97
1 Automobile Automobile Gearbox Gearbox BY: GAURANG PRAJAPATI

Automobile Gearboxgaurang (2)

Embed Size (px)

Citation preview

Page 1: Automobile Gearboxgaurang (2)

1

AutomobileAutomobile Gearbox Gearbox

• BY:

GAURANG PRAJAPATI

Page 2: Automobile Gearboxgaurang (2)

2

The word The word “Transmission”“Transmission”

• The word transmission means the mechanism that transmits the power from the engine crank shaft to the rear wheels.

Page 3: Automobile Gearboxgaurang (2)

3

Function of Function of TransmissionTransmission

• Provide a means to vary torque ration between the engine and the road wheels as required.

• Provides a neutral position.• A means to back the car by

reversing the direction of rotation of the drive is also provided by the transmission.

Page 4: Automobile Gearboxgaurang (2)

4

Gear RatioGear Ratio

The gear ratio, or velocity ratio, between a pair of gear wheels is in inverse ratio to the number of teeth on each.

Page 5: Automobile Gearboxgaurang (2)

5

Gear RatioGear Ratio

Thus,

NB/NA = DA/DB= nA/nB

NB = NA (nA/nB)

Page 6: Automobile Gearboxgaurang (2)

6

Gear RatioGear RatioWhere:

NA= rev per min of gear A,

nA =  number of teeth on A

NB = rev per min of gear B,

nB =  number of teeth on B

DA = Diameter of gear A

DB = Diameter of gear B

Page 7: Automobile Gearboxgaurang (2)

7

Types of GearboxTypes of Gearbox

• Sliding mesh gearbox• Constant mesh gearbox• Synchromesh gearbox • Epicyclic Gearbox

Page 8: Automobile Gearboxgaurang (2)

8

Sliding mesh type Sliding mesh type gearboxgearbox

1.Constant mesh gears.

2.Primary shaft (Clutch shaft)

3.Spigot bearing.4.Main shaft.5.Lay shaft

(counter shaft)

Page 9: Automobile Gearboxgaurang (2)

9

• This shaft transmits the drive from the clutch to the gearbox .

• At the end, the shaft is supported by a spigot bearing positioned close to the splines on to which the clutch driven plate is connected.

Sliding mesh type Sliding mesh type gearboxgearbox

Primary shaft

Page 10: Automobile Gearboxgaurang (2)

10

• The main load on this shaft is taken by a bearing; normally a sealed radial ball type, positioned close to an input gear called a constant mesh pinion.

Sliding mesh type Sliding mesh type gearboxgearbox

Primary shaft

Page 11: Automobile Gearboxgaurang (2)

11

• The gear is so named because it is always in mesh with a larger gear

• Small driving gear is called a pinion and a large gear a wheel.

Sliding mesh type Sliding mesh type gearboxgearbox

Primary shaft

Page 12: Automobile Gearboxgaurang (2)

12

• This shaft, which is normally fixed to the gearbox casing, supports the various-sized driving pinions of the layshaft gear cluster

Sliding mesh type Sliding mesh type gearboxgearbox

Layshaft

Page 13: Automobile Gearboxgaurang (2)

13

• This splined output shaft carries spur gearwheels that slide along the shaft to engage with the appropriate lay shaft gears.

• At the ‘front’ end, the main shaft is supported by a spigot bearing situated in the centre of the constant mesh pinion.

Sliding mesh type Sliding mesh type gearboxgearbox

Main Shaft

Page 14: Automobile Gearboxgaurang (2)

14

• A heavy duty radial ball bearing is fitted at the other end to take the force of the gears as the attempt to move apart.

Sliding mesh type Sliding mesh type gearboxgearbox

Main Shaft

Page 15: Automobile Gearboxgaurang (2)

15

• The power comes from the engine to the clutch shaft and thence to the clutch gear which is always in mesh with a gear on the lay shaft.

• All the gears on the lay shaft are fixed to it and as such they are all the time rotating when the engine is running and clutch is engaged.

Sliding mesh type Sliding mesh type gearboxgearbox

Page 16: Automobile Gearboxgaurang (2)

16

Sliding mesh type Sliding mesh type gearboxgearboxGear positionGear position

Page 17: Automobile Gearboxgaurang (2)

17

• All main shaft gearwheels are positioned so that they do not touch the layshaft gears.

