37
Chemistry M.4 Lesson 1 Atom and Periodic Table by Angka Teprattananan 1 angka teprattananan 2 conclude conductivity matter voltage divide pressure agree electric current made up electric field theory negative compose charge to mass destroy appear combine discover definite positive Vocabulary angka teprattananan Greek Model Over 2,000 years ago Democritus concluded that matter could not be divided into smaller and smaller pieces forever Named the smallest piece atomos But Aristotle didnt agree with the concept of atoms. Aristotle thought the earth was composed of matter - which made up of four elements: earth, air, fire, and water. Democritus (c460-371 BC) 3 Aristotle (384-322 BC) angka teprattananan ¨o˹ ´oÅμa¹ ( John Dalton ) Daltons Atomic model 1. All elements are composed of atoms. It is impossible to divide or destroy an atom. 2. All atoms of the same elements are alike. 3. Atoms of different elements are different. 4. Different atoms combine to form a compound in definite whole number ratios. e.g. H 2 O , CO 2 (Expect Na ,H 2 , Br 2 , P 4 , S 8 ) 4 angka teprattananan

Atom and periodic table ???????? [??????????????????] · Chemistry M.4 Lesson 1 Atom and Periodic Table by Angka Teprattananan angka teprattananan 1 2 conclude conductivity matter

  • Upload
    doxuyen

  • View
    251

  • Download
    0

Embed Size (px)

Citation preview

Chemistry M.4 Lesson 1

Atom and Periodic Table

by Angka Teprattananan

1angka teprattananan 2

conclude conductivitymatter voltage

divide pressure

agree electric current

made up electric field

theory negative

compose charge to mass

destroy appear

combine discover

definite positive

Vocabulary

angka teprattananan

Greek Model Over 2,000 years ago Democritus concluded that

matter could not be divided into smaller and smaller pieces forever

Named the smallest piece �atomos�

But Aristotle didn�t agree with the concept of atoms.

Aristotle thought the earth was composed of matter - which made up of four elements:

�earth, air, fire, and water�.

Democritus (c460-371 BC)

3

Aristotle (384-322 BC)

angka teprattananan

¨oË �¹ ´oŵ a¹ ( John Dalton )

Dalton�s Atomic model1. All elements are composed of atoms.

It is impossible to divide or destroy an atom.2. All atoms of the same elements are

alike. 3. Atoms of different elements are

different. 4. Different atoms combine to form a

compound in definite whole number ratios. e.g. H2O , CO2 (Expect Na ,H2 , Br2 , P4 , S8)

4angka teprattananan

(Dalton�s atomic model)

oaµoÁÁÕÃٻà �Ò§e» �¹·Ã§¡ÅÁ ÁÕ¢¹Ò´eÅç¡ äÁ �ÊÒÁÒÃ¶æº �§æ¡æÅaÊÙ­ËÒÂä´ �

5angka teprattananan

e¨ e¨ ·oÁÊ a¹ (J.J. Thomson)

6

J.J. Thomson Studied electrical conductivity of gases

by using a cathode ray tube in high voltage and low pressure.

Passing an electric current makes a beam appear to move from the cathode to the anode end.

angka teprattananan

Thomson�s Experiment

+‐voltage sourceOFF

ON

+

‐By adding an electric field ,

he found that the moving pieces were negative.

And negative particle was called �Electron�

Thomson was able to measure the charge to mass ratio of the electron

q/me = 1.76 x 108 coulombs/gram

7angka teprattananan

Discovery of the Proton– Discovered by Eugen Goldstein– He observed �Canal rays� and found that they

are composed of positive particles � Proton.

8

Eugen Goldstein

angka teprattananan

Canal RaysCanal Rays passed through holes, or channels, in

the reverse direction as the cathode ray.

9

__cathode anode

+

angka teprattananan

¨Ò¡¡Ò÷´Åo§¢o§o¡Å´ �Êäµ¹ Êà u»ä´ �Ç �Ò - à a§ÊպǡËà oo¹ uÀÒ¤ºÇ¡e¡ i ¨Ò¡æ¡ �Ê·ÕèºÃè uÀÒÂã¹ËÅo´Ã a§ÊÕ

æ¤o·´ « è§eºÕè§eº¹e¢ �ÒËÒ¢ aéÇÅºä´ �· aé§ã¹Ê¹ÒÁä¿¿ �ÒæÅaʹÒÁæÁ �eËÅç¡- à a§ÊպǡÁÕ¤ �ÒoaµÃÒÊ �ǹ»Ãa¨ uµ �oÁÇÅäÁ �¤§·Õè ¢ é¹oÂÙ�¡ aºª¹ i´¢o§

æ¡ �Ê·ÕèºÃè uoÂÙ�ÀÒÂã¹ËÅo´Ã a§ÊÕæ¤o·´- ¶ �Òe»ÅÕèÂ¹æ¡ �Êe» �¹äÎo´Ãe¨¹ ¨a¾ºÇ �Òo¹ uÀÒ¤ºÇ¡·Õèe¡ i ¢ 鹨aÁÕ

¤ �Ò»Ãa¨ ue· �Ò¡ aºoieÅ硵Ão¹¾o´Õ ¨ §eÃÕ¡o¹ uÀÒ¤ºÇ¡¹ÕéÇ �Ò �o»Ãµo¹�

10angka teprattananan

Mass of the Electron

Millikan determines the charge of the electron : 1.60 x 10-19 C and the mass of the electron: 9.1 x 10-28 g

The oil drop apparatus

11angka teprattananan

Calculate mass of the Electron1. charge to mass ratio = 1.76x108 coulombs/gram2. charge of electron: = 1.60 x 10-19 g

12angka teprattananan

Thomson�s Atomic Model(Plum Pudding Model)

�oaµoÁe» �¹·Ã§¡ÅÁ »Ãa¡oº´ �ÇÂo»Ãµo¹·ÕèÁÕ»Ãa¨ uºÇ¡æÅaoieÅ硵Ão¹·ÕèÁÕ»Ãa¨ uźoÂÙ�o �Ò§¡Ãa¨ a´¡Ãa¨Ò æÅaÊíÒËà aºoaµoÁ·Õèe» �¹¡ÅÒ§·Ò§

ä¿¿ �Ò¨aÁÕ¨íҹǹo»Ãµo¹e· �Ò¡ aº¨íҹǹoieÅ硵Ão¹¾o´Õ�13angka teprattananan 14

bombarded emit

experiment symbol

gold foil atomic number

spread out mass number

passed through subatomic particlerefract

reflect equal

empty space

distribute

occupy

Vocabulary

angka teprattananan

Discovery of Nucleus

Tested Thomson�s model of atomic structure with the �gold foil� experiment.

