15
2 nd Int. MINOS Workshop, Irradiation of Nuclear Materials: Flux and Dose Effects November 4-6, 2015, CEA INSTN Cadarache, France Atomistic Modeling of Segregation and Precipitation in Fe-Cr Alloys under Irradiation C.-C. Fu, T. Jourdan, M. Nastar, O. Senninger, F. Soisson SRMP, CEA Saclay E. Martinez Los Alamos National Laboratory Y. Bréchet SIMAP, Grenoble INP

Atomistic Modeling of Segregation and Precipitation in Fe-Cr … · 2016. 3. 29. · 2nd Int. MINOS Workshop, Irradiation of Nuclear Materials: Flux and Dose Effects November 4-6,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 2nd Int. MINOS Workshop, Irradiation of Nuclear Materials: Flux and Dose Effects

    November 4-6, 2015, CEA – INSTN Cadarache, France

    Atomistic Modeling of

    Segregation and Precipitation

    in Fe-Cr Alloys under

    Irradiation

    C.-C. Fu, T. Jourdan, M. Nastar, O. Senninger,

    F. Soisson

    SRMP, CEA Saclay

    E. Martinez

    Los Alamos National Laboratory

    Y. Bréchet

    SIMAP, Grenoble INP

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 2

    Fe-Cr alloys: nuclear applications

    • Fe-Cr alloys : a model for ferritic and ferritic-martensitic steels (7-18%Cr) candidate materials for future nuclear reactors (Gen IV and fusion)

    Potential problems under irradiation: - α’ precipitation hardening and embrittlement - Cr depletion at GBs corrosion, embrittlement

    Due to: point defect supersaturation Acceleration of precipitation

    Radiation Induced Segregation (RIS) Radiation Induced Precipitation (RIP)

    • Main objectives: - quantify the acceleration of precipitation in supersaturated alloys - understand the mechanisms controlling RIS - study possible effects of equilibrium vs non-equilibrium segregation, ballistic mixing, carbon

    atoms,… on the precipitation and segregation kinetics

    • Our approach : Atomistic Kinetic Monte Carlo (AKMC) simulations

    0.0 0.2 0.4 0.6 0.8 1.0

    400

    600

    800

    1000

    1200

    α'α

    T (

    K)

    c

    α+α'

    σ

    TC

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 3

    Diffusion model - AKMC Simulations

    Pair interactions on stable (bcc) and saddle-point positions

    • Diffusion by jumps of : - Vacancies (V) - Self-interstitial atoms (SIA) : dumbbells - Direct interstitials (C)

    • The migration barriers are computed with a broken-

    bond model: - with composition and temperature dependent pair

    interactions - with saddle-point pair interactions - fitted on DFT calculations

    • Formation of isolated Frenkel with replacement collision

    sequences or small replacement cascades

    • Annihilation of V and SIA on a perfect sink

    ΓBV

    ΓAV

    “grain boundary” = perfect pd sink

    L = 36 to 104 nm

    Sink strength 22 /12 Lktot

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 4

    x

    PWSCF, GGA-PAW Special Quasi-random structures (SQS) Ordered structures Pair interaction model

    Thermodynamics: effective pair interactions

    Concentration dependent pair interactions: fitted on DFT calculations of ΔHmix at 0K Magnetic and vibrational contributions: linear temperature dependence, fitted on Tα-α’ (exp) M. Levesque et al, Phys. Rev. B 84, 184205 (2011)

    ( ) ( ) ( ), , ( )n n nFeFe CrCr FeCrh h h x

    ( ) ( ) ( )

    ( ) (1 )

    ( ) 2 ( )2

    mix

    n n nnFeFe CrCr FeCr

    n

    H x x x

    zx h h h x

    ( ) ( ) ( )( , ) ( ) (x) , with 1,2n n nFeCr FeCr FeCrg x T h x Ts n

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 5

    Diffusion coefficients

    ~

    0 10 20 30 40 50 60 70 80 90 10010

    -17

    10-16

    10-15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    Exp [1,2]

    AKMC

    850 K

    1713 K [2]

    1453 K [2]

    D (

    cm

    2.s

    -1)

    % Cr

    1124.2 K [1]

    994.5 K [1]

    914.8 K [1]

    [1] Braun & Feller-Kniepmeier, 1985 [2] Jönsson 1995

    Tracer diffusion coefficients (pure iron) Interdiffusion coefficients in Fe-Cr alloys

    O. Senninger et al, Acta Mater. 73, 97–106 (2014)

    - Acceleration of the diffusion at the F/P transition - The Curie temperature decreases with the Cr concentration

