86
Auditory Cortex 1 Jonathan Fritz (with thanks to Xiaoqin Wang) 11

Auditory Cortex 1 - UConn Health

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Auditory Cortex 1 - UConn Health

Auditory Cortex ‐ 1

Jonathan Fritz(with thanks to Xiaoqin Wang)

1‐1

Page 2: Auditory Cortex 1 - UConn Health

Road Map for Auditory Cortex Lectures

Lectures 1‐2: Introduction

OverviewHistorical background >130 years of research Basic anatomical structure and connectivity of auditory cortex Tonotopic and odotopic organization ‐ evidence and debates  Stimulus selectivity and firing patterns State dependent responses

Lecture 3:  Frequency,Pitch, Temporal, Intensity Processing

Lecture 4:  Cognitive Properties of the Adaptive Auditory CortexTask dependence of receptive field properties and auditory responses Long‐term changes in attention, learning and memory 

1‐2

Page 3: Auditory Cortex 1 - UConn Health

Outline: Lecture 1

Broad Overview Historical background (>130 years of research) Basic neuroanatomical structure and connectivity 

of auditory cortex  Functional organization – Tonotopy and Odotopy –

evidence and debates Stimulus selectivity and firing patterns State dependent responses 

1‐3

Page 4: Auditory Cortex 1 - UConn Health

Multiple functional pathways in auditory cortex (Winer)Audition Multisensory Premotor

Memory Limbic Cognitive

1‐4

Page 5: Auditory Cortex 1 - UConn Health

1‐5

Page 6: Auditory Cortex 1 - UConn Health

Additional Unique Aspects of the AuditorySystem and Auditory Cortex: 

(5) Extremely precise temporal precision (50 sec in NLL, 1 ms in A1) – Kv3

(6) Short‐latency responses in A1 (~10‐20 ms vs. 80‐100 ms in V1)

(7) Computational mapping of space – i.e. not reflecting direct map of receptor surface (as in vision or touch) since cochlear receptive surface is a map of frequency, not space 

(8) Broad receptive fields in A1  ‐ comparable to V4 or SII

(9) Extensive topdown projections connecting all levels (10x > bottom‐up)

(10) Extraordinarily adaptive and plastic properties of cells in auditory system

1‐6

Page 7: Auditory Cortex 1 - UConn Health

• Cortical Maps and map‐making• Tonotopy – Frequency analysis and tuning• Odotopy – Maps of echo‐delay (time) and distance• Binaural bands – Spatial analysis and tuning• Temporal tuning – Cortical gradient? Sequence and serial processing

• Feature extraction – cortical representations of pitch, auditory objects, acoustic scenes, computational maps

• Functional streams – What? Where? Who? Lesion results• Forms of behaviorally mediated plasticity• Context‐dependent responses

Organizational and Functional Themes

1‐7

Page 8: Auditory Cortex 1 - UConn Health

Outline: Lecture 1

Broad Overview Historical background (>130 years of research) Basic neuroanatomical structure and connectivity 

of auditory cortex  Functional organization – Tonotopy and Odotopy –

evidence and debates Stimulus selectivity and firing patterns State dependent responses 

1‐8

Page 9: Auditory Cortex 1 - UConn Health

Historical Introduction

Initial studies of Ferrier and Schafer in 19th century 

1‐9

Page 10: Auditory Cortex 1 - UConn Health

Electrical Stimulation ‐> Ear Movement Lesions causing deafness

Ferrier’s Initial Studies in Monkeys

1‐10

Page 11: Auditory Cortex 1 - UConn Health

1‐11

Page 12: Auditory Cortex 1 - UConn Health

1‐12

Page 13: Auditory Cortex 1 - UConn Health

1‐13

Page 14: Auditory Cortex 1 - UConn Health

Outline: Lecture 1

Broad Overview Historical background (>130 years of research) Basic neuroanatomical structure and connectivity 

of auditory cortex  Functional organization – Tonotopy and Odotopy –

evidence and debates Stimulus selectivity and firing patterns State dependent responses 

1‐14

Page 15: Auditory Cortex 1 - UConn Health

1‐15

Page 16: Auditory Cortex 1 - UConn Health

Excitatory and Inhibitory Neurons in an A1 Column

Varieties of Spiny (Excitatory) and Non‐Spiny (Inhibitory) Neurons  

1‐16

Page 17: Auditory Cortex 1 - UConn Health

Laminar Organization of Cortical Neurons

Page 18: Auditory Cortex 1 - UConn Health

Neuroanatomical Characterization of Cortical Areasbased on Cytoarchitecture

1‐16

Page 19: Auditory Cortex 1 - UConn Health

1‐17

Page 20: Auditory Cortex 1 - UConn Health

1‐18

Page 21: Auditory Cortex 1 - UConn Health

Brodmann’s and von Economo’s Cortical Mapping in Human Brain

1‐19

Page 22: Auditory Cortex 1 - UConn Health

Campbell (1905)

Brodmann (1909)

Von Economo andKoskinas (1925)

1‐20

Page 23: Auditory Cortex 1 - UConn Health

1‐21

Page 24: Auditory Cortex 1 - UConn Health

Recording, Cooling (Inactivating) and Stimulating AC (Howard)