Bombarded thin gold foil with a beam of �alpha� particles.

If the positive charge was evenly spread out, the beam should have easily. passed through.

Ernest Rutherford

15angka teprattananan

Most of the particles passed through A few particles were refracted VERY FEW were greatly reflected

16angka teprattananan

Based on his experimental evidence:

The atom is mostly empty space All the positive charge, and

almost all the mass is in a small area in the center. He called this a �nucleus� The electrons distributed around

the nucleus, and occupy most of the volume His model was called a �nuclear

model�

17angka teprattananan

Rutherford's Atomic Model

�oaµoÁ»Ãa¡oº´ �ǹ iÇe¤ÅÕÂÊ« è§ÁÕ»Ãa¨ uºÇ¡(o»Ãµo¹)oÂÙ�µÃ§¡ÅÒ§ ÁÕ¢¹Ò´eÅç¡ÁÒ¡æÅaÁÕÁÇÅÁÒ¡ Ê �ǹoieÅ硵Ão¹·ÕèÁÕ»Ãa¨ uźæÅaÁÕÁÇŹ �o e¤Å èo¹·ÕèÃoº¹ iÇe¤ÅÕÂÊe» �¹ºÃ iedz¡Ç �Ò§"

18angka teprattananan

The Discovery of the Neutron Chadwick bombarded alpha particles at

Beryllium.Neutrons were emitted and in turn hit parafin

and ejected protons from the parafin.Neutrons have mass similar to protons. No electrical charge.

19

James Chadwick

angka teprattananan

The Subatomic particlesSubparticle symbol charge mass(g) mass(amu)

electron e -1 9.1x10-27 0.0005proton p +1 1.67x10-24 1.0072neutron n 0 1.67x10-24 1.0086

THE MASS OF THE NEUTRON IS 1839 times greater than an electron.

Composition of the Nucleus:• nuclei are composed of "nucleons": protons and neutrons • atomic mass units: 1 amu = exactly 1/12 the mass of a carbon-

12 nucleus 20angka teprattananan

¤ÇÒà �¡ ¤ o o¹ uÀÒ¤·ÕèeÅç¡·ÕèÊu e·�Ò·ÕèÁÕ¡ÒÃÂoÁÃaº »�¨¨ uºa¹ÁÕ ¡Òä �¹¾º ¤ÇÒà �¡ 6 µaÇ ¤ o up quark, down quark, strange quark, charmed quark, bottom quark æÅa top quark

- ¹ iǵÃo¹ »Ãa¡oº �Ç up quark 1 µ aÇ æÅa down quark 2 µ aÇ - o»Ãµo¹ »Ãa¡oº �Ç up quark 2 µ aÇ æÅa down quark 1 µaÇ

21angka teprattananan

Atomic Symbol (Nuclear Symbol)• Contain the symbol of the element, the mass number

and the atomic number.

A

ZXMassnumber

Atomicnumber

Element Symbol

• Atomic number = number of protons– Same as the number of electrons in a neutral atom

• Mass number = the number of protons + neutrons

22angka teprattananan

Fill in the blanks for the following nuclear symbols:

Element94Be 14

6C 3517Cl- 74

33As3- 4420Ca2+ 67

31Ga3+

Atomic Number

Mass Number

# of Protons

# of Neutrons

# of Electrons

23angka teprattananan

Isotope , Isotone , Isobar and Isoelectronic

• Isotope are atoms of the same element having different masses, due to varying numbers of neutrons.11H Subatomic particles p = 1 , e = 1 , n = 021H Subatomic particles p = 1 , e = 1 , n = 1

• Isotone are atoms of the different element having equal neutrons.115B Subatomic particles p = 5 , e = 5 , n = 6

126C Subatomic particles p = 6 , e = 6 , n = 6

24angka teprattananan

• Isobar are atoms of the different element having equal mass number.

3616S mass no. of 3616S is 36

3618Ar mass no. of 3618Ar is 36

• Isoelectronic are atoms of the different element having equal electron.20

10Ne Subatomic particles p = 10 , e = 10 , n = 10 24

12Mg2+ Subatomic particles p = 12 , e = 10 , n = 12

25angka teprattananan

Neclear symbols isotope isotone isobar isoelectronic14

6C & 147N

3919K & 40

20Ca35

17Cl & 3717Cl

3818Ar & 32

16S2-

168O & 18

8O40

18Ar & 4020Ca

3517Cl- & 39

19K+

3115P & 32

16S

For each of the following ,check the blank for isotope , isotone , isobar or isoelectronic

26angka teprattananan

27

spectrum excited State

electromagnetic wave

describe

relationship energy levels

wavelength quantize

frequency less-stable

energy absorbing

ground State releasing

Vocabulary

angka teprattananan

Max Plank

studied a spectrum of Electromagnetic Wave. The relationship among the wavelength (λ), the frequency (ν), and the energy (E) are:

or

where c is Speed of light = 3 x 108 m/sh is Planck's Constant = 6.626 x 10-34 J.s

is Frequency (Hz) λ is wavelength (m)

Max Plank

28angka teprattananan

Energy and frequency of Electromagnetic Wave

Êe»¡µÃ aÁ ¤ o 涺ÊÕ·Õèe¡ i ¨Ò¡¡ÒÃe»ÅÕè¹æ»Å§¾Å a§§Ò¹¢o§¤Å è¹æÁ �eËÅç¡ä¿¿ �Ò

Color of spectrum Wavelength (nm) Energy (kJ) frequency(Hz)

