Assignment(Sequence and Series of Functions)

Embed Size (px)

Citation preview

  • 8/17/2019 Assignment(Sequence and Series of Functions)

    1/2

    Sequence & Series of functions

    November 8, 2015

    1. Determine the limit and the nature of convergence (pointwise or uni-form) of the sequence (f n) where  f n(x) is given by

    (a)  nxn, x ∈ (0, 1); (b)   nnx+1

    , x ∈ (0,∞); (c) sin(xn), x ∈ (0, 1)

    (d) (1 +   xn

    )n, x ∈ R; (e) For n ≥ 2 and  x ∈ [0, 1] define

    f n(x) =

      1− n|x −   1

    n|,   |x −   1

    n| ≤   1

    2n0,   otherwise

    2. Discuss the nature of convergence (pointwise or uniform) of the series

    f n, where  f n(x) is given by:

    (a)   1x2+n2   , b) (−1)n (x2

    +nn2   ), (c)  n−2 sin(nx), (d) sin(  xn2 )

    3. Let f n be a sequence defined on A ⊂ R. Prove or disprove the followingstatements:

    (a) If each  f n   is continuous, (f n) converges uniformly on  A to f , and(xn) is a sequence in  A  such that (xn) converges to some   x   in  Athen f n(xn) → f (x).

    (b) If each f n is bounded and (f n) converges uniformly on A  then (f n)is uniformly bounded.

    (c) If each  f n  is bounded and (f n) is pointwise bounded then (f n) isuniformly bounded.

    (d) If each   f n   is uniformly continuous and (f n) converges uniformlyto  f   on  A then  f   is uniformly continuous on  A.

    (e) If each f n is differentiable and (f 

    n) converges uniformly on A  then(f n) converges uniformly on  A.

    1

  • 8/17/2019 Assignment(Sequence and Series of Functions)

    2/2

    (f) If   g   :  R  →  R  be uniformly continuous and if (f n) converges uni-

    formly on  A then (g ◦ f n) and (gf n) converge uniformly.4. For a bounded interval [a, b] we let

    C [a, b] = {f   : [a, b] → R, f   is continuous}

    C 1[a, b] = {f   : [a, b] → R, f   is continuously differentiable}

    and for  f, g  ∈ C [a, b] we define  d(f, g) = supx∈[a,b] |f (x) − g(x)|.

    (a) Show that  d  is a metric and  C [a, b] is complete with respect to  d.

    (b) Is  C 1[a, b] complete with respect to  d?

    (c) For f , g ∈ C [a, b] define  d1(f, g) = supx∈[a,b]

    |f (x) − g(x)|. Is  C 1[a, b]

    complete with respect to the metric  d1?(d) Show that  C 1[a, b] is complete with respect to  d + d1(e) Show that a bounded set in (C 1[a, b], d + d1) is compact in C [a, b].

    5. The series∞

    n=0

    an(x − c)n is called a   power series   around   c,   where

    an, c   are in   R   for   n   = 0, 1, 2 . . . .   If the sequence (|an|)1

    n is bounded,

    set ρ  = lim sup(|an|)1

    n , if this sequence is unbounded set  ρ  = +∞. The

    radius of convergence  of ∞

    n=0an(x − c)

    n is defined by

    R :=

      0 if  ρ = ∞,1ρ

      if 0 < ρ < ∞,∞   if  ρ = 0.

    The interval of convergence is the open interval (−R, R)

    (a) If  R  is the radius of convergence of the power series 

    anxn,  the

    show that the series

    anxn converges absolutely for |x| < R and

    diverges for |x| > R,

    (b) Is the series converges uniformly on (−R, +R)?

    (c) Is   ddx

      ∞

    n=0

    anxn = ∞

    n=1nanx

    n−1 on (−R, R)?

    (d) Determine the interval of convergence of the series

    anxn, where

    an  is given by

    i)   1nn

    ,   ii) 2n (iii)   nn

    n!  (iv)   (−1)

    n+1

    n

    2