1‐22

Page 25: Auditory Cortex 1 - UConn Health

Characterizing Auditory Cortical Areas based on MGN inputDifferent MGN subnuclei have different input‐output profiles 

1‐23

Page 26: Auditory Cortex 1 - UConn Health

Neuroanatomical Characterization of Cortical Areasbased on Thalamic Connectivity

1‐24

Page 27: Auditory Cortex 1 - UConn Health

1‐25

Page 28: Auditory Cortex 1 - UConn Health

Table of projections (many‐to‐many) from thalamic nuclei to different auditory cortical areas in the cat  (Winer) 

1‐26

Page 29: Auditory Cortex 1 - UConn Health

Cortico‐cortical connectivity of some cat auditory cortical areas (Winer) 

1‐27

Page 30: Auditory Cortex 1 - UConn Health

Rough Wiring Diagram (Not a Connectome!) of some Cat Auditory Cortical Areas (Winer) 

Page 31: Auditory Cortex 1 - UConn Health

A1 Chemoarchitecture (Morosan) 

1‐28

Page 32: Auditory Cortex 1 - UConn Health

AC Chemoarchitecture (Hackett) 

1‐29

Page 33: Auditory Cortex 1 - UConn Health

1‐30

Page 34: Auditory Cortex 1 - UConn Health

“What”, “where” and “who” pathways? 

1‐31

Page 35: Auditory Cortex 1 - UConn Health

Another view of streams in human auditory cortex 

Page 36: Auditory Cortex 1 - UConn Health

Overall organization of AC

Page 37: Auditory Cortex 1 - UConn Health

Some cortico‐cortical connections in AC (Hackett) 

Page 38: Auditory Cortex 1 - UConn Health

Some cortico‐cortical connections from AC (Hackett) 

Page 39: Auditory Cortex 1 - UConn Health

Outline: Lecture 2

Broad Overview Historical background (>130 years of research) Basic neuroanatomical structure and connectivity 

of auditory cortex  Functional organization – Tonotopy and Odotopy –

evidence and debates Stimulus selectivity and firing patterns State dependent responses 

1‐3

Page 40: Auditory Cortex 1 - UConn Health

Discoveries and Debates on Tonotopic Organization 

1‐6

Page 41: Auditory Cortex 1 - UConn Health

Basic Idea of Tonotopy (Cochleotopy)

Page 42: Auditory Cortex 1 - UConn Health

Functional Characterization of Auditory Areasbased on Responses to Clicks 

Page 43: Auditory Cortex 1 - UConn Health

Earliest evidence for tonotopic organization in AC

Page 44: Auditory Cortex 1 - UConn Health

Woolsey and Walzl (1942)

Page 45: Auditory Cortex 1 - UConn Health
Page 46: Auditory Cortex 1 - UConn Health
Page 47: Auditory Cortex 1 - UConn Health
Page 48: Auditory Cortex 1 - UConn Health
Page 49: Auditory Cortex 1 - UConn Health

But …. Not everyone agreed on the tonotopic organization of A1 

Page 50: Auditory Cortex 1 - UConn Health
Page 51: Auditory Cortex 1 - UConn Health
Page 52: Auditory Cortex 1 - UConn Health
Page 53: Auditory Cortex 1 - UConn Health
Page 54: Auditory Cortex 1 - UConn Health

New Debate: Is there TonotopicOrganization in Mouse A1? 

Page 55: Auditory Cortex 1 - UConn Health

Evidence for Tonotopic Organization in Mouse (Polley)

Page 56: Auditory Cortex 1 - UConn Health

Polley and Hackett (2011)

Page 57: Auditory Cortex 1 - UConn Health

Evidence Against Tonotopic Organization in Mousefrom Nelken and Kanold labs using 2‐photon imaging

of layer II‐III neurons (2010)

Page 58: Auditory Cortex 1 - UConn Health

(Chen et al., 2011, Nature)

Page 59: Auditory Cortex 1 - UConn Health

(Chen et al., 2011, Nature)

Page 60: Auditory Cortex 1 - UConn Health

Tonotopic organization is present in all cortical layers of the mouse auditory cortex based upon electrical activity ranging from theta waves to single units, and in states of consciousness ranging from areflexic to fully alert.

However there were three circumstances in which the robustness of tonotopy was significantly reduced or absent:

(1) tonotopic organization was not observed when recordings were made from the middle layers of the three belt fields that surround A1 and AAF

(2) tonotopy within the core fields was substantially reduced, though not eliminated altogether,when frequency tuning was characterized with a single, suprathreshold sound level. The loss of tonotopic mapping precision at higher sound intensities is well known (Phillips, 1994) 

(3) a substantial minority of recording sites in the superficial (29.5%) and deep (20.5%) layers were driven by pure tones, yet exhibited irregular frequency tuningand no discernible tonotopic organization

Nuanced View of Tonotopic Organization in Mouse (Polley)

Page 61: Auditory Cortex 1 - UConn Health

Are there auditory space maps in A1? 