Violet Blue Green Yellow Orange

Red

400 - 420420 - 490490 - 580580 - 590590 - 650650 - 700

4.96x10-22 - 4.73x10-22

4.73x10-22 - 4.05x10-22

4.05x10-22 - 3.42x10-22

3.42x10-22 - 3.36x10-22

3.36x10-22 - 3.05x10-22

3.05x10-22 - 2.83x10-22

7.49x1014 - 7.14x1014

7.14x1014 - 6.12x1014

6.12x1014 - 5.17x1014

5.17x1014 - 5.08x1014

5.05x1014 - 4.16x1014

4.61x1014 - 4.28x1014

29angka teprattananan

Calculate about Electromagnetic WaveEx1 Êe»¡µÃ aÁÊÕÁ�ǧ¤ÇÒÁÂÒÇ¤Å è¹ 500 nm ¨aÁÕ¤ÇÒÁ¶Õèe·�Òã´

Ex2 Êe»¡µÃ aÁÊÕæ´§ÁÕ¤ÇÒÁÂÒÇ¤Å è¹ 500 nm ¨aÁÕ¤ÇÒÁ¶ÕèæÅa¾Åa§§Ò¹e·�Òã´

30angka teprattananan

Ex3 The energy of electromagnetic wave is 3x10-22 KJ , Find the color

Ex4 The frequency is 5x1014 Hz , calculate the wavelength , energy and find the color of this spectrum.

31angka teprattananan

Niels Bohr studied a spectrum of Hydrogen atom. discovered the four lines of Hydrogen

spectrums Violet , Blue , Blue-green ,and Red.

How did the spectrum appear ?

Niels Bohr

32angka teprattananan

Bohr used the term energy levels (or shells) to describe. He said that the energy of an electron is quantized, meaning electrons can have one energy level or another but nothing in between.

The energy level an electron normally occupies is called �ground state�. But it can move to a higher-energy (less-stable) by absorbing energy. This higher-energy is called �excited state�.

33angka teprattananan

After it�s done being excited, the electron can return to its original ground state by releasing the energy it has absorbed, as shown in the diagram below.

34angka teprattananan

• Table show the energy of Hydrogen spectrum

Color of Spectrum

Wavelength (nm)

Energy (kJ)

ΔE

Red

Bluegreen

Blue

Violet

656

486

434

410

3.02 x 10-22

4.08 x 10-22

4.57 x 10-22

4.84 x 10-22

10.6 x 10-23

4.9 x 10-23

2.7 x 10-23

35angka teprattananan 36angka teprattananan

Bohr�s Atomic Model

oaµoÁ»Ãa¡oº´ �ÇÂo»Ãµo¹æÅa¹ iǵÃo¹ oÂÙ�ÀÒÂã¹¹ iÇe¤ÅÕÂÊ Ê �ǹoieÅ硵Ão¹Ç iè§oÂÙ�Ãoº æ ¹ iÇe¤ÅÕÂÊe» �¹ª aé¹æ Ëà oe» �¹Ãa´ aº¾Å a§§Ò¹« è§ÁÕ¤ �ÒäÁ �µ �oe¹ èo§¡ a¹

37angka teprattananan

Electron Configuration (o¤Ã§æººoieÅ硵Ão¹)Electrons orbit the nucleus in definite principle

energy levels (7 principle energy levels).The principle energy level can hold only a specific

number of electrons.

Rule ; 2n2

n = principle energy levels

38angka teprattananan

Principle energy levels Maximum Electrons

n = 1 2 en = 2 8 en = 3 18 en = 4 32 en = 5 50 en = 6 72 en = 7 98 e

39angka teprattananan

Rule; Arrangements of electrons in an atom.1. Lowest levels are filled first.

2. Once a level is full, the electrons start filling the next level.

3. Outer level (valence electrons) has maximum electrons equal 8 and next outer level has maximum 8 or 18 electrons.

e.g. 11Na: has 11 electrons First energy level 1 (n =1) can fill 2 electrons

Second energy level 2 (n =2) can fill 8 electrons

Third energy level 3 (n =3) can fill 1 electronOr shot hand 11Na : 2 , 8 , 1

40angka teprattananan

Arrangements of electrons in an atom.1. 3Li : ��������������� 2. 12Mg : ���������������3. 19K : ���������������4. 33As : ���������������5. 53I : ���������������6. 55Cs : ���������������7. 82Pb : ��������������� 8. 88Ra : ��������������� 9. 22Ti : ��������������� 10. 28Ni : ���������������

41angka teprattananan 42

explain sub-energy levels

surround exclusion

electron cloud principle

closest spin

outermost unpair

impossible configuration

exact location notation

predict indicate

Vocabulary

angka teprattananan

Modern Atomic model

Atom has a small positively charged nucleus surrounded by a region of negatively charged electrons to make the entire atom neutral.

called the �electron cloud�.

43

Bohr�s model could not explain complex atoms(can explain Hydrogen atom only).

angka teprattananan

Electron Cloud Model Electrons with the lowest

energy are found in the energy level closest to the nucleus.

Electrons with the highestenergy are found in the outermost energy levels, farther from the nucleus.

It is impossible to determine the exact location of an electron only predict where is could be based on how much energy it has.

44Erwin Schrodinger angka teprattananan

The region of electrons move around the nucleus in other shapes, called �Orbital�

There are 4 kind of orbitals (sub-energy levels) e.g. s , p , d and f

s

p

d

f45angka teprattananan

Electron configurationsBy using ,1. Pauli exclusion principle;

Each orbital can have only 2 electrons and have not the same spin. 2. Aufbau principle;

Electron fill lowest energy levels first.3. Hund�s Rule;

For atoms in ground state, the number of unpaired electrons is the maximum possible and have the same spin.

46angka teprattananan

Arrangements of electrons in Orbital

principle energy levels

(shell)sub-energy levels

(subshell)maximum electron

n = 1 s 2

n = 2 s , p 8

n = 3 s , p , d 18

n = 4 s , p , d , f 32

n = 5 s , p , d , f 32

n = 6 s , p , d 18

n = 7 s , p 8

n = 8 s 247angka teprattananan

Lower energy Higher energy1s 2s 2p 3s 3p 4s 3d 4p �.