    0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.410

    -23

    10-22

    10-21

    10-20

    10-19

    10-18

    10-17

    10-16

    10-15

    10-14

    DFe

    Fe*

    DFe

    Cr*

    D (

    m2 s

    -1)

    1000/T (K -1)

    TαγT

    C 600°C 500°C

    γ-Fe α-Fe α-Fe

    para ferro

    AKMC

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 6

    Kinetics of α- α’ decomposition: isothermal annealing

    Fe-20%Cr T = 500°C AKMC (E. Martinez et al, 2012) 3DAP (Novy et al, 2009)

    0.0 0.2 0.4 0.6 0.8 1.0

    400

    600

    800

    1000

    1200

    '

    '

    T (

    K)

    xCr

    E. Martinez et al, Phys. Rev. B 86, 224109 (2012) S. Novy et al, J. Nucl. Mater. 384 (2009) 96–102

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 8

    Kinetics of α- α’ decomposition: isothermal annealing

    500°C

    540°C

    SANS experiments AKMC simulations AKMC simulations without magnetic acceleration

    Small-angle neutron scattering experiments (SANS) 500°C: Bley (1992) 540°C: Furusaka et al. (1986)

    O. Senninger et al, Acta Mater. 73, 97–106 (2014)

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 9

    Radiation Accelerated Precipitation: experiments

    Experimental evidences (3DAP) in Fe-9% to 20%Cr alloys at 290-300°C - isothermal annealing: α’ precipitation is not observed due to slow kinetics - neutron irradiation: α’ precipitation Bachhav et al (Scripta Mater 2014) Fe-3%Cr to 18%Cr, T= 290°C 3.4 x 10-7 dpa/s, 1.82 dpa V. Kuksenko et al, JNM 432 (2013) 160 C. Pareige et al JNM 456 (2015) 471–476 Precipitation under neutron irradiation in Fe-9%Cr and Fe-12%Cr, but not under ion irradiation at higher flux

    Cr rich clusters

    • P • Si

    3%Cr 6%Cr 9%Cr

    12%Cr 15%Cr 18%Cr

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 10

    3DAP Kuksenko et al

    (2012) Fe-12%Cr

    300°C – 0.6 dpa

    Radiation Accelerated Precipitation: AKMC

    AKMC simulations Point defect concentration profiles Fe-18%Cr @ 563 K, 3.4 x 10-7 dpa.s-1

    104 nm

    GB

    Precipitate free zones near the GBs

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 11

    Radiation Accelerated Precipitation: AKMC vs 3DAP

    • AKMC simulations: one GB in the simulation box (constant sink strength: ) • Cluster Dynamics: evolution of the sink strength (in pure iron)

    better estimation of the point defect concentration

    rescaling of the Monte Carlo time scale

    Strong acceleration by irradiation (x 106-107) Good agreement with the experiments of neutron irradiation (Bachhav et al, 2014)

    F. Soisson, T. Jourdan, Acta Mater 2016.

    2 212 /totk L

    2, ,/ ( )i v tot i vc G k D

    ,

    ,

    ( )

    ( )i v

    MC

    i v

    c AKMCt t

    c CD

    2totk

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    1010

    1011

    1012

    1013

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    R (

    nm

    )

    t (s)

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    1010

    1011

    1012

    1013

    1018

    1019

    1020

    irradiation 3.4 x 10-7 dpa.s

    -1

    3DAP (Bachhav et al, 2014)

    AKMC - k2

    tot = 12/(L

    2)

    AKMC - k2

    tot (CD)

    dp (

    cm

    -3)

    Fe-18%Cr @ 563 K

    thermal ageing

    10-1

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    1010

    1011

    1012

    1013

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    thermal ageing

    R (

    nm

    )

    t (s)

    1018

    1019

    1020

    irradiation 3.4 x 10-7 dpa.s

    -1

    3DAP (Bachhav et al, 2014)

    AKMC - k2

    tot = C

    te

    AKMC - k2

    tot (CD)

    dp (

    cm

    -3)

    Fe-15%Cr @ 563 K

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 12

    Effect of ballistic mixing

    • Experiments: Cr precipitation under neutron irradiation, but not under ion irradiation at higher flux A ballistic dissolution of α’ precipitates, in displacement cascades ?

