B. Fåk et al- Spin-liquid behavior in a classical Heisenberg kagomé antiferromagnet

Embed Size (px)

Citation preview

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    1/23

    1

    Spin-liquid behavior in a classicalHeisenberg kagom antiferromagnet

    B. Fk, F.C. Coomer, A. Harrison, D. Visser, M.E. Zhitomirsky(CEA Grenoble, ISIS, U. of Edinburgh)

    An inelastic neutron scattering study ofDeuteronium jarosite(D3O)Fe3(SO4)2(OD)6

    THE U

    N I VE R S I T YOF

    E D I N B UR

    GH

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    2/23

    2

    Geometrical frustration

    Triangular (2D)(edge-sharing triangles)

    Pyrochlore (3D)(corner-sharingtetrahedra)

    Kagom (2D)(corner-sharingtriangles)

    ?

    Antiferromagnetic NN interactionH = J Si

    .Sj , J>0

    on a triangular lattice => frustration

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    3/23

    3

    Ideal kagom lattice

    Classical nearest-neighbor AF spins on a kagom lattice

    Strongly degenerate ground state No long-range order Co-planar states favored by thermal fluctuations S(Q) predicted by numerical simulations - but little is known about the dynamics, S()

    Roman mosaic, Empurias (c.a. -60)

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    4/23

    4

    Non-ideal kagom lattice

    Additional interactions Crystal anisotropy Further neighbor interactions

    Dzyaloshinsky-Moriya interactionmay lead to long-range order: k = 0 structure (left): uniform vector chirality k=(2/3,2/3) structure (3 x 3) (right): staggered vector chirality

    Vector chirality:C = i,jSi x Sj

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    5/23

    5

    Deuteronium jarosite (D3O)Fe3(SO4)2(OD)6

    Well separated kagom layers of undistorted triangles

    Strong (NN) antiferromagnetic interactions (CW=-700 K) Small disorder (near full occupancy of Fe3+ ions)

    No long-range magnetic order (T>1 K) Wills EPL 42 (1998) 325 Gradual and partial spin freezing at Ts=13.8-17.5 K

    SR;Harrison PB 289-290 (2000) 217

    IN16; D. Visser (unpubl.) Has been classified as a topological spin glass

    Unusual aging and memory effects Wills PRB 62 (2000) R9264

    Specific heat ~T2 (rather than ~T) Wills EPL 42 (1998) 325

    ~50% of the moments are fluctuating: spin liquid !

    Most other jarosites (replace H3O by K, ... or Fe by Cr, V,..) order at ~60 Kwith k=0 structure and doubling of unit cell along c(weak interlayer coupling)

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    6/23

    6

    Results from MARI

    S(Q,E) = SN(Q,E) + SM(Q,E)

    Easy to subtract phonons

    Dynamic short-range correlations- characteristic of a spin liquid

    Non-dispersive S(Q,E)

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    7/23

    7

    Results from MARI

    S(Q,E) = SN(Q,E) + SM(Q,E)

    Easy to subtract phonons

    Dynamic short-range correlations- characteristic of a spin liquid

    Non-dispersive S(Q,E)

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    8/23

    8

    Temperature dependence of S(Q)

    Lines are Monte Carlo simulations:

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    9/23

    9

    Q-dependence

    0.0

    0.5

    1.0

    1.5

    0 1 2 3 4

    SM

    (Q)

    Q (-1)

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    10/23

    10

    Q-dependence

    0.0

    0.5

    1.0

    1.5

    0 1 2 3 4

    SM

    (Q)

    (a)

    Q (-1)

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    11/23

    11

    Q-dependence

    0 1 2 3 4

    (b)

    Q (-1)

    Fit

    Monte-Carlo simulation of NN AFM kagom

    The 3 x 3 structure hasstaggered vector chirality

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    12/23

    12

    Energy dependence

    Continuum of gap-less excitations(gap

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    13/23

    13

    Quasielastic Lorentzian

    0

    8

    0.0

    0.4

    0 100 200

    (meV) '

    T (K)

    (T) = 0 + T0

    50

    100

    150

    0 5 10 15

    D3OFe

    3(SO

    4)2(OD)

    6

    T=14.5 K

    T=21 K

    T=36 K

    T=61 K

    T=121 K

    T=238 K

    "(E)(mbarn/sr/meV)

    Energy (meV)

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    14/23

    14

    /Tscaling ?

    2D AFM close to QCP (para -> LRO): expect /T scaling:

    "()T= F(/T) S. Sachdev, PRL 69 (1992) 2411

    No /T scaling !

    200

    500

    1000

    2000

    5000

    0.01 0.1 1

    T=14.5 KT=21 KT=36 KT=61 KT=121 K

    T=238 K"T

    (Kmbarn/SR/meV)

    /T (meV/K)

    D3OFe

    3(SO

    4)2(OD)

    6

    (T) = 0 + T

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    15/23

    15

    Non-Lorentzian response

    Deviations from a single Lorentzian at low energy

    0

    50

    100

    150

    200

    0 5 10 15

    D3OFe

    3(SO

    4)2(OD)

    6

    T=14.5 K

    T=21 K

    T=36 K

    T=61 K

    T=121 K

    T=238 K

    "(E)(mbarn/sr/meV)

    Energy (meV)

    14.521

    36

    61

    121

    238

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    16/23

    16

    Scaling ?

    2D AFM close to QCP (para -> spin-glass): expect

    "() ~ S. Sachdev, PRL 69 (1992) 2411with

    -1

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    17/23

    17

    SCGO(x) = SrCr8-xGa4+xO19

    C. Broholm, PRL 65 (1990) 3173

    Spin glass behavior in a pyrochlore slab

    [coupled (partially occupied) kagom planes]

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    18/23

    18

    KCr3(SO4)2(OD)6

    S.-H. Lee, PRB 56 (1997) 8091

    S=3/2, 76% site occupancy

    orders at 1.6 K shows gap-less spin fluctuations

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    19/23

    19

    Y0.5Ca0.5BaCo4O7

    W. Schweika, PRL 98 (2007) 067201

    CW=-2200 K

    Co2+ (S=3/2) forms kagom layersCo3+ (S=0) occupy interlayer sites

    S(Q,E) from temperature

    difference 150-40 K

    S(Q) indicatesstaggered chirality

    Valence disorder?

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    20/23

    20

    ZnCu3Cl2(OH)6

    J.S. Helton, PRL 98 (2007) 107204

    Herbertsmithite or paratacamite

    S=1/2 kagom with 90% occupancy and no gap (!)

    "() ~ 0.7

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    21/23

    21

    ZnxCu4-xCl2(OH)6

    S.-H. Lee, Nat. Mat. 4 (2005) 323

    x0.66 diluted kagom (

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    22/23

    22

    Conclusions

    S(Q) very similar to Monte-Carlo simulations of the NN AFM kagom 3 x 3 type correlations

    indirect evidence of staggered vector chirality

    "(E) continuum of (probably) gapless excitations (gap < 0.5 meV) that

    extends out to 20 meV

    single-Lorentzian component with (T)=1.5+aT meV and additional contributions (multiple time scales) or a non-Lorentzian line shape ("() ~ 0.68) no dynamic scaling behavior

    Inelastic neutron scattering measurements on the classical

    Heisenberg kagom antiferromagnet (D3O)Fe3(SO4)2(OD)6 showclear spin-liquid behavior: dynamic short-range correlations

  • 8/3/2019 B. Fk et al- Spin-liquid behavior in a classical Heisenberg kagom antiferromagnet

    23/23

    23

    Key experimental features

    These results were made possible because of

    Excellent deuteration (H/D