48angka teprattananan

1S

2S

3S2P

3P

4S

3d

4P5S

4d

Ex. Give the full electron configuration of 27Co

NOTE. principle energy levelsOr 27Co;

49angka teprattananan

Chemists use a standard notation to indicate the

electron configurations of atoms and molecules.1) Orbital Diagram.

2) Long notation or spdf configuration.1s22s22p63s2....

3) Shorthand Notation or noble gas core.[Ne]3s23p4

s1

s2

50angka teprattananan

Using Orbital Diagram1. 3Li : �� ����.�

2. 12Mg : ��������������������

3. 18Ar : ��������������������

4. 19K : ��������������������

5. 25Mn : ��������������������

6. 26Fe : ��������������������

7. 24Cr : ��������������������

51

1S 2S

angka teprattananan

Using Long Notation or spdf configuration 1. 12Mg : ��1s2 2s2 2p6 3s2���2. 18Ar : �����������������3. 19K : �����������������4. 33As : �����������������5. 38Sr : �����������������6. 55Cs : �����������������7. 28Ni : �����������������8. 24Cr : �����������������9. 29Cu : �����������������

52angka teprattananan

Using Short hand Notation or Noble Gas core.1. 3Li : ���� [He]2s1 ����2. 12Mg : ������������������ 3. 18Ar : ������������������4. 19K : ������������������ 5. 33As : ������������������ 6. 28Ni : ������������������ 7. 37Rb : ������������������8. 53I : ������������������

53angka teprattananan

(Ç iÇ a²¹Ò¡Òâo§µÒÃÒ§¸Òµ u)

The History of the Periodic Table

54angka teprattananan

55

similar property conductor

middle element electricity

roughly luster

publish ductile

organize malleable

increasing reflect

regular except

interval semiconductor

according to stair step

clear up

Vocabulary

angka teprattananan

He noticed that chlorine, bromine and iodine had similar properties. And the atomic mass of the middle element was roughly the average of the masses of the others .

He called �Law of Triads�

Cl Chlorine mass = 35.5Br Bromine mass = 79.9I Iodine mass = 126.9

Average mass of chlorine and iodine= (35.5 + 126.9) / 2= 81.9 (close to Br!)

Dobereiner�s other triads included lithium (Li), sodium (Na) and potassium (K), along with calcium (Ca), strontium (Sr) and barium (Ba).

Johaun Dobereiner

56angka teprattananan

He noticed that every 8th element had similar properties, a bit like a musical scale. He listed some of the known elements in rows of 7 as shown below.He called �Law of Octaves� .

His law of octaves work today with the first 20 elements.57

John Newlands

angka teprattananan

Dmitri Mendeleev In 1869 he published a table of the elements

organized by increasing atomic mass. Noticed similar properties appeared at regular

intervals --> �periodic�

Lothar Meyer At the same time, he published his

own table of the elements organized by increasing atomic mass.

58

Mendeleev

Lothar Meyer

angka teprattananan

Mendeleev’s discovery

59angka teprattananan

The table below compares Mendeleev�s prediction with the actual data.

60angka teprattananan

Henry mosely

The Periodic Table was then arranged according to increasing atomic number. The table was as it is now and cleared up the

Tellurium and Iodine problem.Periodic Law : the physical and chemical

properties of elements are periodic functions of their atomic number and electrons arrangement.

61

Henry mosely

angka teprattananan

Three classes of elements are Metals, Nonmetals and Metalloids

Modern Periodic Table

62angka teprattananan

Metal Elements Good conductors of heat and electricity Have luster, are ductile , malleable , good reflect light All metals are solids at room temperature ,except for

mercury(Hg) Found on left side of periodic table and some on right

side of table

Gold

63angka teprattananan

Nonmetal Elements Have properties that are opposite to those of metals Not good conductors of heat and electricity, poor

reflect light Usually brittle solids or gases ,except for bromine(Br) Found on right side of periodic table � AND hydrogen

SulphurBromine 64angka teprattananan

Metalloids Sometimes called semiconductors Form the �stairstep� between metals and nonmetals Have properties of both metals and nonmetals Examples: B, Si , Ge , As , Sb, Te and, At

65angka teprattananan

Some properties of Metalloids , Al(metal) and I(nonmetal)

IE1(kJ/mol)

EN Density(g/cm3)

melting�boiling point(oC)

ElecticalConductivity

Type of Compound

Al 584 1.61 2.70 660-2519 √ ionic

B 807 2.04 2.34 2075-4000 √ ionic and covalent

Si 793 1.90 2.33 1414-3265 √ ionic and network covalent

Ge 768 2.01 5.32 938-2833 √ ionic and covalent

As 951 2.18 5.75 358-603 √ ionic and covalent

Sb 840 2.05 6.68 631-1587 √ ionic and covalent

I 1015 2.66 4.93 114-184 X ionic and covalent

66angka teprattananan

- B Si Ge As Sb Te Po At have high first ionization energy(IE1) , electronegativity (EN) and can form Ionic and Covalent compounds same nonmetals.

- High melting point and boiling point , high density and can electrical conductivity same metals.

- So this elements will called �Metalloids�(Po and At is radioactive element)

67angka teprattananan

Location of Hydrogen in the periodic table

Some properties of Hydrogen , group IA and VIIA

chemist will arrange Hydrogen in group IA and VIIA in the periodic table.

properties Group IA H group VIIA1. # valence electron 1 1 72. Oxidation number in compounds

+1 +1 , -1 +1 , +3 , +5+7 , -1

3. IE1 (kJ/mol) 382-526 1318 1015-16874. EN 0.7-1.0 2.1 2.2 -4.05. phase solid gas 3 phase6. Electric conductivity can cannot cannot

68angka teprattananan

69

vertical gain

horizontal consist

shiny pale

silvery diatom

react monoatom

characteristic inert gases

flame incapable

soluble synthesis

encounter order

discharge digit

Vocabulary

angka teprattananan

The vertical columns of the periodic table are called GROUP, or FAMILY. (18 groups)

The elements in same group of the periodic table have similar physical and chemical properties!

