26
ATM OCN 100 Fall 2000 ATM OCN 100 Fall 2000 ATM OCN 100 - Fall 2000 ATM OCN 100 - Fall 2000 LECTURE 8 LECTURE 8 ATMOSPHERIC ENERGETICS: ATMOSPHERIC ENERGETICS: RADIATION & ENERGY BUDGETS RADIATION & ENERGY BUDGETS A. INTRODUCTION: A. INTRODUCTION: What maintains life? What maintains life? How does Planet Earth maintain a How does Planet Earth maintain a habitable environment? habitable environment?

ATM OCN 100 - Fall 2000 LECTURE 8

  • Upload
    luisa

  • View
    17

  • Download
    3

Embed Size (px)

DESCRIPTION

ATM OCN 100 - Fall 2000 LECTURE 8. ATMOSPHERIC ENERGETICS: RADIATION & ENERGY BUDGETS A. INTRODUCTION: What maintains life? How does Planet Earth maintain a habitable environment?. B. ENERGY (HEAT) BUDGETS. Energy budget philosophy INPUT = OUTPUT + STORAGE - PowerPoint PPT Presentation

Citation preview

Page 1: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 11

ATM OCN 100 - Fall 2000 ATM OCN 100 - Fall 2000 LECTURE 8LECTURE 8

ATMOSPHERIC ENERGETICS:ATMOSPHERIC ENERGETICS: RADIATION & ENERGY BUDGETSRADIATION & ENERGY BUDGETS

A. INTRODUCTION:A. INTRODUCTION:– What maintains life?What maintains life?– How does Planet Earth maintain a habitable How does Planet Earth maintain a habitable

environment?environment?

Page 2: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 22

Page 3: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 33

B. ENERGY (HEAT) BUDGETSB. ENERGY (HEAT) BUDGETS

Energy budget philosophyEnergy budget philosophy

INPUT = OUTPUT + INPUT = OUTPUT + STORAGE STORAGE

Planetary annual energy budget Planetary annual energy budget

– Short wave radiation components Short wave radiation components

– Long wave radiation components Long wave radiation components

– Non radiative components Non radiative components (where)...(where)...

Page 4: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 44

Background - The Earth, The Sun &Background - The Earth, The Sun &The Radiation Link The Radiation Link

INPUT -- Solar RadiationINPUT -- Solar Radiation– From Sun radiating at temperature From Sun radiating at temperature 6000 K; 6000 K; – Peak radiation Peak radiation m;m;– Solar Constant Solar Constant 22cal/cmcal/cm22/min or 1370 W/m/min or 1370 W/m22

OUTPUT -- Terrestrial radiationOUTPUT -- Terrestrial radiation– Emitted from earth-atmosphere system;Emitted from earth-atmosphere system;– Radiating temperature Radiating temperature – Peak radiation region Peak radiation region m.m.

Page 5: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 55

Planetary Radiative Energy Budget Planetary Radiative Energy Budget From Geog. 101 UW-Stevens PointFrom Geog. 101 UW-Stevens Point

Page 6: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 66

PLANETARY ENERGY BUDGETSPLANETARY ENERGY BUDGETSShort Wave ComponentsShort Wave Components

Disposition of solar radiation in Disposition of solar radiation in Earth-atmosphere systemEarth-atmosphere system

– ReflectedReflected

– ScatteredScattered

– AbsorbedAbsorbed

– TransmittedTransmitted ImplicationsImplications

Page 7: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 77

PLANETARY ENERGY BUDGETSPLANETARY ENERGY BUDGETSLong Wave ComponentsLong Wave Components

Disposition of long radiation inDisposition of long radiation in Earth-atmosphere system Earth-atmosphere system

– EmittedEmitted

– AbsorbedAbsorbed

– TransmittedTransmitted

Page 8: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 88

PLANETARY ENERGY BUDGETSPLANETARY ENERGY BUDGETSLong Wave Components Long Wave Components (con’t.)(con’t.)

