48
1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com Basic Factory Dynamics Physics should be explained as simply as possible, but no simpler. – Albert Einstein 2 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com HAL Case Large Panel Line: produces unpopulated printed circuit boards Line runs 24 hr/day (but 19.5 hrs of productive time) Recent Performance: • throughput = 1,400 panels per day (71.8 panels/hr) • WIP = 47,600 panels • CT = 34 days (663 hr at 19.5 hr/day) • customer service = 75% on-time delivery What data do we need to decide? Is HAL lean?

Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

  • Upload
    vudien

  • View
    238

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

1© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Basic Factory Dynamics

Physics should be explained as simply as possible, but no simpler.

– Albert Einstein

2© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

HAL Case

Large Panel Line: produces unpopulated printed circuit boards

Line runs 24 hr/day (but 19.5 hrs of productive time)

Recent Performance:• throughput = 1,400 panels per day (71.8 panels/hr)• WIP = 47,600 panels• CT = 34 days (663 hr at 19.5 hr/day)• customer service = 75% on-time delivery

What data do we need to decide?

Is HAL lean?

Page 2: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

3© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

HAL - Large Panel Line Processes

Lamination (Cores): press copper and prepreg into core blanksMachining: trim cores to sizeInternal Circuitize: etch circuitry into copper of coresOptical Test and Repair (Internal): scan panels optically for defectsLamination (Composites): press cores into multiple layer boardsExternal Circuitize: etch circuitry into copper on outside of compositesOptical Test and Repair (External): scan composites optically for defectsDrilling: holes to provide connections between layersCopper Plate: deposits copper in holes to establish connectionsProcoat: apply plastic coating to protect boardsSizing: cut panels into boardsEnd of Line Test: final electrical test

4© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

HAL Case - Science?

External Benchmarking• but other plants may not be comparable

Internal Benchmarking• capacity data: what is utilization?• but this ignores WIP effects

Need relationships between WIP, TH, CT, service!

Page 3: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

5© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Definitions

Workstations: a collection of one or more identical machines.

Parts: a component, sub-assembly, or an assembly that moves through the workstations.

End Items: parts sold directly to customers; relationship to constituent parts defined in bill of material.

Consumables: bits, chemicals, gasses, etc., used in process but do not become part of the product that is sold.

Routing: sequence of workstations needed to make a part.

Order: request from customer.

Job: transfer quantity on the line.

6© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Definitions (cont.)

Throughput (TH): for a line, throughput is the average quantity of good (non-defective) parts produced per unit time.

Work in Process (WIP): inventory between the start and endpoints of a product routing.

Raw Material Inventory (RMI): material stocked at beginning of routing.

Crib and Finished Goods Inventory (FGI): crib inventory is material held in a stockpoint at the end of a routing; FGI is material held in inventory prior to shipping to the customer.

Cycle Time (CT): time between release of the job at the beginning of the routing until it reaches an inventory point at the end of the routing.

Page 4: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

7© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Factory Physics®

Definition: A manufacturing system is a goal-oriented networkof processes through which parts flow.

Structure: Plant is made up of routings (lines), which in turn are made up of processes.

Focus: Factory Physics® is concerned with the network and flows at the routing (line) level.

8© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Parameters

Descriptors of a Line:1) Bottleneck Rate (rb): Rate (parts/unit time or jobs/unit time)

of the process center having the highest long-term utilization.

2) Raw Process Time (T0): Sum of the long-term averageprocess times of each station in the line.

3) Congestion Coefficient (α): A unitless measure of congestion.• Zero variability case, α = 0.• “Practical worst case,” α = 1.• “Worst possible case,” α = W0.

Note: we won’t use α quantitatively,but point it out to recognize that lineswith same rb and T0 can behave verydifferently.

Page 5: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

9© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Parameters (cont.)

Relationship:

Critical WIP (W0): WIP level in which a line having no congestion would achieve maximum throughput (i.e., rb) with minimum cycle time (i.e., T0).

W0 = rb T0

10© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab

Characteristics:• Four identical tools in series.• Each takes 2 hours per piece (penny).• No variability.• CONWIP job releases.