• A drive is taken to the layshaft, but the mainshaft will not be turned in neutral position

Sliding mesh type Sliding mesh type gearboxgearbox

Neutral

Page 18: Automobile Gearboxgaurang (2)

18

First gear

Page 19: Automobile Gearboxgaurang (2)

19

Second

Page 20: Automobile Gearboxgaurang (2)

20

Third

Page 21: Automobile Gearboxgaurang (2)

21

Top

Page 22: Automobile Gearboxgaurang (2)

22

Reverse

Page 23: Automobile Gearboxgaurang (2)

23

Disadvantage of Sliding Disadvantage of Sliding mesh Gearboxmesh Gearbox• Gear noise due to the type of

gear. • The difficulty of obtaining a

smooth, quit and quick change of gear without the great skill and judgment.

Page 24: Automobile Gearboxgaurang (2)

24

Selector MechanismSelector Mechanism

• A fork is used to slide a gearwheel along the main shaft in order to select the appropriate gear.

• It is mounted on its own rod and links the driver’s gear stick to the sliding gearbox.

Page 25: Automobile Gearboxgaurang (2)

25

Selector MechanismSelector Mechanism

Page 26: Automobile Gearboxgaurang (2)

26

Selector DetentSelector Detent

• It holds the gears and selectors in position and so prevent gear engagement or disengagement due to vibration.

• The figure shows a typical arrangement suitable for a layout having the selector fork locked to the rod

Page 27: Automobile Gearboxgaurang (2)

27

Interlock MechanismInterlock Mechanism

Page 28: Automobile Gearboxgaurang (2)

28

• Prevents two gears engaging simultaneously

• If this occurs the gearbox will lock up and shaft rotation will be impossible.

Interlock MechanismInterlock Mechanism

Page 29: Automobile Gearboxgaurang (2)

29

• In addition to the mechanism use for driving a vehicle along a road, a power supply is often required for operating external items of auxiliary equipment.

• A light truck having a tipping mechanism is one example, but the most varied application of power take-off units is associated with specialized off-road vehicles

Power take-off Power take-off arrangementarrangement

Page 30: Automobile Gearboxgaurang (2)

30

Power take-off Power take-off arrangementarrangement

Page 31: Automobile Gearboxgaurang (2)

31

Constant mesh Constant mesh gearboxgearbox

• All the gear are in constant mesh with the corresponding gears on the layshaft. The gears on the splined main shaft are free

• The dog clutch are provided which are free to slide on the main shaft.

• The gears on the lay shaft are fixed.

Page 32: Automobile Gearboxgaurang (2)

32

Constant mesh Constant mesh gearboxgearbox

Page 33: Automobile Gearboxgaurang (2)

33

• When the left dog clutch is slid to left by means of the selector mechanism, it’s teeth are engaged with those on the clutch gear we get the direct gear.

Constant mesh Constant mesh gearboxgearbox

Page 34: Automobile Gearboxgaurang (2)

34

• The same dog clutch when slid to right makes contact with the second gear and second gear and second gear is obtained.

• Similarly movement of the right dog clutch to the left result in low gear and towards right in reverse gear.

Constant mesh Constant mesh gearboxgearbox

Page 35: Automobile Gearboxgaurang (2)

35

Double Declutching with Double Declutching with Constant mesh GearboxConstant mesh Gearbox

• For the smooth engagement of the dog clutches it is necessary that the speed of the clutch shaft, layshaft and main shaft gear must be equal.

• Therefore to obtain lower gear, the speed of clutch shaft, layshaft and the main shaft gear must be increased.

• By Double declutching this can be done.

Page 36: Automobile Gearboxgaurang (2)

36

• The clutch is disengaged and the gear is brought to neutral.

• Then the clutch is engaged and accelerator pedal pressed to increased the speed of the main shaft gears.

Double Declutching with Double Declutching with Constant mesh GearboxConstant mesh Gearbox

Page 37: Automobile Gearboxgaurang (2)

37

• After this the clutch is again disengaged and the gear moved to required lower gear and the clutch is again engaged.

