 0.05 -0.05 -0.01 0.09

CO20 0.00 -0.01 -0.05 -0.03 -0.01 -0.05 0.02 0.05 0.02 -0.02 0.02 0.32 0.00 -0.06 0.02 -0.03 0.00 -0.01 -0.02 -0.05 0.00 0.00 0.32 -0.05

FLMAX 0.00 0.09 0.66 -0.43 0.22 0.15 0.01 0.65 0.31 0.00 0.00 0.04 0.00 0.31 0.32 0.01 0.00 0.74 0.04 0.22 -0.17 0.17 -0.13 0.39

FW 0.00 0.94 0.39 -0.51 0.34 0.41 0.02 0.52 0.25 -0.08 -0.05 0.58 0.00 0.84 0.17 0.66 0.00 0.47 0.90 0.49 -0.02 0.01 0.55 0.63

GAMMA 0.00 -0.01 -0.18 -0.08 0.02 -0.18 -0.02 0.14 0.09 -0.06 0.03 0.75 0.00 -0.19 0.02 -0.01 0.00 -0.18 -0.05 -0.17 -0.02 0.00 0.77 -0.16

KCA -0.01 0.02 0.03 0.03 0.09 0.09 -0.02 0.05 0.07 -0.08 0.03 0.03 0.01 0.05 0.03 0.06 0.00 0.02 0.03 0.11 0.05 -0.05 0.02 0.02

KCAEXP 0.00 0.00 0.00 -0.01 0.01 0.02 0.02 0.02 0.02 -0.06 0.10 0.02 0.00 -0.01 -0.02 0.05 0.00 -0.04 -0.01 0.02 0.00 0.00 0.01 -0.01

KDL 0.01 0.19 -0.81 -0.55 0.20 0.33 0.11 -0.80 0.36 0.45 0.02 0.61 0.00 0.40 0.50 0.08 0.00 -0.88 -0.17 0.39 -0.67 0.67 0.23 0.52

KDR 0.00 0.33 0.08 -0.94 0.01 0.63 0.13 0.10 -0.02 0.86 0.00 0.45 0.00 0.41 0.45 0.09 0.00 0.17 -0.39 0.63 -0.91 0.91 0.14 0.42

KDW 0.00 -0.92 0.12 0.09 0.43 0.78 0.24 0.11 0.05 0.09 0.07 0.19 0.00 0.16 0.15 -0.63 0.00 0.03 -0.88 0.81 -0.19 0.18 0.05 0.84

KH 0.00 -0.02 -0.09 -0.04 -0.08 -0.02 0.01 -0.10 -0.10 0.13 -0.02 -0.04 0.00 -0.07 -0.05 0.99 0.00 -0.02 -0.04 -0.05 -0.11 0.11 -0.05 -0.09

KHEXP 0.00 -0.02 -0.07 -0.05 0.01 -0.08 -0.06 -0.05 0.01 0.03 0.06 -0.03 0.00 -0.07 -0.03 0.97 0.00 0.00 -0.04 -0.09 -0.09 0.09 -0.03 -0.05

KLAIMAX -0.01 0.13 0.80 -0.57 0.31 0.20 0.15 0.77 0.40 -0.08 0.11 -0.02 -0.01 0.42 0.40 0.08 0.00 0.85 0.07 0.31 -0.20 0.20 -0.43 0.52

KNMIN -0.01 -0.07 -0.07 0.03 0.06 0.01 0.04 -0.08 0.05 -0.04 0.01 0.09 0.00 -0.05 -0.06 0.02 0.00 -0.01 -0.06 0.03 0.02 -0.02 -0.10 -0.03

KNUPT 0.00 0.02 0.04 0.02 0.02 -0.04 -0.03 0.04 0.03 -0.02 -0.02 -0.13 0.00 0.01 0.05 0.06 0.00 -0.06 0.02 -0.03 0.02 -0.02 0.07 0.01

KTA 0.00 0.08 0.18 0.16 0.03 0.23 0.03 -0.15 -0.02 -0.08 0.06 -0.74 0.00 0.26 0.05 0.03 0.00 0.26 0.13 0.23 0.09 -0.08 -0.77 0.23

