29
Basic Lignin Chemistry David Wang’s Wood Chemistry Class Lignin Lignin is the second abundant and important organic substance in the plant world. The incorporation of lignin into the cell walls of plants gave them the chance to conquer the Earth’s land surface. Lignin increased the mechanical strength properties to such an extent that huge plants such as trees with heights of even more than 100 m can remain upright.

Basic Lignin Chemistry

  • Upload
    letruc

  • View
    251

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Basic Lignin Chemistry

Basic Lignin Chemistry

David Wang’s Wood Chemistry Class

Ligninn Lignin is the second abundant and important organic

substance in the plant world.n The incorporation of lignin into the cell walls of plants

gave them the chance to conquer the Earth’s land surface.

n Lignin increased the mechanical strength properties to such an extent that huge plants such as trees with heights of even more than 100 m can remain upright.

Page 2: Basic Lignin Chemistry

Ligninn Lignin is derived from the Latin word for wood (lignum). de Candolle

firstly introduced this term in 1819. (Cellulose was named by Anselme Payer in 1838)

n In 1897, Peter Klason studied the composition of lignosulfonates and put forward the idea that lignin was chemically related to coniferyl alcohol.

n In 1907, Klason proposed that lignin is a macromolecular substance. After ten year (1917) Klason further purposed that coniferyl alcohol units are joined together by ether linkages.

Lignin n Definition

q A very irregular, randomly cross-linked polymer of phenylpropane units joined by many different linkages.

q A polymer derived from the phenylpropanoid compound, coniferyl alcohol and related alcohols.

q Amorphous, cross-linked polymers that occur uniquely in vascular plants.

q Lignin may be defined as an amorphous, polyphenolic material arising from an enzyme-mediated dehydrogenative polymerization of three phenylpropanoid monomers, conniferyl, synapyl and p-coumaryl alcohols.

Page 3: Basic Lignin Chemistry

Lignin

n Lignin precursors (three cinnamyl alcohol)

q p-Coumaryl alcoholq Coniferyl alcoholq Sinapyl alcohol

Lignin Precursors and Aromatic Constituents

Page 4: Basic Lignin Chemistry

Lignino Lignification

n Formation lignin in wood

o Lignin function

n Supportive agent → mechanical strength

n Antioxidant → protection

n Sealant and reinforcing agents → bonding cellulose and hemicellulose together

n Cross linker → cross link carbohydrates

Lignin IsolationoGeneral

n Lignin can be isolated from extractives-free

wood as an insoluble after hydrolytic removal

of polysaccharides.

n Lignin can be hydrolyzed and extracted from

wood or converted to a soluble derivative.

Page 5: Basic Lignin Chemistry

Lignin Isolation — Removing the polysaccharides

n Klason lignin

q Klason lignin is obtained after removing the polysaccharides from

extractives-free wood by hydrolysis with 72% sulfuric acid.

n Cellulolytic enzyme lignin (CEL)

q The polysaccharide may be removed by enzymes from finely divided

wood meal. This method is tedious, but the resulting CEL retains its

original structure essentially unchanged.

n Dioxane containing water and HCl

q Considerable changes in its structure occur.

Lignin Isolation — Removing the polysaccharides

n Milled wood lignin (MWL)

q Björkman lignin

q It is the best preparation known as far and it has been widely used for

structure studies.

q Wood meal is ground in a ball mill either dry or in the presence of non-

swelling solvents (ex. toluene), the cell structure of the wood is destroyed

and a portion of lignin (usually less than 50%) can be obtained from the

suspension by extraction with a dioxane-water mixture.

q MWL preparation always contain some carbohydrate materials.

Page 6: Basic Lignin Chemistry

Lignin Isolation — Removing the polysaccharides

n Lignin preparation by artificial

q Dehydrogenation polymer (DHP)

Coniferyl alcohol was treated with H2O2 in the presence of

peroxidase enzyme yield synthetic lignin named DHP.

q Released suspension culture lignin (RSCL)

RSCL was isolated suspension cultures of spruce wood cells as a

secretion products (RSCL represents a carbohydrate-free

coniferous lignin)

Lignin Isolation — Removing the lignin

o Lignosulfonates

n Soluble lignin derivates, lignosulfonates, are formed by treating wood at elevated temperatures with solutions containing sulfur dioxide and hydrogen sulfite ions.

o Sulfate lignin or Kraft lignin

n Lignin is dissolved as alkali lignin when wood is treated at elevated temperature (170 °C) with NaOH, or better, with a mixture of NaOH and Na2SO4.

n Lignin is further converted to an alkali soluble derivative a solution of hydrochloric acid and thioglycolic acid at 100 °C.