    • AKMC simulations - at different dose rates G (dpa.s-1) - with different numbers of replacements/displacement Nrep/Ndis = 0 (channeling) Nrep/Ndis = 10 (replacement collision sequences) Nrep/Ndis = 100 (cascades)

    • At 290°C

    - no dissolution of precipitates - no effect of Nrep/Ndis on the precipitation kinetics - dose rate effects: a simple acceleration due to the point defect supersaturation ballistic effects do not explain the difference between ion and neutron irradiations • Possible ballistic effects at lower temperatures (below 100°C)

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    105

    106

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    R (

    nm

    )

    t (s)

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    105

    106

    1018

    1019

    1020

    3.4 x 10-7 dpa.s-1

    10-3 dpa.s-1

    dp (

    cm

    -3)

    Fe-18%Cr @ 563 K

    2, ,/ ( )i v tot i vc G k D

    3 4balΓ

    γ= 10 10Γ stth v v

    G

    c D

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 13

    -40 -20 0 20 400.00

    0.05

    0.10

    0.15

    0.20

    0.012 dpa

    0.636 dpa

    XCr

    distance (nm)

    -40 -20 0 20 4010

    -14

    10-13

    10-12

    10-11

    10-10

    10-9

    vacancies

    self-interstitials

    Cd

    Fe-10%Cr

    950 K

    10-3 dpa.s

    -1

    Radiation-Induced Segregation

    CrV CrICr V

    FeV FeI

    L LC C

    L L

    Steady-state profile:

    jj

    μi ijJ L

    -40 -20 0 20 400.00

    0.05

    0.10

    0.15

    0.20

    0.007 dpa

    0.294 dpa

    XCr

    distance (nm)

    -40 -20 0 20 4010

    -16

    10-15

    10-14

    10-13

    10-12

    10-11

    10-10

    vacancies

    self-interstitials

    Cd

    Fe-10%Cr

    650 K

    10-6 dpa.s

    -1JV/JCr : negative coupling Cr depletion at sinks, dominant at high T JSIA/JCr : positive coupling Cr enrichment at sinks, dominant at low T

    Fe-10%Cr

    T = 650 K, 10-6 dpa.s-1

    Fe-10%Cr

    T = 950 K, 10-3 dpa.s-1

    GB

    GB

    O. Senninger et al Acta Materialia 103, 1–11 (2016)

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 14

    -40 -20 0 20 400.05

    0.10

    0.15

    0.20

    0.25

    0.30

    XCr

    distance (nm)

    0.06 dpa

    -40 -20 0 20 400.05

    0.10

    0.15

    0.20

    XCr

    distance (nm)

    0.338 dpa

    Radiation-Induced Segregation

    CrV CrICr V

    FeV FeI

    L LC C

    L L

    Steady-state profile:

    jj

    μi ijJ L JV/JCr : negative coupling Cr depletion at sinks, dominant at high T JSIA/JCr : positive coupling Cr depletion at sinks, dominant at low T

    Fe-10%Cr

    T = 650 K, 10-6 dpa.s-1

    Fe-10%Cr

    T = 950 K, 10-3 dpa.s-1

    GB

    GB

    W-shape profile

    0.1eVsegCre

    0.1eVsegCre

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 15

    Radiation-Induced Precipitation (AKMC)

    0.0 0.2 0.4 0.6 0.8 1.0

    400

    600

    800

    1000

    1200

    α'α

    T (

    K)

    c

    α+α'

    σ

    TC

    Undersaturated alloys, at low T: strong Cr enrichment on sinks RIS radiation induced precipitation

    T = 563 K Fe-9%Cr 10-6 dpa.s-1

    0.20 dpa

    -40 -20 0 20 400.05

    0.10

    0.15

    0.20

    CCr

    d (nm)

    -40 -20 0 20 4010

    -17

    10-16

    10-15

    10-14

    10-13

    10-12

    10-11

    10-10

    vacancies

    self-interstitials

    d (nm)

    Cd

  • CEA – DEN 2nd Int. MINOS Workshop - November 4-6, 2015, CEA – INSTN Cadarache, France 16

    CONCLUSIONS

    AKMC simulations with thermodynamic and point defect parameters fitted on DFT calculations

    Good description of driving forces, diffusion properties and nucleation

    In Fe-Cr alloys • Magnetic effects are important (impact on thermodynamic and diffusion properties)

    • Radiation Induced Segregation is controlled by a balance between opposite effects of V and SIA the Lij are very dependent of the details of migration barriers may explain the variability of experimental studies (≠ RIS in austenitic steels)

    • Radiation accelerated precipitation

    - a good agreement with neutron irradiations (with rescaling of the sink strength using CD) - no effect ballistic mixing in the experimental conditions (relatively high temperatures, high sink densities) does

    not explain the difference between neutron an on irradiation - precipitation kinetics is less sensitive than Radiation Induced Segregation to the details of migration barriers

    • Related work, perspectives

    - Phase-Field model for RIS (J.B. Piochaud, L. Thunier, A. Legris – UMET, Lille)

    - Precipitation under electron irradiation (O. Tissot, et al)

    - Effects of C (or O, N) on the kinetics of precipitation and segregation