Parameters:rb =

T0 =

W0 =

α =

0.5 pennies/hour

8 hours

0.5 × 8 = 4 pennies

0 (no variability, best case conditions)

Page 6: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

11© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny FabThe Penny Fab

12© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=1)The Penny Fab (WIP=1)

Time = 0 hours

Page 7: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

13© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=1)The Penny Fab (WIP=1)

Time = 2 hours

14© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=1)The Penny Fab (WIP=1)

Time = 4 hours

Page 8: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

15© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=1)The Penny Fab (WIP=1)

Time = 6 hours

16© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=1)The Penny Fab (WIP=1)

Time = 8 hours

Page 9: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

17© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=1)The Penny Fab (WIP=1)

Time = 10 hours

18© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=1)The Penny Fab (WIP=1)

Time = 12 hours

Page 10: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

19© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=1)The Penny Fab (WIP=1)

Time = 14 hours

20© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=1)The Penny Fab (WIP=1)

Time = 16 hours

Page 11: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

21© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Performance

WIP TH CT TH×CT 1 0.125 8 1 2 3 4 5 6

22© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 0 hours

Page 12: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

23© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 2 hours

24© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 4 hours

Page 13: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

25© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 6 hours

26© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 8 hours

Page 14: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

27© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 10 hours

28© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 12 hours

Page 15: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

29© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 14 hours

30© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 16 hours

Page 16: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

31© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=2)The Penny Fab (WIP=2)

Time = 18 hours

32© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Performance

WIP TH CT TH×CT 1 0.125 8 1 2 0.250 8 2 3 4 5 6

Page 17: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

33© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=4)The Penny Fab (WIP=4)

Time = 0 hours

34© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=4)The Penny Fab (WIP=4)

Time = 2 hours

Page 18: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

35© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=4)The Penny Fab (WIP=4)

Time = 4 hours

36© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=4)The Penny Fab (WIP=4)

Time = 6 hours

Page 19: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

37© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=4)The Penny Fab (WIP=4)

Time = 8 hours

38© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=4)The Penny Fab (WIP=4)

Time = 10 hours

Page 20: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

39© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=4)The Penny Fab (WIP=4)

Time = 12 hours

40© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=4)The Penny Fab (WIP=4)

Time = 14 hours

Page 21: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

41© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Performance

WIP TH CT TH×CT 1 0.125 8 1 2 0.250 8 2 3 0.375 8 3 4 0.500 8 4 5 6

42© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=5)The Penny Fab (WIP=5)

Time = 0 hours

Page 22: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

43© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=5)The Penny Fab (WIP=5)

Time = 2 hours

44© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=5)The Penny Fab (WIP=5)

Time = 4 hours

Page 23: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

45© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=5)The Penny Fab (WIP=5)

Time = 6 hours

46© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=5)The Penny Fab (WIP=5)

Time = 8 hours

Page 24: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

47© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=5)The Penny Fab (WIP=5)

Time = 10 hours

48© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

The Penny Fab (WIP=5)The Penny Fab (WIP=5)

Time = 12 hours

Page 25: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

49© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Performance

WIP TH CT TH×CT 1 0.125 8 1 2 0.250 8 2 3 0.375 8 3 4 0.500 8 4 5 0.500 10 5 6 0.500 12 6

50© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

TH vs. WIP: Best Case

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12

WIP

TH

rrbb

WW00

1/T1/T00

Page 26: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

51© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

CT vs. WIP: Best Case

02468

101214161820222426

0 1 2 3 4 5 6 7 8 9 10 11 12

WIP

CT

TT00

WW00

1/1/rrbb

52© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Best Case Performance

Best Case Law: The minimum cycle time (CTbest) for a given WIP level, w, is given by

The maximum throughput (THbest) for a given WIP level, w is given by,

⎩⎨⎧ ≤

=otherwise.

if ,/

,CT 00

best

Wwrw

T

b

⎩⎨⎧ ≤

=otherwise.

if ,

,/TH 00

best

Wwr

Tw

b

Page 27: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

53© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Best Case Performance (cont.)

Example: For Penny Fab, rb = 0.5 and T0 = 8, so W0 = 0.5 × 8 = 4,

which are exactly the curves we plotted.

⎩⎨⎧ ≤

=otherwise.

4 if ,2

,8CTbest

ww

⎩⎨⎧ ≤

=otherwise.

4 if ,5.0,8/

THbest

ww

54© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

A Manufacturing Law

Little's Law: The fundamental relation between WIP, CT, and TH over the long-term is:

Insights:• Fundamental relationship• Simple units transformation• Definition of cycle time (CT = WIP/TH)

CTTHWIP ×=

hrhr

partsparts ×=

Page 28: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

55© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two

10 hr

2 hr

5 hr 3 hr

56© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two

StationNumber

Number ofMachines

ProcessTime

StationRate

1 1 2 hr j/hr2 2 5 hr j/hr3 6 10 hr j/hr4 2 3 hr j/hr

rb = ____________ T0 = ____________ W0 = ____________

0.50.40.60.67

0.4 p/hr 20 hr 8 pennies

Page 29: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

57© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=0)

10 hr

2 hr

5 hr 3 hr

2

58© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=2)

10 hr

2 hr

5 hr 3 hr

47

Page 30: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

59© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=4)