KTB 0.00 0.03 0.21 0.13 0.06 0.23 -0.03 -0.08 -0.01 -0.03 -0.05 -0.77 0.00 0.22 0.01 0.03 0.00 0.18 0.08 0.23 0.10 -0.08 -0.72 0.18

KTREE 0.00 0.05 0.13 0.05 0.00 0.15 0.00 -0.09 -0.03 -0.01 0.04 -0.52 0.00 0.13 0.03 0.02 0.00 0.16 0.07 0.14 0.02 -0.01 -0.60 0.13

LUE0 0.00 0.09 0.24 0.15 0.04 0.20 -0.04 -0.11 -0.05 -0.03 0.00 -0.79 0.00 0.27 0.02 0.05 0.00 0.29 0.14 0.20 0.09 -0.07 -0.80 0.20

NLCONMIN 0.00 0.01 -0.66 -0.38 -0.14 -0.54 -0.13 0.57 0.19 0.00 0.04 0.32 0.00 -0.49 0.20 -0.02 0.00 -0.73 -0.19 -0.56 -0.14 0.14 0.99 -0.48

NLCONMAX 0.00 -0.75 -0.27 -0.22 -0.19 -0.53 -0.08 0.56 0.14 0.05 -0.03 -0.23 0.00 -0.63 0.29 -0.34 0.00 -0.32 -0.71 -0.56 -0.12 0.13 0.96 -0.49

NRCON 0.00 -0.91 -0.54 -0.89 -0.29 -0.89 -0.25 -0.69 -0.26 -0.14 0.03 -0.72 0.00 -0.93 -0.12 -0.59 0.00 -0.64 -0.92 -0.89 0.33 -0.30 -0.71 -0.82

NWCON 0.01 -0.46 -0.14 -0.32 -0.15 -0.40 -0.13 -0.17 -0.01 -0.42 -0.09 -0.29 0.00 -0.51 -0.05 -0.20 0.00 -0.17 -0.46 -0.44 0.56 -0.55 -0.19 -0.36

SLA 0.00 -0.08 -0.89 0.77 -0.34 -0.04 0.02 -0.90 -0.52 -0.15 0.13 -0.68 0.00 -0.40 -0.54 0.02 0.00 0.95 0.04 -0.16 0.43 -0.42 -0.46 -0.54

CLITT0 0.01 0.01 -0.06 -0.02 -0.02 0.19 0.04 -0.09 -0.07 -0.01 0.10 -0.01 0.00 -0.02 -0.03 -0.04 0.00 0.03 0.00 0.19 -0.01 0.01 -0.03 0.06

CSOMF0 0.00 -0.14 -0.07 -0.04 0.01 0.95 0.80 -0.07 0.00 0.04 0.05 -0.11 0.00 -0.14 -0.13 -0.02 0.00 -0.06 -0.13 0.95 -0.08 0.08 -0.04 0.77

CSOMS0 0.00 -0.07 -0.06 -0.02 -0.03 -0.01 1.00 -0.03 -0.01 0.05 0.00 -0.01 0.00 -0.02 -0.02 -0.04 0.00 0.03 -0.07 0.91 -0.06 0.06 0.01 0.16

NLITT0 0.00 0.34 0.02 0.23 0.02 0.39 0.04 0.09 0.02 0.81 0.07 0.23 0.00 0.23 0.28 0.24 0.00 0.02 0.34 0.39 0.26 0.88 0.12 0.21

NSOMF0 0.00 0.84 0.39 0.78 0.25 0.83 0.19 0.55 0.25 1.00 0.58 0.86 0.00 0.85 0.90 0.39 0.00 0.48 0.86 0.84 0.83 1.00 0.57 0.68

NSOMS0 0.00 0.45 0.19 0.36 0.11 0.39 0.03 0.25 0.11 0.69 1.00 0.48 0.00 0.50 0.58 0.14 0.00 0.18 0.47 0.40 0.43 1.00 0.17 0.25

NMIN0 0.00 0.14 -0.01 0.04 0.08 0.10 0.01 0.00 0.11 -0.03 0.17 0.05 0.00 0.10 0.09 0.02 0.00 0.03 0.12 0.13 0.05 0.14 0.04 0.11

FLITTSOMF 0.00 -0.74 -0.30 -0.65 -0.19 0.80 0.18 -0.39 -0.19 0.64 0.04 -0.74 0.00 -0.75 -0.81 -0.26 0.00 -0.35 -0.75 0.78 -0.71 0.72 -0.43 -0.92