Periodic Table

70angka teprattananan

The horizontal rows of the periodic table are called PERIOD.(7 periods)

Periodic Table

71angka teprattananan

The s and p block elements are called �REPRESENTATIVE ELEMENTS (Group A)�

The d and f block elements are called �TRANSITION ELEMENTS (Group B)�

s pd

f

72

Periodic Table

angka teprattananan

REPRESENTATIVE ELEMENTS (Group A ; 8 groups)

73

Alkali MetalsAlkali Earth Metals Halogens

Noble GasesInert Gases

angka teprattananan

Group IA (Alkali Metals)

� Group I metals are shiny , silvery solids.� All are soft and can easily cut with a knife.� Have low density.� react easily in air. They are kept under oil. � Group I elements are called �alkali metals� because

they react with water to give alkaline solution.e.g.

2Na(s) + 2H2O(l) 2NaOH(aq) + H2(g)

74angka teprattananan

� Alkali Metals can react with oxygen to give different oxide compounds :

4Li(s) + O2(g) 2Li2O(s) (oxide)

2Na(s) + O2(g) Na2O2(s) (peroxide)K(s) + O2(g) KO2(s) (superoxide)

� Alkali Metals emit a characteristic color when placed in a flame.

� All alkali compounds can soluble in water.� Group I elements become more reactive down the

group.

75angka teprattananan

Group IIA (Alkali Earth Metals)

� Alkali Earth Metals have higher density than Alkali Metals

� carbonate , phosphate , sulphid , sulphite compounds of Alkali Earth Metal cannot soluble in water.

� Be does not react with water , Mg react slowly with water and Ca and the elements below it react readily with water:

Mg(s) + 2H2O(l) Mg(OH)2(aq) + H2(g)Ca(s) + 2H2O(l) Ca(OH)2(aq) + H2(g)

76angka teprattananan

Group VIA (Chalcogen)

� Oxygen , Sulphur and Selenium are nonmetals , Tellurium is Metalloid and Polonium is radioactive element.

� Oxygen is encountered in two molecular forms , O2 and O3.

� O3 is also formed from O2 in electrical discharges, such as in lightning storms:

3O2(g) 2O3(g) H = +284.6 kJ� Ozone is toxic. 77angka teprattananan

Group VIIA (Halogens)� Halogen always gain one electron to form anion:

X2 + 2e- 2X-

� Fluorine is most reactive in the group:

2F2(g) + 2H2O(l) 4HF(aq) + O2(g) • Each element consists of diatom molecules ; F2 , Cl2

, Br2 and I2� Fluorine gas is pale yellow , Chlorine gas is yellow-

green , Bromine liquid is red-brown and solid iodine is black (violet vapor)

78angka teprattananan

• Fluorine and Chlorine are more reactive than Bromine and Iodide

2Cl-(aq) + F2(g) 2F-(aq) + Cl2(g)2Br-(aq) + Cl2(g) 2Cl-(aq) + Br2(g)

2I-(aq) + Br2(g) 2Br-(aq) + I2(g)2F-(aq) + Cl2(g) X2Cl-(aq) + Br2(g) X2Br-(aq) + I2(g) X

In fact, fluorine removes electrons from almost any substance with which it come into contact.

79angka teprattananan

Group VIIIA(Noble gases)• Noble gases are monoatom (He Ne Ar Kr Xe Rn)• Noble gases have completely filled s and p

subshell.• 1960s the elements were called the �inert gases�

because they were thought to be incapable of forming chemical compounds.

• Today we can synthesis some of noble gas compounds ; XeF2 XeF4 XeF6 KrF2 and HArF

80angka teprattananan

TRANSITION ELEMENTS (Group B ; 8 groups)

81

Transition Metals

InnerTransition MetalsRare-earth elements

angka teprattananan

Electron Configuration and Properties

82angka teprattananan

Phisical Properties of Potassium - Zinc

83angka teprattananan

Oxidation Number of Transition Metals(Stable Oxidation Number in red)

84angka teprattananan

Nomenclature of Elements with Atomic Numbers Greaterer than 100

The Rules for Naming Elements 1. Name directly from the atomic number of the element using the following numerical roots

0 = nil , 1 = un , 2 = bi , 3 = tri , 4 = quad , 5 = pent , 6 = hex , 7 = hept , 8 = oct , 9 = enn

2. The roots are put together in the order of the digits and terminated by �ium� to spell out the name.

Example Atomic Number : 112 Element Name: Ununbium

Element Symbol: Uub 85angka teprattananan

Write the element symbol and name :1. Atomic Number : 102 Element Name : ___________

Element Symbol : ___________2. Atomic Number : 110 Element Name : ___________

Element Symbol : ___________3. Atomic Number : 115 Element Name : ___________

Element Symbol : ___________4. Atomic Number : 118 Element Name : ___________

Element Symbol : ___________5. Atomic Number : 120 Element Name : ___________

Element Symbol : ___________86angka teprattananan

Location of atoms in the periodic table

87

For representative elements (group A)group no. = no. of valence electron

= sum of electron outer levelperiod no. = no. of principle energy levels

Ex. 17Cl : 1s2 2s2 2p6 3s2 3p5

: 2 , 8 , 7

So, 17Cl is in group 7A and period 3

valence electron

Outer level

Three shells

angka teprattananan

For Transiton metals (group B)group no. = sum of two last sub-energy levels

(subshell)period no. = no. of principle energy levels

e.g. 21Sc : 1s2 2s2 2p6 3s2 3p6 4s2 3d1

So, Sc is in group 3B and period 4.

88

/2+1 = 3

4 principle energy levels

angka teprattananan

Fill in the blank , Determine Group No. and Period No.