Page 7: Basic Lignin Chemistry

Measurement on Lignin ContentnSoftwood

¨Softwood lignin can be determined gravimetrically by klason method.

¨Normal softwood contains 26-32% lignin while the lignin content of compression wood is 35-40%.

nHardwood¨The lignin present in hardwood is partly dissolved during the acid

hydrolysis and hence the gravimetric values must be corrected for the “acid-soluble lignin” using UV spectrophotometer.

¨Normal hardwood contains 20-25% lignin. Tropical hardwood can have a lignin content exceeding 30%. Tension wood contains only 20-25% lignin.

Biosynthesis and structure of Lignin

Lignin are polymers of phenylpropane units.

Many aspects in the chemistry of lignin still remain unclear.

The ability to synthesize lignin has been essential in the evolutionary adaptation of plants from an aquatic environment to land.

Although researchers have studied lignin for more than a century, many aspects of its biosynthesis remain unresolved. The monolignol biosynthetic pathway has been redrawn many times and remains a matter of debate.

Page 8: Basic Lignin Chemistry

nEthnolysis

¨The hydrolytic treatment of wood or lignin with dilute alcoholic hydrochloric acid under pressure was the original method for obtaining defined phenylpropenoid ketones (Hibbert ketones) by splitting β-aryl ether linkages.

nLange (1954) who applied UV microscopy at various wavelength directly on thin wood sections, obtaining spectrum typical of aromatic compounds.

Biosynthesis of Lignin Precursor

o Precursors of lignin

n Gymnosperms: coniferyl alcohol (guaiacyl unit)

n Angiosperms: coniferyl alcohol + sinapyl alcohol

(guaiacyl unit + syringyl unit)

n Grasses: p-coumaryl alcohol (p-hydroxyphenyl unit)

o Lignin precursors are generated from D-glucose through

reaction of enzyme.

Page 9: Basic Lignin Chemistry

Outline of the Biosynthetic Pathway of Phenylpropanoids

1. Shikimate pathway

苯丙胺酸

酪氨酸

phosphoenol pyruvic acid

D-erythrose 4-phosphate3-deoxy-D-arabino-heptulosonic acid 7-phosphate

3-dehydroquinic acid

3-dehydroshikimic acidshikimic acid

NADP-linked shikimate dehydrogenase

phosphorylated

(1)phosphochorismic acid

chorismic acid prephenic acid

arogenic acid

p-hydroxyphenylpyruvic acid

phenylpyruvic acid

Page 10: Basic Lignin Chemistry

2. Cinnamate pathway

PAL

phenylalanine ammonia-lyase cinnamic acid

TAL

tyrosine ammonia-lyasep-hydroxy cinnamic acid or p-coumaric acid

caffiec acid

O-methyl transferase(OMT)

hydroylase

ferulic acid

sinapic acid

5-hydroxyferulic acid

— Reduction of Ferulic Acid to Coniferyl Alcohol

• These enzyme in angiosperms reduce both coniferyl and sinapyl aldehyde almost equally, but the gymnosperm enzymes are remarkably specific for coniferyl aldehyde.

• O-methyltransferase, p-hydroxycinnamyl alcohol oxidoreductase is obviously one of the key enzymes controlling the specificity of the lignin precursors.

feruloyl CoA thio esterferuloyl adenylate

hydroxycinnamate-CoA ligase

hydroxycinnamoyl-CoA reductase

coniferyl aldehyde

oxidoreductase

Page 11: Basic Lignin Chemistry

Pathways to monolignols. The complete metabolic grid of reactions is shown. All enzyme reactions shown with a solid arrow have beendemonstrated to occur in vitro. Reactions shown in smaller type may not occur in vivo. The reactions shown in green seem the most likely route toG lignin in vivo. The reactions in red represent those reactions consistent with both in vivo and in vitro evidence for being involved speci.cally in Slignin biosynthesis. The intermediate in orange is common to both G and S lignin pathways.

Major Segments of Phenylpropanoid Metabolism in Vascular Plants as Currently Understood

Page 12: Basic Lignin Chemistry

A Metabolic Channel Model for Independent

Pathways to G and S Monolignols

A Representation of the Random Model for Lignin Formation

Page 13: Basic Lignin Chemistry

Polymerization of Lignin

n Erdman (1930) studied the oxidative dimerization of various phenols in

the biogenesis of natural products and reached the conclusion that

lignin must be formed α,β-unsaturated C6C3 precursors of the coniferyl

alcohol type via enzymatic dehydrogenation.

n Freudenberg and co-worker (1940-1970) had demonstrated the

polymerization of precursors to lignin in nature does indeed occur as

Erdman described.

n One-electron transfer from coniferyl alcohol by enzymatic

dehydrogenation yield resonance-stabilized phenoxy

radicals.