FSOMFSOMS 0.00 -0.33 -0.07 -0.28 -0.05 -0.29 0.94 -0.15 -0.03 -0.60 0.90 -0.42 0.00 -0.40 -0.47 -0.08 0.00 -0.14 -0.35 0.04 -0.32 0.32 -0.19 -0.45

KDLITT 0.01 0.17 -0.02 0.16 -0.90 0.49 0.20 -0.01 -0.90 0.58 0.12 0.10 0.01 0.02 0.06 0.04 0.00 -0.02 0.18 -0.16 0.13 -0.13 0.01 0.05

KDSOMF 0.01 0.88 0.48 0.83 0.31 -0.34 0.77 0.63 0.30 -0.89 0.66 0.90 0.00 0.90 0.93 0.49 0.00 0.56 0.89 -0.08 0.87 -0.87 0.65 0.94

KDSOMS 0.00 0.44 0.16 0.40 0.08 0.40 -0.82 0.26 0.08 0.66 -0.94 0.53 0.00 0.50 0.57 0.06 0.00 0.22 0.47 0.26 0.47 -0.47 0.23 0.38

12 output variables

39 p

aram

eter

s

Page 23: Bayesian calibration and comparison of process-based forest models

2. What kind of measurements 2. What kind of measurements would have reduced uncertainty would have reduced uncertainty

the most? the most?

Page 24: Bayesian calibration and comparison of process-based forest models

Prior predictive uncertainty & height-dataPrior predictive uncertainty & height-data

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5N

PP

y

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntre

e

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

in

Time0 5000 10000 15000

0

50

100

150

Min

y

Time

Height Biomass Prior pred. uncertainty

Height data Skogaby

Page 25: Bayesian calibration and comparison of process-based forest models

Prior & posterior uncertainty: use of height dataPrior & posterior uncertainty: use of height data

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5N

PP

y

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntre

e

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

in

Time0 5000 10000 15000

0

50

100

150

Min

y

Time

Height Biomass Prior pred. uncertainty

Posterior uncertainty (using height data)

Height data Skogaby

Page 26: Bayesian calibration and comparison of process-based forest models

Prior & posterior uncertainty: use of height dataPrior & posterior uncertainty: use of height data

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5N

PP

y

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntre

e

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

in

Time0 5000 10000 15000

0

50

100

150

Min

y

Time

Height Biomass Prior pred. uncertainty

Posterior uncertainty (using height data)

Height data (hypothet.)

Page 27: Bayesian calibration and comparison of process-based forest models

Prior & posterior uncertainty: use of height dataPrior & posterior uncertainty: use of height data

0 5000 10000 150000

5

10

15

20

h

0 5000 10000 150000

5

10

Cw

BASFOR: Predictive uncertainty

0 5000 10000 150000

0.5

1

1.5

Cl

0 5000 10000 150000

1

2

3

Cr

0 5000 10000 15000-0.5

0

0.5

1

1.5N

PP

y

0 5000 10000 150000

5

10

LAI

0 5000 10000 150000

0.05

0.1

0.15

Ntr

ee

0 5000 10000 150000

0.02

0.04

0.06

NC

l

0 5000 10000 150000

5

10

Cso

il

0 5000 10000 150000

0.2

0.4

0.6

Nso

il

Time0 5000 10000 15000

0

0.05

0.1

0.15

0.2

Nm

in

Time0 5000 10000 15000

0

50

100

150

Min

y

Time

Height Biomass Prior pred. uncertainty

Posterior uncertainty (using height data)Posterior uncertainty (using precision height data)

Page 28: Bayesian calibration and comparison of process-based forest models

Summary of procedureSummary of procedureData D ± σModel fPrior P()

Calibrated parameters, with covariances

Uncertainty of model output

Sensitivity analysis of model parameters

“Error function” e.g. N(0, σ)

MCMC

Samples of (104 – 105)

Samples of f()(104 – 105)

P(D|f())Posterior P(|D) PCC

Page 29: Bayesian calibration and comparison of process-based forest models

3. Bayesian comparison of forest 3. Bayesian comparison of forest modelsmodels

Page 30: Bayesian calibration and comparison of process-based forest models

Uncertainty regarding model structureUncertainty regarding model structure

Soil

Trees

H2OC

Atmosphere

H2O

H2OC

Nutr.

