25
4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 1 Autonomous atmospheric correction and model based land use classification of CHRIS data of the AquiferEx test-sites in Tunisia Heike Bach, Wolfgang Eder, Silke Begiebing VISTA GmbH Remote Sensing in Geosiences www.vista-geo.de

Autonomous atmospheric correction and model based land use ...€¦ · TIGER: ESA/UNESCO initiative with focus: Space – Water – Africa ... CHRIS Mode 3 (only 18 bands) Pixel-wise

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 1

    Autonomous atmospheric correction and model based land use

    classification of CHRIS data of the AquiferEx test-sites in Tunisia

    Heike Bach, Wolfgang Eder, Silke Begiebing

    VISTA GmbHRemote Sensing in Geosiences

    www.vista-geo.de

  • 2

    ESA/ESRIN – AQUIFEREOEP-DUEP-EOPS-SW04-0005

    2AQUIFER Project

    Remote Sensing for Management of Transboundary Aquifers in Africa

    • TIGER Aquifer = demonstrator projectTIGER: ESA/UNESCO initiative with focus: Space – Water – Africa

    • ESA Aquifer funded / embedded withinESA – DUE: DATA USER ELEMENT

    • UNESCO SASS, UNESCO IHP

  • 3

    ESA/ESRIN – AQUIFEREOEP-DUEP-EOPS-SW04-0005

    3AQUIFER Project

    Product and Service Responsibility

    “Operational” Products and Services: - PHASE 2 and PHASE 31. Land Use/Land Cover Maps and Change Maps Local Providers/

    SCOT-F2. Digital Terrain Models Telespazio -I / GAF-D3. Water Abstraction Estimation JR - A4. Surface Water Extension and Dynamics GAF - D

    “Science” Products: - PHASE 35. Refined Land Use Map Product VISTA - D6. Subsidence Monitoring and Assoc. Error Maps Telespazio - I7. Refined Water Abstraction Estimation JR - A8. Water Vegetation Monitoring over entire Aquifer Uni Jena - D9. ETA and Water Balance VISTA - D

    AQUIFER-PROJECT WEBSITE: http://www2.gaf.de/Aquifer/

  • 4

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 4

    The AquiferEx Campaign

    • In the frame of AQUIFER, an ESA funded airborne campaign “AquiferEx” was conducted

    • performed by the German Aerospace Establishment DLR

    • 2 test sites in Tunisia were mapped using 2 sensors

    • Hyperspectral: AVIS (University of Munich)

    • Multifrequent + multipolarimetric Radar: ESAR (DLR).

    • Ground Truth was collected by the University of Munich and DLR during the flight campaign

    • AquiferEx data will be used for a refined land use / cover map

  • 5

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 5

    Test-sites of AquiferEx

    Gabès

    Ben Gardane

    Tripoli

    Tunis

  • 6

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 6

    AVIS acquisition09.11.05(VNIR)

    Flight Strips of Airborne CampaignSynchronous satellite acquisitions: ASAR/AP data

    Gabès, 28.11.2005 + E-SAR Ben Gardane, 25.11.2005 + AVIS

    E-SAR acquis.11.11.05L-Band HH,VH,VV

  • 7

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 7

    Test Site: Ben GardaneSynchronous Satellite acquisitions: CHRIS

    Legend

    Flight strip

    CHRIS NorthAcquisition date:

    23.10.2005

    CHRIS SouthAcquisition date:

    31.10.2005

    CHRIS Mode3A, NadirGSD: 17 m

    700, 715, 900 nm

    Ground Truth points

  • 8

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 8

    Legend

    Flight strip

    CHRIS EastAcquisition date:01.11.2005

    CHRIS WestAcquisition date:09.11.2005

    CHRIS Mode3A, Nadir

    GSD: 17 m

    700, 715, 900 nm

    Ground Truth points

    Test Site: GabesSynchronous Satellite acquisitions: CHRIS

  • 9

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 9

    Autonomous atmospheric correctionof CHRIS data

    • A methodology that uses MODTRAN4 radiative transfer modelling is applied for atmospheric correction

    • Acquisition parameters on solar and observation geometry are known from sensor header information

    • Parameterisation of aerosol optical thickness (or visibility) and atmospheric water vapour content requires atmospheric data that is often missing (as is the case for the Tunisian test-sites)

    • It will be demonstrated how hyperspectral data allow the autonomous retrieval of water vapour from spectral information

    • Multidirectional observations further allow the assessment of the adequate atmospheric visibility.

    • Thus, a fully autonomous atmospheric correction is possible.

  • 10

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 10

    water vapour factor for Gabès

    20

    25

    30

    35

    40

    45

    50

    55

    60

    500 600 700 800 900 1000 1100Wavelength [nm]

    Spe

    ctra

    l Ref

    lect

    ance

    [%]

    0.51

    1.51.28

    Soil spectra retrieved under the assumption of different water vapour factors: 0.5 – 1.0 – 1.5

    Determination of Water VapourCHRIS Mode 3 (only 18 bands)

    Pixel-wise retrieved water vapourMean = 0.71 Std.dev=0.03

    => Sensor noise dominates due to low variability of water vapour, but scene average derivable

    Ben Gardane

  • 11

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 11

    Vegetation spectra retrieved under the assumption of different water vapour factors: 0.5 – 1.0 – 1.5

    Determination of Water VapourCHRIS Mode 1 (64 bands)

    water vapour factor

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    700 750 800 850 900 950 1000 1050 1100

    Wavelength [nm]

    Spec

    tral R

    efle

    ctan

    ce [%

    ]

    0.510.651.5

    => Influence of land surface properties very low; vegetation water separable

    Pixel-wise retrieved water vapourMean = 0.65 Std.dev=0.04

    Baasdorf

  • 12

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 12

    The Soil-Leaf-Canopy (SLC) reflectance model simulates the BRDF of a soil using the CHRIS acquisition specifications:

    0

    20

    40

    60

    80

    400 500 600 700 800 900 1000 1100

    Wavelength [nm]

    Spec

    tral R

    efle

    ctan

    ce [%

    ]

    Forward 55°Forward 36°NadirBackward 36°Backward 55°

    Concept: Varying the visibility in the atmospheric correction, the most similar CHRIS spectra are selected.