Atmospheric Atmospheric oror “Greenhouse” Effect “Greenhouse” Effect– BackgroundBackground– ““Greenhouse Gases” [HGreenhouse Gases” [H22O, COO, CO22, CH, CH44]]

ImplicationsImplications

Page 9: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 99

PLANETARY ENERGY BUDGETSPLANETARY ENERGY BUDGETSNon-Radiative ComponentsNon-Radiative Components

Disposition of non-radiative fluxes in Disposition of non-radiative fluxes in Earth-atmosphere systemEarth-atmosphere system

Types of non-radiative fluxesTypes of non-radiative fluxes

– Sensible heat transportSensible heat transport– Latent Heat transportLatent Heat transport

ImplicationsImplications

Page 10: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1010

PLANETARY ENERGY BUDGETS PLANETARY ENERGY BUDGETS (con’t.)(con’t.)

ANNUAL AVERAGEANNUAL AVERAGE

Input = OutputInput = Output

Absorbed solar = Emitted Absorbed solar = Emitted terrestrialterrestrial

LATITUDINAL DISTRIBUTIONLATITUDINAL DISTRIBUTION– Input & Output CurvesInput & Output Curves– Energy surplus & deficit regionsEnergy surplus & deficit regions– Meridional energy transport inMeridional energy transport in

Atmosphere & Oceans Atmosphere & Oceans

Page 11: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1111

OCEAN CURRENTSOCEAN CURRENTS

Page 12: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1212

Page 13: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1313

Page 14: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1414

ENERGY BUDGETS ENERGY BUDGETS (con’t.)(con’t.)

LOCAL ENERGY BUDGETSLOCAL ENERGY BUDGETS THE FORCING (Energy Gain)THE FORCING (Energy Gain)

– Radiative ControlsRadiative Controls LatitudeLatitude CloudsClouds

– Air Mass ControlsAir Mass Controls Warm Air Advection & Cold Air AdvectionWarm Air Advection & Cold Air Advection

THE RESPONSETHE RESPONSE– Temperature & Temperature VariationsTemperature & Temperature Variations

Page 15: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1515

Page 16: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1616

Page 17: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1717

ENERGY BUDGETS ENERGY BUDGETS (con’t.)(con’t.)

FACTORS TO CONSIDERFACTORS TO CONSIDER in the Thermal Response in the Thermal Response– Albedo (reflectivity)Albedo (reflectivity)– ConductivityConductivity– Specific HeatSpecific Heat

Quantity of heat required to change Quantity of heat required to change temperature of a unit mass of substance by temperature of a unit mass of substance by 1 Celsius degree. 1 Celsius degree.

Page 18: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1818

Thermal Conductivity Example: Thermal Conductivity Example: Change in Snow Cover Change in Snow Cover

See Figure 3.6, Moran & Morgan (1997)See Figure 3.6, Moran & Morgan (1997)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00000 0.00100 0.00200 0.00300 0.00400 0.00500

HEAT CONDUCTIVITY in SNOW [cal/cm2/sec/Co/cm]

SN

OW

DE

NS

ITY

[gm

/cm

3]

Page 19: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 1919

TEMPERATURE RESPONSETEMPERATURE RESPONSE forfor substances with differing specific substances with differing specific

heatsheatsSee Table 3.2, Moran & Morgan (1997)See Table 3.2, Moran & Morgan (1997)

TEMPERATURE RESPONSE TO ENERGY ADDED

___ WATER ___ WOOD ___ SAND ___ AIR

0.0

5.0

10.0

15.0

0.0 0.5 1.0 1.5 2.0

HEAT ADDED [calories per gram]

TE

MP

ER

AT

UR

E o

f S

YS

TE

M [

de

g C

]

Page 20: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 2020

Page 21: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 2121

Page 22: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 2222

Page 23: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 2323

Page 24: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 2424

ENERGY BUDGETSENERGY BUDGETS (con’t) (con’t)

Local energy budgets Local energy budgets Features of local energy budgetsFeatures of local energy budgets

– AnnualAnnual Summer maximum temperatureSummer maximum temperature Winter minimum temperatureWinter minimum temperature

– DiurnalDiurnal Afternoon maximum temperatureAfternoon maximum temperature Pre-dawn minimum temperaturePre-dawn minimum temperature

Page 25: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 2525

Page 26: ATM OCN  100 - Fall 2000  LECTURE 8

ATM OCN 100 Fall 2000ATM OCN 100 Fall 2000 2626