Subsoil (or run-off)

H2OC

Nutr.

Nutr.

Nutr.

Soil C

NPP

HeightEnvironmental scenarios

Initial values

Parameters

Model

Imperfect understanding

Page 31: Bayesian calibration and comparison of process-based forest models

Bayesian comparison of two modelsBayesian comparison of two models

Bayes Theorem for model probab.:P(M|D) = P(M) P(D|M) / P(D)

The “Integrated likelihood” P(D|Mi) can be approximated from the MCMC sample of

outputs for model Mi (*)

Soil

Trees

H2OC

Atmosphere

H2O

H2OC

Nutr.

Subsoil (or run-off)

H2OC

Nutr.

Nutr.

Nutr.

Model 1

Soil

Trees

H2OC

Atmosphere

H2O

H2OC

Nutr.

Subsoil (or run-off)

H2OC

Nutr.

Nutr.

Nutr.

Model 2

P(M2|D) / P(M1|D) = P(D|M2) / P(D|M1)

The “Bayes Factor” P(D|M2) / P(D|M1) quantifies how the data D change the

odds of M2 over M1

P(M1) = P(M2) = ½

(*)

MCMCMCMC

MCMC

MCMCi

MCMCi

MDP

n

DPPP

DPDPP

P

w

DPwdDPPMDP

)|(1

)|()()(

)|()|()(

)()|()|()()|(

)(

harmonic mean of likelihoods in MCMC-sample (Kass & Raftery, 1995)

Page 32: Bayesian calibration and comparison of process-based forest models

Bayes Factor for two big forest modelsBayes Factor for two big forest models

MCMC 5000 steps

MCMC 5000 steps

0 2 4

x 10-3

0200400

CL02 4 6

x 10-3

0100200

CR00 0.005 0.01

0200400

CW0

Parameter marginal probability distributions (truncated normal)

0.4 0.6 0.80

100200

BETA300 350 4000

100200

CO200.25 0.3 0.350

100200

FLMAX

0.5 0.6 0.70

100200

FW0.4 0.6 0.80

100200

GAMMA0 2 4

0100200

KCA0 0.5 1

0100200

KCAEXP0 0.5 1

x 10-3

0100200

KDL0 0.5 1

x 10-3

0100200

KDR

2 4 6

x 10-5

0100200

KDW3 4 5

0100200

KH0.2 0.3 0.40

100200

KHEXP4 6 8

x 10-3

0100200

KLAIMAX0 1 2

x 10-3

0100200

KNMIN0 1 2

x 10-3

0100200

KNUPT

0.02 0.03 0.040

100200

KTA10 20 30

0100200

KTB0.4 0.6 0.80

100200

KTREE2 2.5 3

x 10-3

0100200

LUE00.01 0.015 0.020

100200

NLCONMIN0.04 0.05 0.060

100200

NLCONMAX

0.02 0.03 0.040

100200

NRCON0 1 2

x 10-3

0100200

NWCON0 20 40

0100200

SLA0 0.5 1

0100200

CLITT06 8 10

0100200

CSOMF01 2 3

0100200

CSOMS0

0 0.01 0.020

100200

NLITT00.2 0.3 0.40

100200

NSOMF00 0.1 0.2

0100200

NSOMS00 1 2

x 10-3

0200400

NMIN00.4 0.6 0.80

100200

FLITTSOMF0 0.05 0.1

0200400

FSOMFSOMS

0 2 4

x 10-3

0200400

KDLITT0 0.5 1

x 10-4

0100200

KDSOMF0 1 2

x 10-5

0100200

KDSOMS

0 1 2

x 10-3

0100200

CB0T0 5

x 10-3

0100200

CL0T0 2 4

x 10-3

0100200

CR0T

Parameter marginal probability distributions (truncated normal)