1. 7N : �������������� 6. 25Mn : ��������������group ���� period ���� group ���� period ����

2. 11Na : ������������� 7. 26Fe : ��������������group ���� period ���� group ���� period ����

3. 18Ar : ������������� 8. 22Ti : ��������������group ���� period ���� group ���� period ����

4. 20Ca : ������������� 9. 53I : ��������������group ���� period ���� group ���� period ����

5. 35Br : ������������� 10. 29Cu : �������������group ���� period ���� group ���� period ����

89angka teprattananan 90

Radioactive turned into

unstable falls down

radiation equation

Ionising ability Balancing

Penetrating half life

behavior undergo

electric field decrease

excessive collide

repulsion Fission

Decay Fussion

Vocabulary

angka teprattananan

A radioactive elements are an elements with an unstable nucleus, which radiates alpha, beta or gamma radiation and gets converted to a stable element.

3 Types of Radiation

Radioactive Elements

91angka teprattananan

Properties of radiation

Type of Radiation Alpha particle Beta particle Gamma ray

Symbol

(can look different,depends on the font)

Mass (atomic mass units) 4 1/2000 0

Charge +2 -1 0

Speed slow fast very fast (speed of light)

Ionising ability high medium 0

Penetrating power low medium high

Stopped by: paper aluminium lead

Penetrating power

92angka teprattananan

The behavior of three types of radioactive emissions in an electric field.

93angka teprattananan

Alpha DecayThe reason alpha decay occurs is because the

nucleus has too many protons which cause excessive repulsion.

94angka teprattananan

Beta DecayBeta decay occurs when the neutron to proton ratio

is too great in the nucleus and causes instability. In basic beta decay, a neutron is turned into a proton and an electron. The electron is then emitted.

95angka teprattananan

Gamma Decay

Gamma decay occurs because the nucleus is at too high an energy. The nucleus falls down to a lower energy state and, in the process, emits a high energy photon known as a gamma particle.

32He* 32He + γ

96angka teprattananan

Partical Symbol Charge mass(amu)*

Alpha α , 42He + 2 4.00276

Beta β , 0-1e - 1 0.000540

Gamma γ 0 0

Positron β+ , 0+1e + 1 0.000540

Neutron n , 10n 0 1.0087

Proton P , 11H + 1 1.0073

Deuteron D , 21H + 1 2.0136

Tritron T , 31H + 1 3.0219

Symbol charge and mass

97angka teprattananan

Nuclear equationA nuclear equation shows how a nucleus gains

or loses subatomic particles.Balancing Nuclear Equations

Ex. 1:1

1H + 94Be ---> 63Li + 42He

Rule: The sum of the mass numbers of the reactants equals the sum of the mass numbers of the products.

98angka teprattananan

Balancing Nuclear Equations

A. 2714Si _______ + 0-1e

B. 6629Cu _______ + 0-1e

C. 2713Al + 42He 30

14Si + _______D. 14

6C 136C + ________

E. 22689Ac 226

88Ra + ________

F. 22689Ac 222

87Fr + __________

99angka teprattananan

G. 21383Bi _______ + 42He

H. 20981Tl 209

82Pb + _______I. 23

11Na + 42He 2612Mg + _______

J. 23892U + 16

8O ________ +510n

K. 23892U + 16

8O 23994Pu + ________

L. 23592U + 10n 90

38Sr + 14354Xe + ________

100angka teprattananan

100 g 50 g 25 g14 วน 14 วน

Half life ; t½is the period of time it takes for the amount of

a substance undergoing decay to decrease by half.

Ex. P-32 has a half life 14 days

101angka teprattananan

Radioactive ElementsElements Half life Radiation Benefit

U-235 7.1x109 years Alpha Gamma Treatment of Cancers

C-14 5,760 years Beta Archeology

Co-60 5.26 years Gamma Treatment of Cancers

Au-198 2.7 days Beta Gamma Medical Diagnostics

I-125 60 days Gamma Medical Diagnostics

I-131 8.07 days Beta Gamma Medical Diagnostics

P-32 14.3 days Beta Treatment of Cancers

Pu-239 24,000 years Alpha Gamma Generation of Electricity

K-40 1x109 years Beta ArcheologyRa-226 1,600 years Alpha Gamma Treatment of Cancers

102angka teprattananan

µaÇo �Ò§ ¶ �Ò· ié§äoo«o·»¡ aÁÁa¹µÃ a§ÊÕª¹ i´Ë¹ è§ 20 ¡Ã aÁ äÇ �¹Ò¹ 28 Ç a¹ »ÃÒ¡¯Ç �ÒÁÕäoo«o·»¹ aé¹eËÅooÂÙ� 1.25 ¡Ã aÁ ¤Ã 觪ÕÇ iµ¢o§äoo«o·»¹ÕéÁÕ¤ �Òe·�Òã´

µaÇo �Ò§ ¨§Ëһà iÁÒ³ I-131 eà ièÁµ�¹ eÁèo¹íÒ I-131 ¨íҹǹ˹ è§ÁÒÇÒ§äÇ �e»�¹eÇÅÒ 40.5 Ç a¹ »ÃÒ¡¯Ç �Ò ÁÕÁÇÅeËÅo 0.125 ¡ÃaÁ ¤Ã 觪ÕÇ iµ¢o§ I-131 e·�Ò¡ aº 8.1 Ç a¹

103angka teprattananan

1. After 42 days a 2.0 g sample of phosphorus-32 contains only 0.25 g of the isotope. What is the half-life of phosphorus-32?

2. In 5.49 seconds, 1.20 g of argon-35 decay to leave only 0.15 g. What is the half-life of argon-35?

104angka teprattananan

5. Polonium-214 has a half-life of 164 seconds. How many seconds would it take for 8.0 g of this isotope to decay to 0.25 g?

6. How many days does it take for 16 g of palladium-103 to decay to 1.0 g? The half-life of palladium-103 is 17 days.

105angka teprattananan

Calculations base on half life

Nt = N0 2n

n = T / t1/2

Nt = number remainingN0 = initial numberT = timen = no. time of decayt1/2 = half life

µaÇo �Ò§ ¨§Ëһà iÁÒ³¢o§ Tc-99 ·ÕèeËÅoeÁèoÇÒ§ Tc-99 ¨íҹǹ 18 ¡Ã aÁäÇ �¹Ò¹ 24 ª aèÇoÁ§ æÅa Tc-99 Áդà 觪ÕÇ iµ 6 ªaèÇoÁ§

106angka teprattananan

1. After 42 days a 2.0 g sample of phosphorus-32 contains only 0.25 g of the isotope. What is the half-life of phosphorus-32?

