13
•VLSI Design I; A. Milenkovic •1 CPE/EE 427, CPE 527 VLSI Design I L02: Design Metrics & IC Manufacturing Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe527-05F 8/29/2005 VLSI Design I; A. Milenkovic 2 Fundamental Design Metrics • Functionality • Cost NRE (fixed) costs - design effort RE (variable) costs - cost of parts, assembly, test Reliability, robustness Noise margins Noise immunity • Performance Speed (delay) Power consumption; energy • Time-to-market 8/29/2005 VLSI Design I; A. Milenkovic 3 Cost of Integrated Circuits NRE (non-recurring engineering) costs Fixed cost to produce the design design effort design verification effort mask generation Influenced by the design complexity and designer productivity More pronounced for small volume products Recurring costs – proportional to product volume silicon processing also proportional to chip area assembly (packaging) – test Volume cost Fixed IC per cost Variable IC per Cost + = 8/29/2005 VLSI Design I; A. Milenkovic 4 NRE Cost is Increasing 8/29/2005 VLSI Design I; A. Milenkovic 5 Cost per Transistor 0.0000001 0.0000001 0.000001 0.000001 0.00001 0.00001 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1982 1982 1985 1985 1988 1988 1991 1991 1994 1994 1997 1997 2000 2000 2003 2003 2006 2006 2009 2009 2012 2012 cost: cost: ¢-per per-transistor transistor Fabrication capital cost per transistor (Moore’s law) 8/29/2005 VLSI Design I; A. Milenkovic 6 Silicon Wafer Single die Wafer From http://www.amd.com Going up to 12” (30cm)

•VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •1

CPE/EE 427, CPE 527 VLSI Design I

L02: Design Metrics & IC Manufacturing

Department of Electrical and Computer Engineering University of Alabama in Huntsville

Aleksandar Milenkovic ( www.ece.uah.edu/~milenka )www.ece.uah.edu/~milenka/cpe527-05F

8/29/2005 VLSI Design I; A. Milenkovic 2

Fundamental Design Metrics

• Functionality• Cost

– NRE (fixed) costs - design effort– RE (variable) costs - cost of parts, assembly, test

• Reliability, robustness– Noise margins– Noise immunity

• Performance– Speed (delay)– Power consumption; energy

• Time-to-market

8/29/2005 VLSI Design I; A. Milenkovic 3

Cost of Integrated Circuits• NRE (non-recurring engineering) costs

– Fixed cost to produce the design• design effort• design verification effort• mask generation

– Influenced by the design complexity and designer productivity– More pronounced for small volume products

• Recurring costs – proportional to product volume– silicon processing

• also proportional to chip area– assembly (packaging)– test

VolumecostFixedICpercostVariableICperCost +=

8/29/2005 VLSI Design I; A. Milenkovic 4

NRE Cost is Increasing

8/29/2005 VLSI Design I; A. Milenkovic 5

Cost per Transistor

0.00000010.0000001

0.0000010.000001

0.000010.00001

0.00010.0001

0.0010.001

0.010.01

0.10.111

19821982 19851985 19881988 19911991 19941994 19971997 20002000 20032003 20062006 20092009 20122012

cost: cost: ¢¢--perper--transistortransistor

Fabrication capital cost per transistor (Moore’s law)

8/29/2005 VLSI Design I; A. Milenkovic 6

Silicon Wafer

Single die

Wafer

From http://www.amd.com

Going up to 12” (30cm)

Page 2: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •2

8/29/2005 VLSI Design I; A. Milenkovic 7

Recurring Costs

yieldtestFinalcostPackagingcostTestingcostDiecostVariable ++

=

yieldDiewaferperDieswaferofCostdieofCost×

=

8/29/2005 VLSI Design I; A. Milenkovic 8

Dies per Wafer

areaDie2diameterWaferπ

areaDie)diameter/2(WaferπwaferperDies

2

×

×−

×=

8/29/2005 VLSI Design I; A. Milenkovic 9

Yield

α

αareaDieareaunitperDefects1yieldWaferyieldDie

⎟⎠⎞

⎜⎝⎛ ×+×=

α is approximately 3

4area) (die cost die f=

8/29/2005 VLSI Design I; A. Milenkovic 10

Examples of Cost Metrics (1994)

$4179%402961.5$15000.803Pentium

$27213%482561.6$17000.703Super SPARC

$14919%532341.2$15000.703DEC Alpha

$7327%661961.0$13000.803HP PA 7100

$5328%1151211.3$17000.804PowerPC 601

$1254%181811.0$12000.803486DX2$471%360431.0$9000.902386DX

Die cost

YieldDies/wafer

Area (mm2)

Defects/cm2

Wafer cost

Line width

Metal layers

Chip

8/29/2005 VLSI Design I; A. Milenkovic 11

Yield Example

• Example #1: – 20-cm wafer for a die that is 1.5 cm on a side.– Solution: Die area = 1.5x1.5 = 2.25cm2.