Page 14: Basic Lignin Chemistry

n Oligomeric products formed through coupling of coniferyl

alcohol radicals

n Endwise β-O-4 coupling of a coniferyl alcohol radical with a growing lignin group radical to an intermediate quinone methide (3), which is stabilized to a quaiacylglycerol-β-aryl ether (4) structure through addition of water.

Page 15: Basic Lignin Chemistry

Type of Linkages and Dimeric Structurel Common linkages between the phenylpropane units

Lignin Structuren Methods based on classical organic chemistry led to the

conclusion, already by 1940, that lignin is build up phenylpropane units.¨Permanganate oxidation (methylation softwood lignin)

Lignin

1. KOH, 170℃2. Methylation3. KMnO4

10% veratric acid

minor isohemipinic acid

dehyrodiveratric acid

The formation of isohemipinic acid support the occurrence of condensed structure (β-5 or γ-5)

藜蘆酸

異半派酸

Page 16: Basic Lignin Chemistry

— Nitrobenzene oxidation

LigninNitrobenzene oxidation

Softwood

Hardwood

Grass

Vanillin (25% of lignin)

syringaldehyde

p-hydroxybenzaldehyde

— Hydrolysis

Lignin H2/CAT

Lignin2% HCl in EtOH

— Ethnolysis Hibert ketons

Page 17: Basic Lignin Chemistry

n Acid hydrolysis (Acidolysis)q The term acidolysis refers specifically to the refluxing of lignin or

lignocellulose with 0.2 M HCl in dioxane-water (9:1, v/v).

q Acidolysis has a close relationship to ethanolysis (heating of lignin in HCl in ethanol). Both treatment result in the degradation of lignin with formation of substantial amounts of arylpropanes (but, dioxane-water is a better solvent for lignins than is ethanol).

q The majority of the acidolysis monomers originate from arylglycerol β-aryl ether structure.

q Formation of monomeric phenols from β-O-4 structures in lignin during acidolysis.

Page 18: Basic Lignin Chemistry

n Thioacidolysisq Thioacidolysis is solvolysis in dioxane-ethanethiol with boron

trifluoride etherate.

q It is an acid-catalyzed reaction with results in the depolymerization of lignins.

q As in acidolysis, thioacidolysis proceeds mainly by cleavage of arylglycerol-β-aryl ether linkages.

q In contrast to acidolysis, thioacidolysis is preformed in anhydrous media, ether-cleaving reagent combines a hard Lewis acid (Et2O-BF3, boron trifluoride etherate), and a soft

nucleophile (EtSH, ethanethiol)

乙醚合三氟化硼

n Thioacetolysis

q Thioacetolysis-lignin samples are subjected to a treatment with

thioacetic acid and boron trifluoride.

q The cleavage of the ether bonds by using thioacidolysis is

equally specific, but more complete than by thioacetolysis.

q The reaction products are separated as TMS (trimethylsilyl

ethers by GC.

硫代醋酸

Page 19: Basic Lignin Chemistry

nPermanganate oxidation

¨Much of our current knowledge about structure of lignin in wood and pulp is based on results obtained from permanganate oxidation.

¨This method involved the selective degradation of all aliphatic side chains attached to aromatic moieties structures henceforth referred to as “acids”.

¨The original permanganate oxidation method of methylated lignin has also been considerably improved when it is performed at alkaline instead of neutral conditions.

nPermanganate oxidation

¨The methylated fragments are seperated by GC and identified MS

¨Reaction sequence for the oxidative degradation of lignin with potassium permanganate

Page 20: Basic Lignin Chemistry

l Major carboxylic acid methyl esters formed in the oxidation of lignin with potassium permanganate

Type of Linkages and Dimeric Structuren It is clear that phenylpropane units are joined together both with C-O-C

(ether) and C-C linkages.¨ C-O-C linkages is dominant; approximately 2/3 or more.¨ The rest are the C-C type.

n Proportions of different type of linkages connecting the phenylpropane units in lignin

Page 21: Basic Lignin Chemistry

Functional Groups

n Lignin polymer contains characteristic methoxyl groups, phenolic hydroxyl groups, and some terminal aldehyde groups in the side chain.

n Only relatively few of the phenolic hydroxyls are free; most of them are occupied through linkages to the neighboring phenylpropane units.

n The syringly units in hardwood lignin are extensively etherified.

n Alcoholic hydroxyl groups and carbonyl groups are introduced into the final lignin polymer during the dehydrogenative polymerization process.