0 1 2

x 10-3

0100200

CS0T0.4 0.6 0.80

100200

BETA300 350 4000

100200

CO20

0.25 0.3 0.350

100200

FB0.25 0.3 0.350

100200

FLMAX0.25 0.3 0.350

100200

FS0.4 0.6 0.80

100200

GAMMA0 2 4

0100200

KCA0.4 0.6 0.80

100200

KCAEXP

0.5 1 1.5

x 10-4

0100200

KDBT0 5

x 10-4

0100200

KDRT2 4 6

0100200

KH0.2 0.3 0.40

50100

KHEXP0 1 2

x 10-3

0100200

KNMINT0 1 2

x 10-3

0100200

KNUPTT

0.02 0.03 0.040

100200

KTA10 20 30

0100200

KTB0.4 0.6 0.80

100200

KEXTT4 6 8

0100200

LAIMAXT2 2.5 3

x 10-3

0100200

LUET0.01 0.015 0.020

100200

NCLMINT

0.04 0.05 0.060

50100

NCLMAXT0.02 0.03 0.040

100200

NCRT0 1 2

x 10-3

050

100

NCWT10 20 30

050

100

SLAT4 6 8

0100200

TRANCOT0 0.5 1

0100200

CLITT0

6 8 100

100200

CSOMF01 2 3

050

100

CSOMS00 0.01 0.02

0100200

NLITT00.2 0.3 0.40

100200

NSOMF00 0.1 0.2

0100200

NSOMS00 1 2

x 10-3

0100200

NMIN0

0.4 0.6 0.80

50100

FLITTSOMF0 0.05 0.1

0100200

FSOMFSOMS0 2 4

x 10-3

0100200

KDLITT0 1 2

x 10-4

0100200

KDSOMF0 0.5 1

x 10-5

0100200

KDSOMS

Calculation of P(D|BASFOR)

Skogaby

Rajec

Skogaby

Rajec

Calculation of P(D|BASFOR+)

Data Rajec: Emil Klimo

Page 33: Bayesian calibration and comparison of process-based forest models

Bayes Factor for two big forest modelsBayes Factor for two big forest models

MCMC 5000 steps

MCMC 5000 steps

0 2 4

x 10-3

0200400

CL02 4 6

x 10-3

0100200

CR00 0.005 0.01

0200400

CW0

Parameter marginal probability distributions (truncated normal)

0.4 0.6 0.80

100200

BETA300 350 4000

100200

CO200.25 0.3 0.350

100200

FLMAX

0.5 0.6 0.70

100200

FW0.4 0.6 0.80

100200

GAMMA0 2 4

0100200

KCA0 0.5 1

0100200

KCAEXP0 0.5 1

x 10-3

0100200

KDL0 0.5 1

x 10-3

0100200

KDR

2 4 6

x 10-5

0100200

KDW3 4 5

0100200

KH0.2 0.3 0.40

100200

KHEXP4 6 8

x 10-3

0100200

KLAIMAX0 1 2

x 10-3

0100200

KNMIN0 1 2

x 10-3

0100200

KNUPT

0.02 0.03 0.040

100200

KTA10 20 30

0100200

KTB0.4 0.6 0.80

100200

KTREE2 2.5 3

x 10-3

0100200

LUE00.01 0.015 0.020

100200

NLCONMIN0.04 0.05 0.060

100200

NLCONMAX

0.02 0.03 0.040

100200

NRCON0 1 2

x 10-3

0100200

NWCON0 20 40

0100200

SLA0 0.5 1

0100200

CLITT06 8 10

0100200

CSOMF01 2 3

0100200

CSOMS0

0 0.01 0.020

100200

NLITT00.2 0.3 0.40

100200

NSOMF00 0.1 0.2

0100200

NSOMS00 1 2

x 10-3

0200400

NMIN00.4 0.6 0.80

100200

FLITTSOMF0 0.05 0.1

0200400

FSOMFSOMS

0 2 4

x 10-3

0200400

KDLITT0 0.5 1

x 10-4

0100200

KDSOMF0 1 2

x 10-5

0100200

KDSOMS

0 1 2

x 10-3

0100200

CB0T0 5

x 10-3

0100200

CL0T0 2 4

x 10-3

0100200

CR0T

Parameter marginal probability distributions (truncated normal)