• As the clutch is disengaged twice in this process, it is called double declutching

Double Declutching with Double Declutching with Constant mesh GearboxConstant mesh Gearbox

Page 38: Automobile Gearboxgaurang (2)

38

Advantage of Constant mesh Advantage of Constant mesh Gearbox compared to Sliding Gearbox compared to Sliding

mesh Gearboxmesh Gearbox

• As the gear remain always in mesh, it is no longer necessary to use straight spur gear. Instead helical gear is used which are quieter running.

Page 39: Automobile Gearboxgaurang (2)

39

Advantage of Constant mesh Advantage of Constant mesh Gearbox compared to Sliding Gearbox compared to Sliding

mesh Gearboxmesh Gearbox

• Wear of dog teeth on engaging and disengaging is reduced because here all the teeth of the dog clutches are involved compared to only two or three teeth in the case of sliding gears.

Page 40: Automobile Gearboxgaurang (2)

40

• Similar to constant mesh type, because all the gears on the main shaft are in constant mesh with corresponding gears on the layshaft.

• The gears on the main shaft are free to rotate on it and that on the layshaft are fixed to it.

Synchromesh GearboxSynchromesh Gearbox

Page 41: Automobile Gearboxgaurang (2)

41

• Avoids the necessity of double declutching.

• The parts which ultimately are to be engaged are first brought into frictional contact which equalizes their speed, after which these may be engaged smoothly.

Synchromesh GearboxSynchromesh Gearbox

Page 42: Automobile Gearboxgaurang (2)

42

Synchromesh GearboxSynchromesh Gearbox

Guest
teh main part of the bock
Page 43: Automobile Gearboxgaurang (2)

43

• A :engine shaft.• Gears B,C,D,E are free on the main shaft

and always mesh with corresponding gears on lay shaft.

• Members F1 and F2 are free to slide on splines on the mainshaft.

• G1 and G2 are ring shaped members having internal teeth fit onto the external teeth on members F1 and F2 respectively.

Synchromesh GearboxSynchromesh Gearbox

Page 44: Automobile Gearboxgaurang (2)

44

• K1 and K2 are dog teeth on B and D respectively fit onto the teeth of G1

and G2.

• S1 and S2 are the forks.

• T1 and T2 are the ball supported by springs.

• M1,M2,N1,N2,P1,P2,R1,R2 are the frictional surfaces.

Synchromesh GearboxSynchromesh Gearbox

Page 45: Automobile Gearboxgaurang (2)

45

• T1 and T2 tend to prevent sliding of members G1(G2) on F1(F2).

• When force applied on G1(G2) through forks S1(S2) exceeds a certain value, the balls are overcome and member G1(G2) slides over F1(F2).

• There are usually six of these balls symmetrically paced circumferentially in one synchromesh device.

Synchromesh GearboxSynchromesh Gearbox

Page 46: Automobile Gearboxgaurang (2)

46

Engagement of direct Engagement of direct gear in Synchromesh gear in Synchromesh

GearboxGearbox

Cones M1 and M2 mate to equalize speeds.

Member G1 pushed further to engage with dog k1

Page 47: Automobile Gearboxgaurang (2)

47

Engagement of direct Engagement of direct gear in Synchromesh gear in Synchromesh

GearboxGearbox• For direct gear, member G1 and hence

member F1 is slid towards left till cones M1 and M2 rub and friction makes their speed equal.

• Further pushing the member G1 to left cause it to override the balls and get engaged with dogs k1.

• So the drive to the mainshaft is direct from B via F1 and the splines.

Page 48: Automobile Gearboxgaurang (2)

48

Engagement of direct Engagement of direct gear in Synchromesh gear in Synchromesh

GearboxGearbox• Similarly for the second gear the

members F1 and G1 are slid to the right so that finally the internal teeth on G1 are engaged with L1.

• Then the drive to mainshaft will be from B via U1, U2, C, F1 and splines.

• For first gear, G2 and F2 are moved towards left

• The drive will be from B via U1, U3, D, F2 and splines to the main shaft.