2. Polonium-214 has a half-life of 164 seconds. How many seconds would it take for 8.0 g of this isotope to decay to 0.25 g?

107angka teprattananan

Nuclear ReactionNuclear Reaction is process in which two nuclei,

or else a nucleus of an atom and a subatomic particle (such as a proton, or high energy electron) from outside the atom, collide to produce products different from the initial particles.

1. Nuclear Fission

2. Nuclear Fussion

2 Types of nuclear reaction

108angka teprattananan

Nuclear FissionA heavy nucleus such as Uranium-235 absorbs an extra

neutron, it becomes unstable and splits into two lighternuclei. The energy is released as kinetic energy of thefission products.

109angka teprattananan

Nuclear Fussion

When two light nuclei such as Hydrogen or Deuterium are forced to combine forming a new, heavier nucleus. The energy is released as kinetic energy of the fusion products.

110angka teprattananan

Atomic Properties and

Periodic Trends

111

(ÊÁº aµ i¢o§¸Òµ uæÅaæ¹Ço¹ �Á¢o§¸Òµ uµÒÁµÒÃÒ§¸Òµ u)

angka teprattananan

Atomic radius (¢¹Ò´oaµoÁ) Ion size (à aÈÁÕäooo¹) Ionization energy (IE) (¾Å a§§Ò¹äoooä¹e«ª a¹) Electron affinity (EA) (Ê aÁ¾ÃäÀÒ¾oieÅ硵Ão¹) Electronegativity (EN) (oieÅç¡o·Ãe¹¡Òµ iÇ iµÕ) Melting point(m.p.) (¨ u´ËÅoÁeËÅÇ)

and Boiling point(b.p.) (¨ u´e´ o´) Oxidation Number(O.N.) (eÅ¢oo¡« ie´ª a¹)

112

Atomic Properties and Periodic Trends

angka teprattananan

113

distance discontinuity

repulsion endothermic

attraction exothermic

trend tendency

Cation combine

anion Network structure

require indicate

inversely giant molecules

proportional

Vocabulary

angka teprattananan 114

The atomic radius is one half of the distance between the nuclei of two atoms of the same element when the atoms are joined.

Atomic Radius (Atomic Size)

angka teprattananan

115

A Kind of Radius1. Covalent Radius(à aÈÁÕo¤eÇeŹµ �) used for Covalent

compounds. e.g. H2 , F2 , Cl2 , O2

2. Van der Waals Radius(à aÈÁÕæǹe´oà �ÇÒÅÊ �) used for Noble gases. e.g. He , Ne , Ar

3. Metallic Radius(Ã aÈÁÕoÅËa) used for Metal atoms. e.g. Li , Mg , Cu

Cl - Cl

angka teprattananan

Atomic Radius

Group trends :The atoms get bigger as we go down a group.

Because the increase in the principal energy levels.

Period Trends :The atoms get bigger as we go from right to left

in a period at same energy level. Because the decrease of nucleus attraction.

116angka teprattananan

Atomic Radius

117angka teprattananan

1. Which element in each pair has the larger atoms? 1.1 12Mg or 20Ca 1.2 3Li or 8O

1.3 17Cl or 35Br 1.4 11Na or 16S

2. Arrange these atoms in order of increasing size?

11Na , 13Al , 6C , 20Ca

3. Arrange these atoms in order of increasing size?

33As , 37Rb , 18Ar , 15P

118angka teprattananan

The Octet RuleThe �goal� of most atoms is to have an

octet or group of 8 electrons in their valence energy level.

Metals generally give(lose) electrons, Nonmetals take(gain) electrons from other atoms.

Atoms that have gained or lose electrons are called �ion�.

119angka teprattananan

Ions size Metals elements lose valence electrons to form cation.

Cation radius are always smaller than atomic radius.

Non-metal elements gain valence electrons to form anion. Anion radius are always larger than atomic radius.

6.3

120angka teprattananan

Group trends The ions get bigger as we go down a group.

Because the increase in the principal energy levels.Period Trends

The ions get bigger as we go from right to left in a period at same energy level. Because the decrease of nucleus attraction.

Li+

Be2+

B3+

C4+N3- O2- F-

121angka teprattananan

Atoms and Ions size

122angka teprattananan

1. Which atoms or ions in each pair are larger? 1. 12Mg or 12Mg2+ 2. 8O or 8O2-

3. 7N3- or 9F- 4. 11Na+ or 12Mg2+

2. Arrange these atoms and ions in order of increasing size?

12Mg2+ , 13Al3+ , 15P3- , 17Cl-

3. Arrange these atoms and ions in order of increasing size?

3Li+ , 11Na+ , 12Mg , 16S2-

123angka teprattananan

Ionization Energy(IE) The energy required to remove an electron from

an atom in gas phase. Ionization energy and atomic radius are inversely

proportional. e.g.

First Ionization Energy(IE1)

Na(g) --> Na+(g) + eSecond Ionization Energy(IE2)

Na+(g) --> Na2+(g) + e

124angka teprattananan

Write IE1 � IE5 of Boron______ __________________ : IE1 = 807 KJ/mol______ __________________ : IE2 = 2,433 KJ/mol______ __________________ : IE3 = 3,666 KJ/mol______ __________________ : IE4 = 25,033 KJ/mol______ __________________ : IE5 = 32,834 KJ/mol

125

IE3 and IE4 is more different , why ?

angka teprattananan

Find the group number from ionization of following element ?

IE1(MJ/mol)

IE2(MJ/mol)

IE3(MJ/mol)

IE4(MJ/mol)

IE5(MJ/mol)

IE6(MJ/mol)

IE7(MJ/mol)

IE8(MJ/mol)

group

0.744 1.457 7.739 10.547 13.636 18.001 21.710 25.663

1.687 3.381 6.057 8.414 11.029 15.171 17.874 92.047

1.093 2.359 4.627 6.229 37.838 47.285

0.906 1.763 14.855 21.013

126angka teprattananan

Trends in First Ionization Energies of First 20 Elements

First ionization energy tends to increase from bottom to top within a group. And increase from

left to right across a period.