Dies per wafer = 3.14x(20/2)2/2.25 – 3.14x20/(2x2.5)0.5=110.

• Example #2– wafer size of 12 inches, die size of 2.5 cm2, 1 defects/cm2,

α = 3 (measure of manufacturing process complexity)– 252 dies/wafer (remember, wafers round & dies square)– die yield of 16%– 252 x 16% = only 40 dies/wafer die yield !

• Die cost is strong function of die area– proportional to the third or fourth power of the die area

8/29/2005 VLSI Design I; A. Milenkovic 12

Functionality and Robustness

• Prime requirement –IC performs the function it is designed for

• Normal behavior deviates due to – variations in the manufacturing process (dimensions and

device parameters vary between runs and even on a single wafer or die)

– presence of disturbing on- or off-chip noise sources• Noise: Unwanted variation of voltages or currents

at the logic nodes

Page 3: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •3

8/29/2005 VLSI Design I; A. Milenkovic 13

Reliability Noise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and groundnoise

v(t) VDD

• from two wires placed side by side– inductive coupling

• current change on one wire caninfluence signal on the neighboring wire

– capacitive coupling• voltage change on one wire can

influence signal on the neighboring wire• cross talk

• from noise on the power and ground supply rails– can influence signal levels

in the gate

8/29/2005 VLSI Design I; A. Milenkovic 14

Example of Capacitive Coupling

• Signal wire glitches as large as 80% of the supply voltage will be common due to crosstalk between neighboring wires as feature sizes continue to scale Crosstalk vs. Technology

0.16m CMOS0.12m CMOS

0.35m CMOS

0.25m CMOS

Pulsed Signal

Black line quietRed lines pulsedGlitches strength vs technology

From Dunlop, Lucent, 2000

8/29/2005 VLSI Design I; A. Milenkovic 15

Static Gate Behavior

• Steady-state parameters of a gate – static behavior –tell how robust a circuit is with respect to both variations in the manufacturing process and to noise disturbances.

• Digital circuits perform operations on Boolean variables x ∈{0,1}

• A logical variable is associated with a nominal voltage level for each logic state

1 ⇔ VOH and 0 ⇔ VOL

• Difference between VOH and VOL is the logic or signal swing Vsw

V(y)V(x)VOH = ! (VOL)

VOL = ! (VOH)

8/29/2005 VLSI Design I; A. Milenkovic 16

DC OperationVoltage Transfer Characteristic

VOH = f(VOL)VOL = f(VOH)VM = f(VM)

V(x)

V(y)

f

V(y)V(x)

VOH = f (VIL)

VIL VIH

V(y)=V(x)

Switching ThresholdVM

VOL = f (VIH)

8/29/2005 VLSI Design I; A. Milenkovic 17

Mapping between analog and digital signals

• The regions of acceptable high and low voltages are delimited byVIH and VIL that represent the points on the VTC curve where thegain = -1 (dVout/dVin)

V IL V IH V in

Slope = -1

Slope = -1

V OL

V OH

Vout

“ 0” VOL

VIL

VIH

VOH

UndefinedRegion

“ 1”

8/29/2005 VLSI Design I; A. Milenkovic 18

Definition of Noise Margins

Gate Output Gate Input

Large noise margins are desirable, but not sufficient …

For robust circuits, want the “0” and “1” intervals to be as large as possible

Gnd

UndefinedRegion

"1"

"0"

VOH

VIL

VOL

VIHNoise Margin High

Noise Margin Low

NMH = VOH - VIH

NML = VIL - VOL

VDD VDD

GndGnd

Page 4: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •4

8/29/2005 VLSI Design I; A. Milenkovic 19

The Regenerative Property

• A gate with regenerative property ensure that a disturbed signal converges back to a nominal voltage level

v0 v1 v2 v3 v4 v5 v6

-1

1

3

5

0 2 4 6 8 10

t (nsec)