Page 49: Automobile Gearboxgaurang (2)

49

Engagement of direct Engagement of direct gear in Synchromesh gear in Synchromesh

GearboxGearbox• For reverse, G2 and F2 are slid towards

right.• In this case the drive will be from B via

U1, U4, U5, E, F2 and splines to the main shaft.

Page 50: Automobile Gearboxgaurang (2)

50

It’s too simple to It’s too simple to UnderstandUnderstand

Page 51: Automobile Gearboxgaurang (2)

51

Selector Mechanism with Selector Mechanism with gear lever on top of the gear lever on top of the

transmisiontransmision

Page 52: Automobile Gearboxgaurang (2)

52

• There are forks mounted on the sleeves on three separate selector rods which are supported in the gearbox casing.

• Each selector sleeve can slide on its rod.• There are slots on the selector rods and

the sleeves are provided with spring loaded balls to avoid unwanted engagement of the gears.

Selector Mechanism with Selector Mechanism with gear lever on top of the gear lever on top of the

transmisiontransmision

Page 53: Automobile Gearboxgaurang (2)

53

Selector Mechanism with Selector Mechanism with gear lever on top of the gear lever on top of the

transmisiontransmision• These balls resist the movement of the

forks until some force is applied to the gear lever to overcome their resistance.

• Grooves are provided on the gear bosses where the selector forks can fit in.

• Transverse motion of the gear lever selects the forks which is to be engaged and the longitudinal movement then slides the forks and its gear to engage the selected gear.

Page 54: Automobile Gearboxgaurang (2)

54

Selector Mechanism with Selector Mechanism with gear lever on top of the gear lever on top of the

transmisiontransmision

• Various gear position are marked on the gear lever knob itself.

Page 55: Automobile Gearboxgaurang (2)

55

Epicyclic GearboxEpicyclic Gearbox

PLANET

SUN GEAR

RING GEAR

Page 56: Automobile Gearboxgaurang (2)

56

• An epicyclic gearbox consists of two, three or even four epicyclic or planetary gear sets.

• A simple gear set has a sun gear, about which planets turns round.

• These planet gears are carried by a carrier and a shaft and are also in mesh with a ring gear.

Epicyclic GearboxEpicyclic Gearbox

Page 57: Automobile Gearboxgaurang (2)

57

How The Gears MoveHow The Gears Move

The white band with blue bars behind the planets represents the planet carrier. 

Page 58: Automobile Gearboxgaurang (2)

58

Principle of Algebraic Principle of Algebraic MethodMethod

“ The gear ratio of a pair of mating gear wheels with respect to the link carrying the axes of the gears is always the same whether the link carrying axes is fixed or moving.”

Page 59: Automobile Gearboxgaurang (2)

59

Speed RatioSpeed Ratio

AB

C

• Here gears B and C mating with each other and connected by means of arm A.

• So according to principle

Speed of the gear B w.r.t arm A = - TC

Speed of the gear B w.r.t arm A TB

Page 60: Automobile Gearboxgaurang (2)

60

• There are two controls i.e. the brake and the clutch.

• The brake is in the form of a band that surrounds a drum attached to the gear (in case of sun gear) or the outer surface of the gear itself (in case of ring gear).

• The clutch used is of multiplate type.

Controls in Epicyclic Controls in Epicyclic GearboxGearbox

Page 61: Automobile Gearboxgaurang (2)

61

• Both the brake and the clutch are applied by the fluid pressure.

• These are selected by hydraulic shift valves which are usually located at the bottom of the gearbox.

Controls in Epicyclic Controls in Epicyclic GearboxGearbox

Page 62: Automobile Gearboxgaurang (2)

62

• All gear are in constant mesh and to engage any desire gear one simply has to apply the particular brake or the clutch.

• For this, the drive from the engine need not to be disconnected as in case of ordinary gearbox.

• Thus gear changing operation becomes very easy with an epicyclic gearbox.

Advantage of Epicyclic Advantage of Epicyclic GearboxGearbox

Page 63: Automobile Gearboxgaurang (2)

63

ZF-ZF-EcomidEcomid

GEARBOGEARBOXX

Page 64: Automobile Gearboxgaurang (2)

64

Some Technical DataSome Technical DataModel 9 S 7 5

Input torque max Nm 770 900

Ratios

Crawler 13.6 9.56

Forward gear 8.91-1.00 6.47-0.73

Reverse gear 11.74 8.53

Speedometer

Mechanical 1.556

Electronic Z=6

Installation Flange mounted on engine; installation potion horizontal to the left or vertical

Shift system Four-speed section Crawler / reverse gear with dog clutch engagement, all other gears synchronized.