10 hr

2 hr

5 hr 3 hr

67

9

60© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=6)

10 hr

2 hr

5 hr 3 hr

87

9

Page 31: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

61© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=7)

10 hr

2 hr

5 hr 3 hr

812

9

17

62© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=8)

10 hr

2 hr

5 hr 3 hr

1012

9

17

Page 32: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

63© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=9)

10 hr

2 hr

5 hr 3 hr

1012

14

17

19

64© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=10)

10 hr

2 hr

5 hr 3 hr

1212

14

17

19

Page 33: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

65© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=12)

10 hr

2 hr

5 hr 3 hr

1417

14

17

19

22

66© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=14)

10 hr

2 hr

5 hr 3 hr

1617

19

17

19

22

24

Page 34: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

67© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=16)

10 hr

2 hr

5 hr 3 hr

17

19

17

19

22

24

68© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=17)

10 hr

2 hr

5 hr 3 hr

22

19

27

19

22

24

20

Page 35: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

69© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=19)

10 hr

2 hr

5 hr 3 hr

22

24

27

29

22

24

20

22

70© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=20)

10 hr

2 hr

5 hr 3 hr

22

24

27

29

22

24 2222

Note: job will arrive atbottleneck just in timeto prevent starvation.

Page 36: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

71© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=22)

10 hr

2 hr

5 hr 3 hr

27

24

27

29

32

24

2524

Note: job will arrive atbottleneck just in timeto prevent starvation.

72© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Simulation (Time=24)

10 hr

2 hr

5 hr 3 hr

27

29

27

29

32

34

25

27

And so on….Bottleneck will just stay busy; all others will starve periodically

Page 37: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

73© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Worst Case

Observation: The Best Case yields the minimum cycle time and maximum throughput for each WIP level.

Question: What conditions would cause the maximum cycle time and minimum throughput?

Experiment:• set average process times same as Best Case (so rb and T0

unchanged)• follow a marked job through system• imagine marked job experiences maximum queueing

74© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Worst Case Penny FabWorst Case Penny Fab

Time = 0 hours

Page 38: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

75© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Worst Case Penny FabWorst Case Penny Fab

Time = 8 hours

76© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Worst Case Penny FabWorst Case Penny Fab

Time = 16 hours

Page 39: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

77© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Worst Case Penny FabWorst Case Penny Fab

Time = 24 hours

78© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Worst Case Penny FabWorst Case Penny Fab

Time = 32 hours Note:

CT = 32 hours= 4× 8 = wT0

TH = 4/32 = 1/8 = 1/T0

Page 40: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

79© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

TH vs. WIP: Worst Case

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12

WIP

TH

rrbb

WW00

1/T1/T00

Best CaseBest Case

Worst CaseWorst Case

80© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

CT vs. WIP: Worst Case

048

121620242832

0 1 2 3 4 5 6 7 8 9 10 11 12

WIP

CT

TT00

WW00

Best CaseBest Case

Worst CaseWorst Case

Page 41: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

81© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Worst Case Performance

Worst Case Law: The worst case cycle time for a given WIP level, w, is given by,

CTworst = w T0

The worst case throughput for a given WIP level, w, is given by,

THworst = 1 / T0

Randomness? None - perfectly predictable, but bad!

82© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Practical Worst Case

Observation: There is a BIG GAP between the Best Case and Worst Case performance.

Question: Can we find an intermediate case that:• divides “good” and “bad” lines, and• is computable?

Experiment: consider a line with a given rb and T0 and:• single machine stations• balanced lines• variability such that all WIP configurations (states) are equally

likely

Page 42: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

83© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

PWC Example – 3 jobs, 4 stations3 jobs, 4 stations

State Vector State Vector1 (3,0,0,0) 11 (1,0,2,0) 2 (0,3,0,0) 12 (0,1,2,0) 3 (0,0,3,0) 13 (0,0,2,1) 4 (0,0,0,3) 14 (1,0,0,2) 5 (2,1,0,0) 15 (0,1,0,2) 6 (2,0,1,0) 16 (0,0,1,2) 7 (2,0,0,1) 17 (1,1,1,0) 8 (1,2,0,0) 18 (1,1,0,1) 9 (0,2,1,0) 19 (1,0,1,1) 10 (0,2,0,1) 20 (0,1,1,1)

clumped up states

spread out states

Note: average WIP at any station is 15/20 = 0.75, so jobs are spread evenly between stations.

84© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Practical Worst Case

Let w = jobs in system, N = no. stations in line, and t = process time at all stations:

CT(single) = (1 + (w-1)/N) t

CT(line) = N [1 + (w-1)/N] t = Nt + (w-1)t= T0 + (w-1)/rb

TH = WIP/CT = [w/(w+W0-1)]rb

From From LittleLittle’’s s LawLaw

Page 43: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

85© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Practical Worst Case Performance

Practical Worst Case Definition: The practical worst case (PWC) cycle time for a given WIP level, w, is given by,

The PWC throughput for a given WIP level, w, is given by,

where W0 is the critical WIP.

brwT 1CT 0PWC−

+=

,1

TH0

PWC brwWw

−+=

86© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

THvs.WIP: Practical Worst Case

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12

WIP

TH

rrbb

WW00

1/T1/T00

Best CaseBest Case

Worst CaseWorst Case

PWCPWCGood (lean)Good (lean)

Bad (fat)Bad (fat)

Page 44: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

87© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

CTvs.WIP: Practical Worst Case

048

121620242832

0 1 2 3 4 5 6 7 8 9 10 11 12

WIP

CT

TT00

WW00

Best CaseBest Case

Worst CaseWorst Case PWCPWC

Bad (fat)Bad (fat)

GoodGood(lean)(lean)

88© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26

WIP

TH

Penny Fab Two Performance

Worst Case

Penny Fab 2

Best Case

Practical Worst Case

1/T0

rb

W0

Note: processtimes in PF2have var equalto PWC.

But… unlike PWC, it hasunbalancedline and multimachine stations.

Page 45: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

89© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Penny Fab Two Performance (cont.)

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22 24 26

WIP

CT

Worst Case

Penny Fab 2

Best Case

Practical Worst C

ase

T0

1/rb

W0

90© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Back to the HAL Case - Capacity Data

Process Rate (p/hr) Time (hr) Lamination 191.5 1.2 Machining 186.2 5.9 Internal Circuitize 150.5 6.9 Optical Test/Repair - Int 157.8 5.6 Lamination – Composites 191.5 1.2 External Circuitize 150.5 6.9 Optical Test/Repair - Ext 157.8 5.6 Drilling 185.9 10.0 Copper Plate 136.4 1.5 Procoat 146.2 2.2 Sizing 126.5 2.4 EOL Test 169.5 1.8 rb, T0 126.5 33.1

Page 46: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

91© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

HAL Case - Situation

Critical WIP: W0 = rbT0 = 126.5 × 33.9 = 4,187

Actual Values:• CT = 34 days = 816 hours (at 24 hr/day)• WIP = 37,000 panels• TH = 45.8 panels/hour

Conclusions:• Throughput is 36% of capacity• WIP is 15 times critical WIP• CT is 24.6 times raw process time

92© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

HAL Case - Analysis

WIP Required for PWC to Achieve TH = 0.63rb?

354,2)1187,4(64.036.0)1(

64.036.0

36.01

0

0

=−=−=

=−+

=

Ww

rrWwwTH bb

Much lower thanactual WIP!

Conclusion: actual system is much worse than PWC!

4.1055.1261187,4400,37

400,3710

=−+

=−+

= brWwwTH

Much higherthan actual TH!

TH Resulting from PWC with WIP = 47,600?

Page 47: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

93© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

HAL Internal Benchmarking Outcome

“Lean" Region

“Fat" Region

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 10,000 20,000 30,000 40,000 50,000

WIP

Thr

ough

put(

pane

ls/h

our)

BestWorstPWC

CurrentTH = 45.8WIP = 37,000

94© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Labor Constrained Systems

Motivation: performance of some systems are limited by labor or a combination of labor and equipment.

Full Flexibility with Workers Tied to Jobs:• WIP limited by number of workers (n)• capacity of line is n/T0

• Best case achieves capacity and has workers in “zones”• ample capacity case also achieves full capacity with “pick and run”

policy

Page 48: Basic Factory Dynamics - ieu.edu.trhomes.ieu.edu.tr/~aornek/ISE314 Ch07_fact physics.pdf · 1 © Wallace J. Hopp, Mark L. Spearman, 1996, 2000 Basic Factory Dynamics Physics should

95© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Labor Constrained Systems (cont.)

Full Flexibility with Workers Not Tied to Jobs:• TH depends on WIP levels• THCW(n) ≤ TH(w) ≤ THCW(w)• need policy to direct workers to jobs (focus on downstream is

effective)

Agile Workforce Systems• bucket brigades• kanban with shared tasks• worksharing with overlapping zones• many others

96© Wallace J. Hopp, Mark L. Spearman, 1996, 2000 http://www.factory-physics.com

Factory Dynamics Takeaways

Performance Measures:• throughput• WIP• cycle time• service

Range of Cases:• best case• practical worst case• worst case

Diagnostics:• simple assessment based on rb, T0, actual WIP,actual TH• evaluate relative to practical worst case