V (v

olts

) v0

v2

v1

8/29/2005 VLSI Design I; A. Milenkovic 20

Conditions for Regeneration

v1 = f(v0) ⇒ v1 = finv(v2)

v0 v1 v2 v3 v4 v5 v6

v0

v1

v2

v3 f(v)

finv(v)

Regenerative Gate

v0

v1

v2

v3

f(v)

finv(v)

Nonregenerative Gate

To be regenerative, the VTC must have a transient region with a gain greater than 1 (in absolute value) bordered by two valid zones where the gain is smaller than 1. Such a gate has two stable operating points.

8/29/2005 VLSI Design I; A. Milenkovic 21

Noise Immunity

• Noise immunity expresses the ability of the system to process and transmit information correctly in the presence of noise

• For good noise immunity, the signal swing (i.e., the difference between VOH and VOL) and the noise margin have to be large enough to overpower the impact of fixed sources of noise

• Noise margin expresses the ability of a circuit to overpower a noise source– noise sources: supply noise, cross talk, interference, offset

• Absolute noise margin values are deceptive– a floating node is more easily disturbed than a node driven by a

low impedance (in terms of voltage)

8/29/2005 VLSI Design I; A. Milenkovic 22

Directivity

• A gate must be undirectional: changes in an output level should not appear at any unchanging input of the same circuit– In real circuits full directivity is an illusion (e.g., due to capacitive

coupling between inputs and outputs)

• Key metrics: output impedance of the driver andinput impedance of the receiver– ideally, the output impedance of the driver should be zero– input impedance of the receiver should be infinity

8/29/2005 VLSI Design I; A. Milenkovic 23

Fan-In and Fan-Out

Fan-out – number of load gates connected to the output of the driving gate

gates with large fan-out are slowerN

M

Fan-in – the number of inputs to the gate

gates with large fan-in are bigger and slower

8/29/2005 VLSI Design I; A. Milenkovic 24

The Ideal Inverter

• The ideal gate should have– infinite gain in the transition region– a gate threshold located in the middle of the logic swing– high and low noise margins equal to half the swing– input and output impedances of infinity and zero, resp.

g = - ∞

Vout

Vin

Ri = ∞

Ro = 0

Fanout = ∞

NMH = NML = VDD/2

Page 5: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •5

8/29/2005 VLSI Design I; A. Milenkovic 25

An Old-time Inverter

NM H

Vin (V)

V

o u t

( V )

NM L

VM

0.0

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0 5.0

8/29/2005 VLSI Design I; A. Milenkovic 26

Delay Definitions

t

Vout

Vin

inputwaveform

outputwaveform

t

Vin Vout

Propagation delay?

signal slopes?

8/29/2005 VLSI Design I; A. Milenkovic 27

Delay Definitions

t

Vout

Vin

inputwaveform

outputwaveform

tp = (tpHL + tpLH)/2Propagation delay

t

50%

tpHL

50%

tpLH

tf

90%

10%tr

signal slopes

Vin Vout

8/29/2005 VLSI Design I; A. Milenkovic 28

Modeling Propagation Delay

• Model circuit as first-order RC network

R

C

vin

vout

vout (t) = (1 – e–t/τ)V

where τ = RC

Time to reach 50% point ist = ln(2) τ = 0.69 τ

Time to reach 90% point ist = ln(9) τ = 2.2 τ

• Matches the delay of an inverter gate

8/29/2005 VLSI Design I; A. Milenkovic 29

Power and Energy Dissipation

• Power consumption: how much energy is consumed per operation and how much heat the circuit dissipates– supply line sizing (determined by peak power)

Ppeak = Vddipeak– battery lifetime (determined by average power dissipation)

p(t) = v(t)i(t) = Vddi(t) Pavg= 1/T ∫ p(t) dt = Vdd/T ∫ idd(t) dt– packaging and cooling requirements