Range change group Synchronized.

Shift actuation

Four speed section Mechanical with turning shaft control with double H or superimposed H shift pattern

Range change group Double H: changes are carried out and controlled automatically .

Superimposed H: changeover using preselector switch on shift lever.

Weight (approx. Kg) Approx. 125 kg weight without additional equipment

Oil volume horizontal/ vertical position.

Approx 10.5 dm3 / 9.5 dm3

Oil grade According to relevant ZF list of lubricants, TE-ML 02

Page 65: Automobile Gearboxgaurang (2)

65

• ZF-Ecomid transmission consist of a 4-speed section with crawler and reverse gear .

• The transmission is of counter-shaft type.

• The rear mounted planetary range change group double the number of ratios in 4-speed section.

ZF-Ecomid ZF-Ecomid GearboxGearbox

Page 66: Automobile Gearboxgaurang (2)

66

• Together with crawler, this equips with 9 forward gears.

• Gears 1-4 from the low range and gears 5-8 from the high in the range-change group

ZF-Ecomid ZF-Ecomid GearboxGearbox

Page 67: Automobile Gearboxgaurang (2)

67

4-speed section:• Synchronized, Reverse gear and crawler

with constant mesh.• Mechanical shift operation.• Double-H shifting or super-imposed H

shifting Range-Change group:• Synchronized• Automatic changeover in transition from

gate 3/4 to gate 5/6 and vice versa (pneumatic) with double H shift pattern.

• Changeover with preselector switch on shift lever with super imposed H shift pattern

Page 68: Automobile Gearboxgaurang (2)

68

1. Range Change Group Double H Shift

Mechanism

2. Range Change Group Superimposed H Shift Mechanism

Shift ActuationShift Actuation

Page 69: Automobile Gearboxgaurang (2)

69

Selector patent-1

Selector patent-2

Selector patent-1

Selector patent-2

Superimposed H shift pattern Double H Pattern

Page 70: Automobile Gearboxgaurang (2)

70

Double H Shift Double H Shift Mechanism Mechanism

• This shift mechanism divided into 5 adjacent gates.

• There is spring loaded neutral position in both gates 3/4 and 5/6.

Page 71: Automobile Gearboxgaurang (2)

71

Double H Shift Double H Shift Mechanism Mechanism

• Different strengths of spring detent enable the driver to navigate effectively through the transmission shift pattern.

• The pneumatic selection feature operates automatically when changing from gate 3/4 to 5/6 or back again.

Page 72: Automobile Gearboxgaurang (2)

72

Superimposed H Shift Superimposed H Shift MechanismMechanism

• The shift mechanism divided into 3 adjacent gates.

• There is spring loaded Neutral position in gates 3/4 and 7/8.

Page 73: Automobile Gearboxgaurang (2)

73

Superimposed H Shift Superimposed H Shift MechanismMechanism

• The pneumatic selection feature operated via the preselection switch on the shift lever when changing from gate 3/4 to gate 5/6 or back again.

Page 74: Automobile Gearboxgaurang (2)

74

Shifting of Shifting of TransmissionTransmission

• ZF-Ecomid transmissions are synchro-mesh transmission.

• A synchromesh transmission is one which enables all gears to rotate in the same direction at synchronous speeds.

• This system makes process quicker and more reliable.

Page 75: Automobile Gearboxgaurang (2)

75

Shifting of Shifting of TransmissionTransmission

• There isn’t any problem of double declutching during up shifts.

• No intermediate throttle application and no double declutching when shifting down, even when driving downhill and in difficult situations.

Page 76: Automobile Gearboxgaurang (2)

76

Transmission Shift Transmission Shift Pattern Pattern

1. Double H Shift Pattern.

2. Superimposed H Shift pattern.

Page 77: Automobile Gearboxgaurang (2)

77

Double H Shift PatternDouble H Shift Pattern

• The double H shift pattern has what is known as neutral position in gates 3/4 (low range ) and 5/6 (High Range).