0 1 2

x 10-3

0100200

CS0T0.4 0.6 0.80

100200

BETA300 350 4000

100200

CO20

0.25 0.3 0.350

100200

FB0.25 0.3 0.350

100200

FLMAX0.25 0.3 0.350

100200

FS0.4 0.6 0.80

100200

GAMMA0 2 4

0100200

KCA0.4 0.6 0.80

100200

KCAEXP

0.5 1 1.5

x 10-4

0100200

KDBT0 5

x 10-4

0100200

KDRT2 4 6

0100200

KH0.2 0.3 0.40

50100

KHEXP0 1 2

x 10-3

0100200

KNMINT0 1 2

x 10-3

0100200

KNUPTT

0.02 0.03 0.040

100200

KTA10 20 30

0100200

KTB0.4 0.6 0.80

100200

KEXTT4 6 8

0100200

LAIMAXT2 2.5 3

x 10-3

0100200

LUET0.01 0.015 0.020

100200

NCLMINT

0.04 0.05 0.060

50100

NCLMAXT0.02 0.03 0.040

100200

NCRT0 1 2

x 10-3

050

100

NCWT10 20 30

050

100

SLAT4 6 8

0100200

TRANCOT0 0.5 1

0100200

CLITT0

6 8 100

100200

CSOMF01 2 3

050

100

CSOMS00 0.01 0.02

0100200

NLITT00.2 0.3 0.40

100200

NSOMF00 0.1 0.2

0100200

NSOMS00 1 2

x 10-3

0100200

NMIN0

0.4 0.6 0.80

50100

FLITTSOMF0 0.05 0.1

0100200

FSOMFSOMS0 2 4

x 10-3

0100200

KDLITT0 1 2

x 10-4

0100200

KDSOMF0 0.5 1

x 10-5

0100200

KDSOMS

Calculation of P(D|BASFOR)

Calculation of P(D|BASFOR+)

Data Rajec: Emil Klimo

P(D|M1) = 7.2e-016

P(D|M2) = 5.8e-15

Bayes Factor = 7.8, so BASFOR+ supported by

the data

0 1 2 3 4

x 104

0

20

40

h

0 1 2 3 4

x 104

0

10

20

Cw

Model "BASFORC6e": Expectation +- s.d. and MAP-output

0 1 2 3 4

x 104

0

0.5

1

1.5

Cl

0 1 2 3 4

x 104

0

1

2

3C

r

0 1 2 3 4

x 104

0

0.5

1

1.5

NP

Py

0 1 2 3 4

x 104

0

10

20

30

LAI

0 1 2 3 4

x 104

0

0.05

0.1

Ntree

0 1 2 3 4

x 104

0

0.02

0.04

0.06

NC

l

0 1 2 3 4

x 104

0

10

20

30

Cso

il

0 1 2 3 4

x 104

0.2

0.4

0.6

0.8

Nso

il

Time0 1 2 3 4

x 104

-0.01

0

0.01

0.02

Nm

in

Time0 1 2 3 4

x 104

0

50

100

150

Min

y

Time

Page 34: Bayesian calibration and comparison of process-based forest models

Summary of procedureSummary of procedure

Data DPrior P(1)

Updated parameters

MCMC

Samples of 1

(104 – 105)

Posterior P(1|D)

Model 1

MCMC

Prior P(2)

Model 2

Samples of 2

(104 – 105)

Posterior P(2|D)Updated parameters

P(D|M1) P(D|M2)

Bayes factorUpdated model odds

Page 35: Bayesian calibration and comparison of process-based forest models

ConclusionsConclusionsBayesian calibration using MCMC:• Improves model predictive capacity, by updating parameters• Quantifies uncertainty in parameters and output

Forest model calibration:• Benefits from high-precision tree height measurement

Bayesian model comparison:• Same probabilistic approach as Bayesian calibration• Bayes Factor shows how new data change the odds of models• Aid in model development

Page 36: Bayesian calibration and comparison of process-based forest models

AppendicesAppendices

Page 37: Bayesian calibration and comparison of process-based forest models

Bayesian calibration of big modelsBayesian calibration of big models

P(|D) P() P(D|f())

Calculating P(|D) costs much time:

1. Sample parameter-space representatively

2. For each sampled set of parameter-values:a. Calculate P()b. Run the model to calculate likelihood P(D|f())

Sampling problem: Markov Chain Monte Carlo (MCMC) methods

Computing problem: increased processor speed

Solutions

Page 38: Bayesian calibration and comparison of process-based forest models

Bayes Factor for two big forest modelsBayes Factor for two big forest models

0 5

x 10-3

020004000

CB0T0 0.005 0.01

020004000

CL0T0 0.005 0.01

020004000

CR0T

Prior parameter marginal probability distributions (uniform)