    Determination of Visibility

  • 13

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 13

    Multiangular soil spectra retrieved under the assumption of different atmospheric visibilities

    Determination of Visibility

    Visibility = 5km

    0

    10

    20

    30

    40

    50

    60

    70

    80

    400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100

    Wavelength [nm]

    Spec

    tral

    Ref

    lect

    ance

    [%]

    Forw. 55 Forw. 36 NadirBackw. 36 Backw. 55

  • 14

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 14

    Multiangular soil spectra retrieved under the assumption of different atmospheric visibilities

    Determination of Visibility

    Visibility = 10km

    0

    10

    20

    30

    40

    50

    60

    70

    80

    400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100

    Wavelength [nm]

    Spec

    tral

    Ref

    lect

    ance

    [%]

    Forw. 55 Forw. 36 NadirBackw. 36 Backw. 55

  • 15

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 15

    Multiangular soil spectra retrieved under the assumption of different atmospheric visibilities

    Determination of Visibility

    Visibility = 23km

    0

    10

    20

    30

    40

    50

    60

    70

    80

    400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100

    Wavelength [nm]

    Spec

    tral

    Ref

    lect

    ance

    [%]

    Forw. 55 Forw. 36 NadirBackw. 36 Backw. 55

  • 16

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 16

    Multiangular soil spectra retrieved under the assumption of different atmospheric visibilities

    Determination of Visibility

    Visibility = 40km

    0

    10

    20

    30

    40

    50

    60

    70

    80

    400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100

    Wavelength [nm]

    Spec

    tral

    Ref

    lect

    ance

    [%]

    Forw. 55 Forw. 36 NadirBackw. 36 Backw. 55

  • 17

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 17

    Visibility selected with BRDF similar to model results avoiding zero reflectance in the visible;

    Example Result : VisibilityBen Gardane 23.10.2005

    Determination of Visibility

    23 km40 km

  • 18

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 18

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    400 450 500 550 600 650 700 750 800 850 900Wavelength [nm]

    Spec

    tral

    Ref

    lect

    ance

    [%]

    Spectrometer (11.11.)maxminAVIS (11.11.)CHRIS ( 9.11.)

    Validation of atmospheric correctionSensor comparison for Gabès

    Spectrometer & AVIS compared to CHRIS; harvested field

  • 19

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 19

    Validation of atmospheric correctionSensor comparison for Gabès

    Spectrometer & AVIS compared to CHRIS; alfalfa field

    0

    10

    20

    30

    40

    50

    60

    70

    400 450 500 550 600 650 700 750 800 850 900Wavelength [nm]

    Spec

    tral

    Ref

    lect

    ance

    [%]

    Spectrometer (11.11.)maxminAVIS (11.11.)CHRIS (9.11.)

  • 20

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 20

    Parameter retrieval using SLC model inversion techniques

    0

    10

    20

    30

    40

    50

    60

    400 500 600 700 800 900 1000 1100

    Wavelength [nm]

    Spec

    tral R

    efle

    ctan

    ce [%

    ]

    LAI=0LAI=0.5LAI=1LAI=1.5LAI=2

    The Soil-Leaf-Canopy (SLC) reflectance model simulates a set of possible soil background and vegetation combinations and selects the soil and LAI where RMS deviation to CHRIS observation is minimum. Sample SLC results:

    Vegetation on dry, bright soil Vegetation on wet, dark soil

    0

    10

    20

    30

    40

    50

    60

    400 500 600 700 800 900 1000 1100

    Wavelength [nm]

    Spec

    tral R

    efle

    ctan

    ce [%

    ]

    LAI=0LAI=0.5LAI=1LAI=1.5LAI=2

  • 21

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 21

    Input Images Gabès to be classified

    VIS (bands 1- 4- 9) Red Edge (bands 9-11-16)

  • 22

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 22

    SLC model inversion resultsdry soilhigh iron soilwetsoillimestonewater

    LAI0.6 – 0.80.8 – 1.21.2 – 1.41.4 – 1.6> 1.6

  • 23

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 23

    Separation of vegetated areas under irrigation or under dry conditions

    Remark: Just one moment in time!

    Irrigated

    Non irrigated

  • 24

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 24

    Model based classification resultSoil background

    Vegetationcharacteristics

    Agricultural management

    LAI0.6 – 0.80.8 – 1.21.2 – 1.41.4 – 1.6> 1.6

    dry soilhigh iron soilwetsoil

    Irrigated

    Non irrigated

  • 25

    4th ESA CHRIS PROBA Workshop September 19- 21th 2006 No. 25

    Conclusions• Based solely on radiative transfer model techniques for the

    atmosphere (MODTRAN) and the land surface (SLC), it is possible to derive

    – the atmospheric properties (water vapour and visibility) needed for reflectance calibration

    – Bio-geo-physical parameters of the land surface that can be translated in an advanced classification

    • Multiangular CHRIS data in full spectral mode are most suitable for this task.

    • The developed model based approach showed promising results, but is only a very first step.

    • Planned satellite sensors like ENMAP will allow to further develop, enhance and apply the presented methodology.