Functional Groupsn In some wood species substantial amounts of the

alcoholic hydroxyl groups are esterified with p-hydroxybenzoic acid or p-hydroxycinnamic acid.¨Ester of p-hydroxybenzoic acid are typical in aspen lignin.¨p-Hydroxycinnamic acid are abundant in bamboo and grass lignin.

Page 22: Basic Lignin Chemistry

Lignin Formula

o The formula of lignin presented in its final shape in 1968 by Freudenburg for softwood lignin (spruce) has attained general acceptance.

n This scheme for spruce lignin represents 18 phenylpropane units as a section of the total molecule which was assumed to consist of more than 100 units in the native state.

o Adler (1977) gave a structural scheme for spruce lignin comprising 16 prominent C9-units, mainly derived from the

results of oxidative degradation experiment.

A Structure Segment of Softwood lignin Proposed by Adler

Spruce lignin

glyceraldehyde-2-aryl etherβ-6

pinoresinol

only low amount in softwood

Page 23: Basic Lignin Chemistry

Softwood Lignin Model designed by Computerized Evaluation

(Glasser, 1981)

Loblolly pine lignin

Lignin Formula

n In addition, formulas

for hardwood lignins

have been suggested

as well.

n The structure concept

of beech lignin (Nimz,

1974).

Page 24: Basic Lignin Chemistry

Lignin-Carbohydrate Bonds

n The possible existence of covalent bonds between lignin and polysaccharides has been a subject of much debate and intensive studies.

n It is obviously and now generally accepted that such chemical bonds must exist, and the term “lignin-carbohydrate complex (LCC)” is used for the covalently bonded aggregates of this type.

n Chemical bonds have been reported between lignin and practically all the hemicellulose constituents (even between lignin and cellulose). These linkages can be either of ester or ether type and even glycosidic bonds are possible.

Examples of suggested LCC bonds

An ester linkage to xylan through 4-O-methyl glucuronic acid as a bridge group.

An ether linkage to xylan through an arabinofuranose unit.

An ether linkage to galactoglucomannan through a galactopyranose unit.

Page 25: Basic Lignin Chemistry

Lignin-Carbohydrate Bonds

o Ether linkages are more stable and common between lignin and

carbohydrates.

n The α-position is even in this case the most possible connection

point between lignin and hemicellulose.

o LCC bridge groups

n Arabinose unit (HO-2 or HO-3)

n Galactoglucomannans, the galactose unit (HO-3)

n In middle lamella and primary wall (pectic polysaccharides)

galactan → HO-6 in galactose

arabinan → HO-5 in arabinose

Lignin-Carbohydrate Bonds

o Glycosidic linkages for LCC

n Benzylic alcohol group, which is the most probable

connection point, the phenolic group may also be partly

occupied through glycosidation.

n The glycosidic linkages are easily cleaved with acid.

Page 26: Basic Lignin Chemistry

Classification and Distribution of Ligninl Lignin can be divided into several classes according to their structure

elementsl Guaiacyl lignin

It is a largely polymerization product of coniferyl alcohol. Guaiacyl lignin occurs in almost all softwoods.

l Guaiacyl-syringyl lignin

The typical lignin of hardwood, this type of lignin is a copolymer of coniferyl and sinapyl alcohol. The ratio varing from 4:1 to 1:2 for the two monomeric units.

l p-Hydroxyphenyl lignin

Compression wood, which has a high proportion of phenylpropane units of the p-hydroxyphenyl type in addition to the normal quaiacyl units.

Transverse Section of a Spruce Tracheid Photographed in UV Light (240 nm)

Page 27: Basic Lignin Chemistry
Page 28: Basic Lignin Chemistry

Classification and Distribution of Lignin

n In hardwood, there are still many uncertainties involved, because of

the more heterogeneous nature of the wood and the presence of both

quaiacyl and syringyl units in the lignin.

q The lignin located in the secondary wall of hardwood fibers has a

high content of syringly units whereas larger amounts of guaiacyl

units are present in the middle lamella lignin.

q The vessel in birch seem to contain only guaiacyl lignin, whereas

syringyl lignin predominates in parenchyma cell.

Polymer Properties of Lignin

n The limitation for studying the macromolecular properties for lignin :q Low solubility in most solventsq It will cause degradation during the isolation process.q The polymer properties of lignin is depend on its location in the cell

wall.

n The method for characterizing the polymer properties of lignin:q Vapor pressure osmometryq Light scatteringq Ultracentrifugation

Page 29: Basic Lignin Chemistry

Polymer Properties of Lignin

n The Mw of softwood lignin around 20000, the lower values have been

reported for hardwood lignin.

n Compared with cellulose, the polydiversity of lignin is relatively high, roughly 2.0 -3.0 for softwood MWL.