Page 62: Auditory Cortex 1 - UConn Health

Echolocation in Bats  ‐ Auditory Specialists   

Page 63: Auditory Cortex 1 - UConn Health

Three types of Biosonar Calls in Bats  

Page 64: Auditory Cortex 1 - UConn Health

Echo‐Delay Tuning in the Panamanian Mustached Bat  

Page 65: Auditory Cortex 1 - UConn Health
Page 66: Auditory Cortex 1 - UConn Health

Auditory Cortex of the Mustached Bat (Suga and colleagues) 

Evidence for Odotopy –i.e. Delay or Distance Map (Z‐axis) in FM‐FM area

Page 67: Auditory Cortex 1 - UConn Health
Page 68: Auditory Cortex 1 - UConn Health

Echo‐Delay Neurons in Eptesicus(Big Brown Bat)

Page 69: Auditory Cortex 1 - UConn Health

Dynamic Representation of Multiple Echo Delays –Simultaneous View of Objects at Multiple Distances

Page 70: Auditory Cortex 1 - UConn Health

Scene Analysis of Acoustic ImagesMultiresolution Decomposition

Page 71: Auditory Cortex 1 - UConn Health

Outline: Lecture 2

Broad Overview Historical background (>130 years of research) Basic neuroanatomical structure and connectivity 

of auditory cortex  Functional organization – Tonotopy and Odotopy –

evidence and debates Stimulus selectivity and firing patterns State dependent responses 

1‐3

Page 72: Auditory Cortex 1 - UConn Health

Auditory cortical neurons respond to many acoustic features of sounds

Frequency (pitch) Timbre  Intensity (amplitude) AM modulation (waveform envelope) FM modulation  Location and distance (computed)  Rate of presentation Stimulus statistics Acoustic objects and scenes – gestalt perception 

1‐3

Page 73: Auditory Cortex 1 - UConn Health
Page 74: Auditory Cortex 1 - UConn Health
Page 75: Auditory Cortex 1 - UConn Health
Page 76: Auditory Cortex 1 - UConn Health
Page 77: Auditory Cortex 1 - UConn Health
Page 78: Auditory Cortex 1 - UConn Health
Page 79: Auditory Cortex 1 - UConn Health

Outline: Lecture 2

Broad Overview Historical background (>130 years of research) Basic neuroanatomical structure and connectivity 

of auditory cortex  Functional organization – Tonotopy and Odotopy –

evidence and debates Stimulus selectivity and firing patterns State dependent responses 

1‐3

Page 80: Auditory Cortex 1 - UConn Health

Activity of the cerebral cortex depends on brain state.   So, what are the different “states” of awareness?

Anesthetized (Isoflurane, Ketamine, Nembutal, urethane, etc.) Anesthetized (Up States – global activity, Down States –network silence) Conscious, unconscious  ‐ arousal, comatose MCS (Minimally conscious state)  Sleep (SWS, REM)  Synchronization, desynchronization Awake ‐ quiescent  Awake ‐ attentive (selective)  Awake ‐ attentive (global) Emotional state (relaxed, stressed) Different drug‐induced states 

What are the behavioral & neural correlates of these different states? Responsiveness, activation of reticular activating system, TRN, 

midline thalamic nuclei?   

Page 81: Auditory Cortex 1 - UConn Health

What are the effects of these states on auditory processing?

Issa & Wang, 2013

Marguet and Harris, 2011 Wilson, 2008

Page 82: Auditory Cortex 1 - UConn Health

Auditory Attention, Context and Associative Meaning

Auditory cortex as a “semantic processor” (Scheich et al., 2011) deducing the task‐specific meaning of sounds by learning and also an “attentional processor” that predicts, updates and selects the most salient sound in the landscape.

Multisensory context also plays a very important role in defining auditory meaning – for example, the crackling of a twig in the jungle means quite a different thing if you just smelled the fresh scent of jaguar. Mice exposed to predator odor changed evoked responses to sound (Halene et al., 2009) and lactating mouse mothers reshape their responses to sound when they are exposed to their pup odors (Cohen et al., 2011). 

Acoustic context (adapting to environmental acoustic landscape)

Page 83: Auditory Cortex 1 - UConn Health

Effect of Pup Odor on Auditory Responses in A1(Cohen, Mizrahi, Nelken, 2011)

Page 84: Auditory Cortex 1 - UConn Health
Page 85: Auditory Cortex 1 - UConn Health

Summary : Lecture 1

There are multiple areas in auditory cortex with different characteristic inputs from MGB and distinctive  cytoarchitecture, chemoarchitecture and gene expression

There are also multiple neuroanatomical and functional pathways (networks) in auditory cortex, and descending topdown projections 

Neurophysiological mapping reveals presence of frequency (tonotopic) maps as well as odotopic and binaural maps 

Neurons respond to frequency, bandwidth, timbre, intensity, location of sounds with multiple spectral/temporal windows

Auditory cortical neurons can be highly selective – and show onset, offset and sustained responses 

Auditory neurons are highly state dependent in their responses – to context, to behavioral state and to learned sound meaning 

1‐80

Page 86: Auditory Cortex 1 - UConn Health