0 5

x 10-3

020004000

CS0T0.4 0.6 0.80

20004000

BETA300 350 4000

20004000

CO20

0.25 0.3 0.350

20004000

FB0.25 0.3 0.350

20004000

FLMAX0.25 0.3 0.350

20004000

FS0.4 0.6 0.80

20004000

GAMMA0 2 4

020004000

KCA0 0.5 1

020004000

KCAEXP

0.5 1 1.5

x 10-4

020004000

KDBT0 0.5 1

x 10-3

020004000

KDRT2 4 6

020004000

KH0.2 0.3 0.40

20004000

KHEXP0 1 2

x 10-3

020004000

KNMINT0 1 2

x 10-3

020004000

KNUPTT

0.02 0.03 0.040

20004000

KTA10 20 30

020004000

KTB0.4 0.6 0.80

20004000

KEXTT4 6 8

020004000

LAIMAXT1 2 3

x 10-3

020004000

LUET0.01 0.02 0.030

20004000

NCLMINT

0.04 0.05 0.060

20004000

NCLMAXT0.02 0.03 0.040

20004000

NCRT0 1 2

x 10-3

020004000

NCWT0 20 40

020004000

SLAT4 6 8

020004000

TRANCOT0 0.5 1

020004000

CLITT0

6 8 100

20004000

CSOMF01 2 3

020004000

CSOMS00 0.01 0.02

020004000

NLITT00.2 0.3 0.40

20004000

NSOMF00 0.1 0.2

020004000

NSOMS00 1 2

x 10-3

020004000

NMIN0

0.4 0.6 0.80

20004000

FLITTSOMF0 0.05 0.1

020004000

FSOMFSOMS0 2 4

x 10-3

020004000

KDLITT0 1 2

x 10-4

020004000

KDSOMF0 1 2

x 10-5

020004000

KDSOMS

0 0.005 0.010

20004000

CL00 0.005 0.01

020004000

CR00 0.005 0.01

020004000

CW0

Prior parameter marginal probability distributions (uniform)

0.4 0.6 0.80

20004000

BETA300 350 4000

20004000

CO200.25 0.3 0.350

20004000

FLMAX

0.5 0.6 0.70

20004000

FW0.4 0.6 0.80

20004000

GAMMA0 2 4

020004000

KCA0 0.5 1

020004000

KCAEXP0 0.005 0.01

020004000

KDL0 0.5 1

x 10-3

020004000

KDR

2 4 6

x 10-5

020004000

KDW3 4 5

020004000

KH0.2 0.3 0.40

20004000

KHEXP0 0.005 0.01

020004000

KLAIMAX0 1 2

x 10-3

020004000

KNMIN0 1 2

x 10-3

020004000

KNUPT

0.02 0.03 0.040

20004000

KTA10 20 30

020004000

KTB0.4 0.6 0.80

20004000

KTREE1 2 3

x 10-3

020004000

LUE00.01 0.02 0.030

20004000

NLCONMIN0.04 0.05 0.060

20004000

NLCONMAX

0.02 0.03 0.040

20004000

NRCON0 1 2

x 10-3

020004000

NWCON0 20 40

020004000

SLA0 0.5 1

020004000

CLITT06 8 10

020004000

CSOMF01 2 3

020004000

CSOMS0

0 0.01 0.020

20004000

NLITT00.2 0.3 0.40

20004000

NSOMF00 0.1 0.2

020004000

NSOMS00 1 2

x 10-3

020004000

NMIN00.4 0.6 0.80

20004000

FLITTSOMF0 0.05 0.1

020004000

FSOMFSOMS

0 2 4

x 10-3

020004000

KDLITT0 1 2

x 10-4

020004000

KDSOMF0 1 2

x 10-5

020004000

KDSOMS

BASFOR39 params

BASFOR +41 params

(Penman eq., corrections)

SkogabySkogaby

MCMC 10000 steps

MCMC 10000 steps

0 2 4

x 10-3

0200400

CL02 4 6

x 10-3

0100200

CR00 0.005 0.01

0200400

CW0

Parameter marginal probability distributions (truncated normal)