• Two important components: static and dynamic

E (joules) = CL Vdd2 P0→1 + tsc Vdd Ipeak P0→1 + Vdd Ileakage

P (watts) = CL Vdd2 f0→1 + tscVdd Ipeak f0→1 + Vdd Ileakage

f0→1 = P0→1 * fclock

8/29/2005 VLSI Design I; A. Milenkovic 30

Power and Energy Dissipation

• Propagation delay and the power consumption of a gate are related

• Propagation delay is (mostly) determined by the speed at which a given amount of energy can be stored on the gate capacitors– the faster the energy transfer (higher power dissipation) the

faster the gate

• For a given technology and gate topology, the product of the power consumption and the propagation delay is a constant– Power-delay product (PDP) –

energy consumed by the gate per switching event• An ideal gate is one that is fast and consumes little energy, so the

ultimate quality metric is– Energy-delay product (EDP) = power-delay 2

Page 6: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •6

8/29/2005 VLSI Design I; A. Milenkovic 31

• Digital integrated circuits have come a long way and still have quite some potential left for the coming decades

• Some interesting challenges ahead– Getting a clear perspective on the challenges and

potential solutions is the purpose of this course• Understanding the design metrics that govern

digital design is crucial– Cost, reliability, speed, power and energy

dissipation

Summary

8/29/2005 VLSI Design I; A. Milenkovic 32

The MOS Transistor

Polysilicon Aluminum

8/29/2005 VLSI Design I; A. Milenkovic 33

The NMOS Transistor Cross Sectionn areas have been doped with donor ions (arsenic) of concentration ND - electrons are the majority carriers

p areas have been doped with acceptorions (boron) of concentration NA - holes are the majority carriers

Gate oxide

n+Source Drain

p substrate

Bulk (Body)

p+ stopper

Field-Oxide(SiO2)n+

PolysiliconGate

L

W

8/29/2005 VLSI Design I; A. Milenkovic 34

Switch Model of NMOS Transistor

Gate

Source(of carriers)

Drain(of carriers)

| VGS |

| VGS | < | VT | | VGS | > | VT |

Open (off) (Gate = ‘0’) Closed (on) (Gate = ‘1’)

Ron

8/29/2005 VLSI Design I; A. Milenkovic 35

Switch Model of PMOS Transistor

Gate

Source(of carriers)

Drain(of carriers)

| VGS |

| VGS | > | VDD – | VT | | | VGS | < | VDD – |VT| |

Open (off) (Gate = ‘1’) Closed (on) (Gate = ‘0’)

Ron

8/29/2005 VLSI Design I; A. Milenkovic 36

CMOS Inverter: A First Look

VDD

Vout

CL

Vin

Page 7: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •7

8/29/2005 VLSI Design I; A. Milenkovic 37

CMOS Inverter: Steady State Response

VDD

Rn

Vout = 0

Vin = V DD

VDD

Rp

Vout = 1

Vin = 0

VOL = 0VOH = VDD

VM = f(Rn, Rp)

8/29/2005 VLSI Design I; A. Milenkovic 38

Growing the Silicon Ingot

From Smithsonian, 2000

8/29/2005 VLSI Design I; A. Milenkovic 39

CMOS Process at a Glance

Define active areasEtch and fill trenches

Implant well regions

Deposit and patternpolysilicon layer

Implant source and drainregions and substrate contacts

Create contact and via windowsDeposit and pattern metal layers

• One full photolithographysequence per layer (mask)

• Built (roughly) from the bottom up5 metal 24 metal 12 polysilicon3 source and drain

diffusions1 tubs (aka wells, active

areas)

exception!

8/29/2005 VLSI Design I; A. Milenkovic 40

oxidationoptical

mask

processstep

photoresist coatingphotoresistremoval (ashing)

spin, rinse, dry

acid etch

photoresistdevelopment

stepper exposure

Photolithographic Process

8/29/2005 VLSI Design I; A. Milenkovic 41

Patterning - Photolithography

1. Oxidation2. Photoresist (PR) coating3. Stepper exposure4. Photoresist development

and bake5. Acid etching

Unexposed (negative PR)Exposed (positive PR)

6. Spin, rinse, and dry7. Processing step

Ion implantationPlasma etchingMetal deposition

8. Photoresist removal (ashing)

mask

SiO2 PR

UV light

8/29/2005 VLSI Design I; A. Milenkovic 42

Example of Patterning of SiO2

Si-substrate

Silicon base material

Si-substrate

3. Stepper exposure

UV-lightPatternedoptical mask

Exposed resist

1&2. After oxidation and deposition of negative photoresist

PhotoresistSiO2

Si-substrate

Si-substrate

SiO2

8. Final result after removal of resist

Si-substrate

SiO2

5. After etching

Hardened resist

SiO2Si-substrate

4. After development and etching of resist, chemical or plasma etch of SiO2

Hardened resist

Chemical or plasmaetch

Page 8: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •8

8/29/2005 VLSI Design I; A. Milenkovic 43

Diffusion and Ion Implantation

1. Area to be doped is exposed (photolithography)

2. DiffusionorIon implantation

8/29/2005 VLSI Design I; A. Milenkovic 44

Deposition and Etching1. Pattern masking

(photolithography)