However, there are two apparent discontinuities in this trend.

127angka teprattananan

Trends in First Ionization Energies of Elements

128angka teprattananan

1. Which element in each pair has the greater ionization energy?

1. 12Mg or 13Al 2. 4Be or 5B

3. 6C or 14Si 4. 2He or 53I

2. Arrange these atoms in order of increasing IE1 ?

33As , 37Rb , 18Ar , 15P , 16S 3. Arrange these atoms in order of increasing IE1 ?

19K , 13Al , 11Na , 12Mg , 20Ca

129angka teprattananan

Electron Affinity(EA) Electron affinity is the energy change when an

atom gains one electron. Where ionization energy is always endothermic,

electron affinity is usually exothermic, but not always.

Example ;O(g) + e O- (g) : EA = -142 KJ/mol

O-(g) + e O2- (g) : EA = 780 KJ/mol

130angka teprattananan

in Electron affinity of Elements If the atom has more tendency to accept an

electron then the energy released will be large and electron affinity will be high. Atoms with large ionization energy have negative

electron affinity. If there are no empty spaces, a new orbital, making

the process endothermic (Group IIA and VIIIA).e.g.

12Mg : 1s22s22p63s2 Group IIA

18Ar : 1s22s22p63s23p6 Group VIIIA

131angka teprattananan

Trends in Electron Affinity

132angka teprattananan

1. Which element in each pair has the greater electron affinity? 1. 12Mg or 13Al 2. 3Li or 8O

3. 6C or 32Ge 4. 18Ar or 53I

5. 11Na or 19K 6. 9F or 53I

2. Arrange these atoms in order of increasing EA ?

19K , 20Ca , 11Na , 15P , 9F

133angka teprattananan

Electronegativity (EN) Electronegativity is the tendency for an atom to

attract electrons to itself when it is chemically combined with another element. High electronegativity means it pulls the

electron toward it.

134angka teprattananan

Trends in Electronegativity of Elements

Electronegativity tends to increase from bottom to top within a group. And increase from left to right across a period.

Because the increase of nucleus attraction. Note; Noble gases are NOT assigned

electronegativities

135angka teprattananan

Trends in ElectronegativityRepresentative Elements in Groups 1A through 7A

6.3

136angka teprattananan

1. Which element in each pair has the greater electronegativity?

1. 11Na or 15P 2. 3Li or 8O 3. 6C or 32Ge 4. 9F or 53I

2. Draw arrow to show the bond polarity in each pair elements N---F C---Br O----Cl

Br---Br C---S C----I

3. Arrange these atoms in order of increasing EN ?

12Mg , 20Ca , 17Cl , 9F

137angka teprattananan

Melting Point and Boiling Point

The melting point is the temperature at which thetransition from the solid phase to the liquid phase.

- Helium has the lowest melting point (-272.2oC).- Carbon has the highest melting point (3550oC).

The boiling point is the temperature at which the transition from the liquid to the gas phase.

- Helium has the lowest boiling point (-268.9oC). - Tungsten has the highest boiling point (5927oC).

138angka teprattananan

For metals ;The melting point and boiling point tends to

increase from bottom to top within a group (the increase metallic bond).

And increase from left to right across a period(the metallic bond increase when increase of outerelectrons or valence electron).

139angka teprattananan

For nonmetals ;The melting point and boiling point tends to

increase from top to bottom within a group. And increase from right to left across a period.

(the increase van der waals' forces)

But, the group IVA ; high melting point and boiling point because they have giant molecules(Network structure).

140angka teprattananan

Arrange these atoms in order of increasing melting � boiling point ?

1. 19K , 15P , 17Cl

2. 3Be , 10Ne , 13Al

3. 6C , 11Na , 3Li

4. 9F , 53I , 11Na , 13Al

5. 7N , 14Si , 9F , 10Ne

141angka teprattananan

Periodic trendssummary

Ioni

zatio

n en

ergy

Elec

tron

affi

nity

Elec

tron

egat

ivity

m.p

. and

b.p

. of m

etal

Electron affinity

Ionization energy

Electronegativity

m.p. and b.p. of metal

Atom

ic radius

metallic character

m.p. and b.p. of nonm

etal

Atomic radius

metallic character

m.p. and b.p. of nonmetal142angka teprattananan

143

Oxidation numberThe oxidation number of an element indicates the number of electrons lost, gained, or shared as a result of chemical bonding.

Rules of Oxidation Number1. Elements have an oxidation number of zero.

E.g. Na , K , Pb , H2 , O2 , P42. The oxidation number of simple ion is the charge on the ion.

E.g. Li+ = +1 , Fe3+ = +3 , O2- = -2 , Cl- = -1

angka teprattananan

3. The oxidation number of some elements in their compounds is fixed

E.g. Hydrogen in most of its compound = +1Oxygen in most of its compound = -2all group I elements = +1all group II elements = +2

4. The sum of the oxidation numbers of the elements in a molecule or ion is equal to the charge on the molecule or ion.

E.g. OH- (-2) + (+1) = -1

144angka teprattananan

HCO3-

O = H =

Oxidation numbers of C in HCO3

- ?

145

Find the Oxidation Number of S in SOCl4 ?O.N. of Oxygen = O.N. of Chlorine =

angka teprattananan

Determine the oxidation number of underline element :

1. SO2

2. CaSO4

3. PO43-

4. NH4+

5. Pb(OH)4

6. KMnO4

7. Cu(NO3)

8. K2[Fe(CN)3H2O]

146angka teprattananan

Determine the oxidation number of underline element : 1. CO 2. CH4 3. SO34. Al2O3 5. S2Cl2 6. BaSO47. MgCrO4 8. Sr(NO3)2 9. IF310. K2MnO4 11. [Fe(CN)6]3- 12. Cr(OH)313. NiCl2.6H2O 14. K3[Fe(CN)6]15. [Cu(NH3)4]SO4 16. [Mn(H2O)6]3+

17. (NH4)2[NiCl4]

147angka teprattananan