1R

3

5

24

6

7

8N

N

C

Page 78: Automobile Gearboxgaurang (2)

78

Double H Shift PatternDouble H Shift Pattern

• To select gates 1/2 or 7/8, move the selector level against spring force in the relevant direction and hold against this force when selecting.

• The selector lever jumps back to the neutral when released from mid-position of the gate.

Page 79: Automobile Gearboxgaurang (2)

79

Double H Shift PatternDouble H Shift Pattern

• Gate 3/4 and 5/6 are separated by a more powerful spring detent.

• During this gate change, an automatic changeover is performed in the range change group.

• The gate for reverse gear is protected by a pawl stop and requires more force to be applied.

Page 80: Automobile Gearboxgaurang (2)

80

Double H Shift PatternDouble H Shift Pattern

• The different level of spring force provided good orientation within the shift pattern , i.e. the gates can be located with reliable certainty.

Page 81: Automobile Gearboxgaurang (2)

81

Superimposed H Shift Superimposed H Shift Pattern Pattern

• The superimposed H shift pattern has a spring loaded return to neutral (idling) in the 3/4 (low range change group) and 7/8 (high range change group) gates.

R

1

3

24

N

C

68

5

7

N

Page 82: Automobile Gearboxgaurang (2)

82

Superimposed H Shift Superimposed H Shift Pattern Pattern

• To select gates 1/2 or 5/6, move the selector lever jumps against spring force in the relevant direction and hold against this spring force when selecting.

• The selector level jumps back to the neutral when released from the mid-position of the gate.

Page 83: Automobile Gearboxgaurang (2)

83

Superimposed H Shift Superimposed H Shift Pattern Pattern

• The reverse gear is secured by means of a bolt detent and additional force has to be exerted to select it.

Page 84: Automobile Gearboxgaurang (2)

84

Gear SelectionGear Selection

• Move the selector rapidly without too much force. This is important when the transmission oil is still cold.

• When selecting gear, hold the selector lever against the pressure point until the synchronizing process is complete and the gear has engaged properly.

Page 85: Automobile Gearboxgaurang (2)

85

Gear SelectionGear Selection

• For Double H Change out of the ¾ gate into 5/6 gate or vice versa by briefly striking the shift lever with your palm of your hand and swiftly moving the shift lever into the gear required without exerting too much force.

Page 86: Automobile Gearboxgaurang (2)

86

Gear SelectionGear Selection

Down Shifting Up ShiftingGate change

Page 87: Automobile Gearboxgaurang (2)

87

Gear SelectionGear Selection

• For superimposed H if someone wants to shift from 4th gear into the 5th gear in the basic transmission then he1. must Preselect high ratio (high range group) on selector

switch2. Disengage the clutch pedal3. Shift into neutral – at which point the range change group

starts to change over.4. Select gate ½.5. Shift the basic transmission into 1st gear – the range change

group will by now have shifted into high ratio6. Engage the clutch 7. Leave preselector switch in the selected range group

Page 88: Automobile Gearboxgaurang (2)

88

Bleeding the Bleeding the TransmissionTransmission

• The transmission oil heats up during travel.

• This results in formation of excess pressure which is continuously removed via a bleed valve

Why???

Page 89: Automobile Gearboxgaurang (2)

89

PART

IDENTIFICATION

ZF-GEARBOX

Page 90: Automobile Gearboxgaurang (2)

90

Slave cylinder

Oil line

Air line

Page 91: Automobile Gearboxgaurang (2)

91

Z-bracket

Gear shifting bracket

Bush

Page 92: Automobile Gearboxgaurang (2)

92

Reverse gear sensor

Neutral Gear sensor

Page 93: Automobile Gearboxgaurang (2)

93

Speedometer Sensor

Page 94: Automobile Gearboxgaurang (2)

94

Crawler gear sensor

Page 95: Automobile Gearboxgaurang (2)

95

Gear Shifting Bracket

Page 96: Automobile Gearboxgaurang (2)

96

Oil Drain Plug

Page 97: Automobile Gearboxgaurang (2)

97

THANK

YOU