2. Deposit material over entire wafer

CVD (Si3N4)chemical deposition

(polysilicon)sputtering (Al)

3. Etch away unwanted material

wet etchingdry (plasma) etching

8/29/2005 VLSI Design I; A. Milenkovic 45

Planarization: Polishing the Wafers

From Smithsonian, 20008/29/2005 VLSI Design I; A. Milenkovic 46

Self-Aligned Gates

1. Create thin oxide in the “active” regions, thick elsewhere

2. Deposit polysilicon

3. Etch thin oxide from active region (poly acts as a mask for the diffusion)

4. Implant dopant

8/29/2005 VLSI Design I; A. Milenkovic 47

Simplified CMOS Inverter Process

cut line

p well

8/29/2005 VLSI Design I; A. Milenkovic 48

P-Well Mask

Page 9: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •9

8/29/2005 VLSI Design I; A. Milenkovic 49

Active Mask

8/29/2005 VLSI Design I; A. Milenkovic 50

Poly Mask

8/29/2005 VLSI Design I; A. Milenkovic 51

P+ Select Mask

8/29/2005 VLSI Design I; A. Milenkovic 52

N+ Select Mask

8/29/2005 VLSI Design I; A. Milenkovic 53

Contact Mask

8/29/2005 VLSI Design I; A. Milenkovic 54

Metal Mask

Page 10: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •10

8/29/2005 VLSI Design I; A. Milenkovic 55

A Modern CMOS Process

p-

p-epip well n well

p+n+

gate oxide

Al (Cu)

tungsten

SiO2

SiO2

TiSi2

Dual-Well Trench-Isolated CMOS

field oxide

8/29/2005 VLSI Design I; A. Milenkovic 56

Modern CMOS Process Walk-Through

p+

p-epi Base material: p+ substrate with p-epi layer

p+

After plasma etch of insulating trenches using the inverse of the active area mask

p+

p-epi SiO2

3SiN

4

After deposition of gate-oxide and sacrifical nitride (acts as a buffer layer)

8/29/2005 VLSI Design I; A. Milenkovic 57

CMOS Process Walk-Through, con’t

SiO2 After trench filling, CMP planarization, and removal of sacrificial nitride

After n-well and VTpadjust implants

n

After p-well and VTnadjust implants

p

8/29/2005 VLSI Design I; A. Milenkovic 58

CMOS Process Walk-Through, con’t

After polysilicon deposition and etch

poly(silicon)

After n+ source/dram and p+ source/drain implants. These steps also dope the polysilicon.

p+n+

After deposition of SiO2insulator and contact hole etch

SiO2

8/29/2005 VLSI Design I; A. Milenkovic 59

CMOS Process Walk-Through, con’t

After deposition and patterning of first Al layer.

Al

After deposition of SiO2insulator, etching of via’s, deposition and patterning of second layer of Al.

AlSiO2

8/29/2005 VLSI Design I; A. Milenkovic 60

Layout Editor: max Design Frame

Page 11: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •11

8/29/2005 VLSI Design I; A. Milenkovic 61

max Layer Representation

• Metals (five) and vias/contacts between the interconnect levels– Note that m5 connects only to m4, m4

only to m3, etc., and m1 only to poly, ndif, and pdif

– Some technologies support “stacked vias”

• Wells (nw) and other select areas (pplus, nplus, prb)

• Active – active areas on/in substrate (poly gates, transistor channels (nfet, pfet), source and drain diffusions (ndif, pdif), and well contacts (nwc, pwc))

8/29/2005 VLSI Design I; A. Milenkovic 62

CMOS Inverter max Layout

VDD

GND

NMOS (2/.24 = 8/1)

