28
Basics of metabolite profiling and metabolic flux analysis May 1 st , 2020 Issam Ben-Sahra Contact: [email protected] Phone : 312-503-5318 Membranes, Organelles & Metabolism

Basics of metabolite profiling and metabolic flux analysis › docs › research › metabolomics_basics.pdfBasics of metabolite profiling and metabolic flux analysis. May 1. st, 2020

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Basics of metabolite profiling and metabolic flux analysis

    May 1st, 2020

    Issam Ben-Sahra

    Contact: [email protected] Phone : 312-503-5318

    Membranes, Organelles & Metabolism

    mailto:[email protected]

  • Cells respond to environment

    Heat

    Nutrients

    Cold

    Various external messages

    Environmental conditions

  • Metabo-lome

    Metabolome

    Proteome

    Genome

    Res

    pons

    eR

    espo

    nse

    Res

    pons

    eTime

    External stimuli

    Genome

    Proteome

    Signals (light, O2, food, etc.)

    The Pyramid of Life

  • Metabo-lome Metabolites

    Proteins

    Genes

    External environmentAlters

    AlterInitiate

    Instructions to make

    Alte

    r

    Metabolites are central in cell physiology

    Genome

    Proteome

  • Metabolism

    Me Me Ac Ac

    Regulation of chromatin accessibility Gene expression

    DNA

    Histone octamer

    Lactate

    Zhang D, et al., Nature Oct 2019

    Metabolites can directly control gene expression

  • Metabolomics connects Proteome and Genome to Phenotype

    • Metabolomics data provides insights into underlying biology

    • Metabolomics data provides information behind the mechanisms by which genes function

    • Multiple omics data pointing to the same biological pathways builds scientific hypotheses and bring us closer to translational science

    Phenotype

  • Quantitative Metabolomics: Measurement of metabolite levels at one instant t

    Steady-state Metabolomics

  • Know your textbook

  • Literature recommended

  • Steady-state Metabolomics

    Gln

    Glucose

    pyruvate

    citrate

    isocitrate

    Glu

    AspAsn

    Ser

    α-KG

    GlyATP UTP

    UMPUDP

    CTP

    AMPADP

    glycerol

    lactate

    NAD+

    Arg Trp Pro

    Tyr

    His

    dTTP

    succinate

    Fumarate

    OAA

    cAMPNADP NADPH

    FolateTHF

    DHF N-carb-asp

    FADH2FAD creatine

    Ala

    Phe

    Malate

    Ac-CoA Lys

    Met Cys Leu Ile Thr

    CMP

    dAMP

    GMP

    GTP

    dTMPIMP

  • Nutrient and the response of metabolism

    Metabolic changes (unlabeled)

    Time (min) Time (hours/days) Time (min)

    Glucose added

    Met

    abol

    ism

    (e.g

    ., gl

    ucos

    e up

    take

    rate

    ) Glucose consumed

    Fresh MediumGlucose 25mM

    Time (hours/days)

    MediumLow glucose

    Steady-state period

    The quantitative inflows and effluxes from each metabolite must be balanced

  • glutamine

    glutamate

    GLS

    Valine

    Methionine

    methionineglutamate

    glut

    amin

    e

    valin

    e

  • Glucose removal decreases flux though glycolysis but some glycolytic intermediates increase (e.g., PEP)

    Metabolite levels Vs Metabolic flux

    Metabolite level Flux

    Adapted from Jang C, et al., Cell 2018

  • Metabolic flux

    13C-Glucose

    13C-F 1,6-BP

    13C-pyruvate13C-lactate

  • C

    C

    CC

    C

    O

    CH2OH

    OH

    HH

    OHH

    OHHO

    HH C

    C

    CC

    C

    O

    13CH2OH

    OH

    HH

    OHH

    OHHO

    HH 13

    13

    1313

    13

    Glucose 13C6-GlucoseU-13C-Glucose

    - Heavy isotope- Non radioactive- Similar physical properties

    Isotopic tracer

  • -

    -

    -

    -

    -

    -

    ++

    +++ +

    +

    -

    Carbon 12 Carbon 13-

    -

    -

    -

    -

    -

    ++

    +++ +

    Proton (+)

    NeutronElectron(-)

    Isotopic tracer

    Carbon 13 has an extra neutron

    Because the labeled atom has the same number of protons, it will behave in almost exactly the same way as its unlabeled counterpart and, will not interfere with the

    reaction under investigation.