0.4 0.6 0.80

100200

BETA300 350 4000

100200

CO200.25 0.3 0.350

100200

FLMAX

0.5 0.6 0.70

100200

FW0.4 0.6 0.80

100200

GAMMA0 2 4

0100200

KCA0 0.5 1

0100200

KCAEXP0 0.5 1

x 10-3

0100200

KDL0 0.5 1

x 10-3

0100200

KDR

2 4 6

x 10-5

0100200

KDW3 4 5

0100200

KH0.2 0.3 0.40

100200

KHEXP4 6 8

x 10-3

0100200

KLAIMAX0 1 2

x 10-3

0100200

KNMIN0 1 2

x 10-3

0100200

KNUPT

0.02 0.03 0.040

100200

KTA10 20 30

0100200

KTB0.4 0.6 0.80

100200

KTREE2 2.5 3

x 10-3

0100200

LUE00.01 0.015 0.020

100200

NLCONMIN0.04 0.05 0.060

100200

NLCONMAX

0.02 0.03 0.040

100200

NRCON0 1 2

x 10-3

0100200

NWCON0 20 40

0100200

SLA0 0.5 1

0100200

CLITT06 8 10

0100200

CSOMF01 2 3

0100200

CSOMS0

0 0.01 0.020

100200

NLITT00.2 0.3 0.40

100200

NSOMF00 0.1 0.2

0100200

NSOMS00 1 2

x 10-3

0200400

NMIN00.4 0.6 0.80

100200

FLITTSOMF0 0.05 0.1

0200400

FSOMFSOMS

0 2 4

x 10-3

0200400

KDLITT0 0.5 1

x 10-4

0100200

KDSOMF0 1 2

x 10-5

0100200

KDSOMS

0 1 2

x 10-3

0100200

CB0T0 5

x 10-3

0100200

CL0T0 2 4

x 10-3

0100200

CR0T

Parameter marginal probability distributions (truncated normal)

0 1 2

x 10-3

0100200

CS0T0.4 0.6 0.80

100200

BETA300 350 4000

100200

CO20

0.25 0.3 0.350

100200

FB0.25 0.3 0.350

100200

FLMAX0.25 0.3 0.350

100200

FS0.4 0.6 0.80

100200

GAMMA0 2 4

0100200

KCA0.4 0.6 0.80

100200

KCAEXP

0.5 1 1.5

x 10-4

0100200

KDBT0 5

x 10-4

0100200

KDRT2 4 6

0100200

KH0.2 0.3 0.40

50100

KHEXP0 1 2

x 10-3

0100200

KNMINT0 1 2

x 10-3

0100200

KNUPTT

0.02 0.03 0.040

100200

KTA10 20 30

0100200

KTB0.4 0.6 0.80

100200

KEXTT4 6 8

0100200

LAIMAXT2 2.5 3

x 10-3

0100200

LUET0.01 0.015 0.020

100200

NCLMINT

0.04 0.05 0.060

50100

NCLMAXT0.02 0.03 0.040

100200

NCRT0 1 2

x 10-3

050

100

NCWT10 20 30

050

100

SLAT4 6 8

0100200

TRANCOT0 0.5 1

0100200

CLITT0

6 8 100

100200

CSOMF01 2 3

050

100

CSOMS00 0.01 0.02

0100200

NLITT00.2 0.3 0.40

100200

NSOMF00 0.1 0.2

0100200

NSOMS00 1 2

x 10-3

0100200

NMIN0

0.4 0.6 0.80

50100

FLITTSOMF0 0.05 0.1

0100200

FSOMFSOMS0 2 4

x 10-3

0100200

KDLITT0 1 2

x 10-4

0100200

KDSOMF0 0.5 1

x 10-5

0100200

KDSOMS

Calibration

Calibration

Page 39: Bayesian calibration and comparison of process-based forest models

Bayesian methodsBayesian methods

Bayes, T. (1763)

Metropolis, N. (1953)

Green, E.J. / MacFarlane, D.W. / Valentine, H.T. , Strawderman, W.E. (1996, 1998, 1999, 2000)

Jansen, M. (1997)

Jaynes, E.T. (2003)

Bayes’ Theorem

MCMC

Forest models

Crop models

Probability theory