PMOS (4/.24 = 16/1)

metal2

metal1polysilicon

InOut

metal1-poly via

metal2-metal1 via

metal1-diff via

pfet

nfet

pdif

ndif

8/29/2005 VLSI Design I; A. Milenkovic 63

Simplified Layouts in max• Online design rule checking (DRC)• Automatic fet generation (just overlap poly and

diffusion and it creates a transistor)• Simplified via/contact generation

– v12, v23, v34, v45– ct, nwc, pwc

0.44 x 0.44 m1

0.3 x 0.3 ct

0.44 x 0.44 poly

8/29/2005 VLSI Design I; A. Milenkovic 64

Design Rule Checker

poly_not_fet to all_diff minimum spacing = 0.14 um

8/29/2005 VLSI Design I; A. Milenkovic 65

Design Rules• Interface between the circuit designer and process

engineer• Guidelines for constructing process masks• Unit dimension: minimum line width

– scalable design rules: lambda parameter– absolute dimensions: micron rules

• Rules constructed to ensure that design works even when small fab errors (within some tolerance) occur

• A complete set includes– set of layers– intra-layer: relations between objects in the same layer– inter-layer: relations between objects on different layers

8/29/2005 VLSI Design I; A. Milenkovic 66

Why Have Design Rules?To be able to tolerate some level of fabrication

errors such as1. Mask misalignment

2. Dust

3. Process parameters (e.g., lateral diffusion)

4. Rough surfaces

Page 12: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •12

8/29/2005 VLSI Design I; A. Milenkovic 67

Intra-Layer Design Rule Origins

• Minimum dimensions (e.g., widths) of objects on each layer to maintain that object after fab– minimum line width is set by the resolution of the

patterning process (photolithography)• Minimum spaces between objects (that are not

related) on the same layer to ensure they will not short after fab

0.150.15

0.3 micron

0.3 micron

8/29/2005 VLSI Design I; A. Milenkovic 68

Intra-Layer Design Rules

Metal2 4

3

10

90

Well

Active3

3

Polysilicon2

2

Different PotentialSame Potential

Metal1 3

32

Contactor Via

Select2

or6

2Hole

8/29/2005 VLSI Design I; A. Milenkovic 69

Inter-Layer Design Rule Origins

1. Transistor rules – transistor formed by overlap of active and poly layers

Transistors

Catastrophic error

Unrelated Poly & Diffusion

Thinner diffusion,but still working

8/29/2005 VLSI Design I; A. Milenkovic 70

Transistor Layout

1

2

5

3

Tran

sist

or

8/29/2005 VLSI Design I; A. Milenkovic 71

Select Layer

1

3 3

2

2

2

WellSubstrate

Select3

5

8/29/2005 VLSI Design I; A. Milenkovic 72

Inter-Layer Design Rule Origins, Con’t

2. Contact and via rulesM1 contact to p-diffusion

M1 contact to poly

Mx contact to My

Contact Mask

Via Masks

0.3

0.14

both materials mask misaligned

M1 contact to n-diffusion

Contact: 0.44 x 0.44

Page 13: •VLSI Design I; A. Milenkovic •1milenka/cpe527-05F/lectures/l02_dmicf.pdf · 2005-08-29 · •VLSI Design I; A. Milenkovic •3 8/29/2005 VLSI Design I; A. Milenkovic 13 Reliability

•VLSI Design I; A. Milenkovic •13

8/29/2005 VLSI Design I; A. Milenkovic 73

Vias and Contacts

1

2

1

Via

Metal toPoly ContactMetal to

Active Contact

1

2

5

4

3 2

2

8/29/2005 VLSI Design I; A. Milenkovic 74

CMOS Process Layers

COGpassivation, overglass, pad=glassglass

CMTthird-level metal=m3metal3

CVSmetal2/metal3 via=via2via2

CMSsecond-level metal=m2metal2

CMFfirst-level metal=m1metal1

CCP and CCAcontact cut, poly contact, diffusion contact=contactcontact

CSPpdiff, p-select, pplus, p+=grow(pdiff)p-diffusion implant

CSNndiff, n-select, nplus, n+=grow(ndiff)n-diffusion implant

CPGpoly, gate=polypolysilicon

CAAthin oxide, thinox, island, gate oxide=pdiff+ndiffactive

CWPbulk, substrate, tub, p-tub, moat=pwellp-well

CWNbulk, substrate, tub, n-tub, moat=nwelln-well

MOSIS mask labelAlternative names for mask/layerDerivation from drawn

layers

Mask/Layer name

8/29/2005 VLSI Design I; A. Milenkovic 75

To probe further

• http://www.leb.e-technik.uni-erlangen.de/lehre/mm/html/start.htm