  • Time (min) Time (hours) Time (hours)

    13C

    -enr

    ichm

    ent i

    n m

    etab

    olite

    s

    Dynamic labeling

    Steady-state labeling

    13C-glycine/serine

    Metabolite(e.g., IMP, AMP, GMP)

    Isotopic tracing to study the activity of metabolic pathways in cells

    lactate

    Glyceraldehyde 3-P

    G6-P

    Time (min) Time (hours) Time (hours)

    13C

    -enr

    ichm

    ent i

    n m

    etab

    olite

    s

    Dynamic labeling

    Steady-state labeling13C-Glucose

    Metabolite A(e.g., G6P, lactate) Metabolite B

    (e.g., IMP, AMP, GMP)

    pyruvate

    ATP

    ADP

    ADP

    Fructose 1,6-BP

    ATP

    glyc

    olys

    is

    Ribose

    Nucleotides(IMP, AMP, GMP)

    ATP

    ADP

    U-13C-GlucoseIntensity of labeling glucose

    lactate

    Glyceraldehyde 3-P

    G6-P

    pyruvate

    ATP

    ADP

    ADP

    Fructose 1,6-BP

    ATP

    glyc

    olys

    is

    Nucleotides(IMP, AMP, GMP)

    Ribose

    ATP

    ADP

    13C-glycine or 13C-serine

  • glutamate(condition A)

    glutamate(condition B)

    13C5-glutamine

    13C enrichment over time

    met

    abol

    ite le

    vels

    Dynamic labeling data

    Isotopic tracing: Consider the size of the unlabeled pool

  • lactate

    Glyceraldehyde 3-P

    G6-P

    pyruvate

    ATP

    ADP

    ADP

    Fructose 1,6-BP

    ATP

    glyc

    olys

    is

    Ribose

    Nucleotides(IMP, AMP, GMP)

    ATP

    ADP

    U-13C-Glucose

    ATP

    TCA cycle

    mitochondria

    ETC

    Isotopic tracing to study the activity of metabolic pathways

    • Consider tracer uptake (e.g., glucose uptake) before performing the tracing

    • Perform the flux in tracer-free medium (e.g., glucose-free medium)

    • Timing of labeling matters:

    For 13C-glucose:

    - ~15-30 min of labeling enables to label glycolytic intermediates at the steady-state level

    - 2-4h of labeling is required to label the TCA cycle

    - 6-15h of labeling is required to label nucleotides

    Recommendation for tracing experiments:

    Intensity of labeling

  • Acetyl-CoA

    13C6-glucose

    pyruvate

    PCPDH n rounds (n≥2)

    n rounds (n≥2)

    n rounds (n≥2)

    CitrateOAA

    α-KG

    TCA

    glutamate

    13C

    ≪≪

    Representation of the metabolic tracing diagram

    Lactate

    12C

    Asp

  • α-ketoglutarate glutamate

    Isotopic tracing: Impact on scientific research

    Isot

    opol

    ogue

    s

    13C5-glutamine

    M+1

    M+2

    M+3

    M+4

    M+5

    α-KG

    M+0

    Adapted from Buescher JM et al., Curr Opin Biotechnol 2015

    13C5-a-ketoglutarate (α-KG)

    12C13C

  • α-ketoglutarate glutamateM+0

    M+1

    M+2

    M+3

    M+4

    M+5

    Isotopic tracing: Impact on scientific research

    815000

    215000

    35000

    25000

    95000

    5615000

    Fractional abundance α-KG (M+5) = 5615000

    = 6800500

    6800500~ 0.82

    12C13C

    Ion counts

    Adapted from Buescher JM et al., Curr Opin Biotechnol 2015

    α-KG

    13C5-glutamine 13C5-a-ketoglutarate (α-KG)

  • Isotopic tracing: Ben-Sahra labPRPP

    PRA

    GAR

    FGAR

    FGAM

    AIR

    CAIR

    SAICAR

    FAICAR

    IMP

    GART (E2)

    PPAT

    PFAS

    GART (E1)

    GART (E3)

    PAICS (E1)

    PAICS (E2)

    ADSL

    AICARATIC (E1)

    ATIC (E2)

    THFQ

    E

    Q

    E

    Fumarate

    D

    THF

    Glycine

    Formyl-THF

    Tracer: 13C2-15N-glycine

    CC

    CCN

    N

    NC

    De

    novo

    pur

    ine

    synt

    hesi

    s SK-MEL-28

    Ali ES, Sahu U et al., Molecular Cell in press

  • 15.65 2.86

    81.49

    Untreated

    27.10

    10.9261.99

    IL-4

    citrate_13C1citrate_13C2citrate_13C3citrate_13C4

    citrate_13C5

    citrate_13C6

    Unlabeled citrate Fan J et al, Nature 2014

    Presentation of the tracing data

    Chart Histogram

  • Metabolic Flux Analysis (MFA)

    13C metabolic flux analysis (MFA) is a mathematical approach for quantifying intracellular metabolic fluxes in cancer cells.

    Antoniewicz MR et al., Exp & Mol Med 2018

  • The software INCA can be used to perform MFA calculations.

    Metabolic Flux Analysis (MFA)

    Antoniewicz MR et al., Exp & Mol Med 2018

  • Acknowledgements

    Eunus Ali Umakant Sahu

    Lab members:

    Metabolomics Developing Core Facility

    Elodie Villa Brendan O’Hara

    Peng GaoNav Chandel

  • “How to Conduct in vivo Metabolomics”

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28