6
ARTICLE Journal Name A water-based and high space-time yield synthetic route to MOF Ni2(dhtp) and its linker 2,5-dihydroxyterephthalic acid. Stéphane CADOT, a, b Laurent VEYRE, a Dominique LUNEAU, c David FARRUSSENG, d Elsje Alessandra QUADRELLI, a, * a Laboratoire de Chimie Organométallique de Surface, C2P2 - UMR 5265 (CNRS - Université de Lyon 1 - CPE Lyon), CPE Lyon, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne Cedex b CEA, LETI, MINATEC Campus, F-38054 Grenoble, France c Laboratoire des Multimatériaux et Interfaces - UMR 5615 (Université Claude Bernard Lyon 1), Campus de La Doua, 69622 Villeurbanne Cedex d Institut de Recherche sur la Catalyse et l'Environnement de Lyon (IRCELYON), 2 Av. Albert Einstein, 69626 Villeurbanne cedex *corresponding author: [email protected] DOI: 10.1039/b000000x/ Supplementary information Figure S1: Experimental nitrogen adsorption (blue crosses) and desorption (blue dots) isotherms at 77K for MOF Ni2(dhtp) synthetized in water, and simulated adsorption isotherm (red curve) obtained using the NLDFT simulation method S1-S11 . 0 200 400 1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 V a /cm 3 (STP) g -1 Relative pressure P/P 0 Adsorption / desorption isotherm Simulated Adsorption Isotherm Experimental Adsorption Isotherm Experimental Desorption isotherm 0 | J. Name ., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

ARTICLE Journal Name · 2014-07-25 · ARTICLE Journal Name. A water-based and high space-time yield synthetic route to MOF Ni. 2 (dhtp) and its linker 2,5-dihydroxyterephthalic acid

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ARTICLE Journal Name · 2014-07-25 · ARTICLE Journal Name. A water-based and high space-time yield synthetic route to MOF Ni. 2 (dhtp) and its linker 2,5-dihydroxyterephthalic acid

ARTICLE Journal Name

A water-based and high space-time yield synthetic route to MOF Ni2(dhtp) and its linker 2,5-dihydroxyterephthalic acid.

Stéphane CADOT,a, b Laurent VEYRE,

a Dominique LUNEAU,c David FARRUSSENG,d

Elsje Alessandra QUADRELLI,a,*

a Laboratoire de Chimie Organométallique de Surface, C2P2 - UMR 5265 (CNRS - Université de Lyon 1

- CPE Lyon), CPE Lyon, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne Cedex b CEA, LETI, MINATEC Campus, F-38054 Grenoble, France c Laboratoire des Multimatériaux et Interfaces - UMR 5615 (Université Claude Bernard Lyon 1), Campus

de La Doua, 69622 Villeurbanne Cedex d Institut de Recherche sur la Catalyse et l'Environnement de Lyon (IRCELYON), 2 Av. Albert Einstein,

69626 Villeurbanne cedex

*corresponding author: [email protected]

DOI: 10.1039/b000000x/

Supplementary information

Figure S1: Experimental nitrogen adsorption (blue crosses) and desorption (blue dots)

isotherms at 77K for MOF Ni2(dhtp) synthetized in water, and simulated adsorption

isotherm (red curve) obtained using the NLDFT simulation methodS1-S11.

0

200

400

1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

V a/c

m3 (

STP)

g-1

Relative pressure P/P0

Adsorption / desorption isotherm

Simulated Adsorption IsothermExperimental Adsorption IsothermExperimental Desorption isotherm

0 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2014

Page 2: ARTICLE Journal Name · 2014-07-25 · ARTICLE Journal Name. A water-based and high space-time yield synthetic route to MOF Ni. 2 (dhtp) and its linker 2,5-dihydroxyterephthalic acid

Journal Name ARTICLE

Figure S2: Thermogravimetric analysis of MOF Ni2(dhtp) synthetized in water

measured under N2 (A) and under air (B).

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 1

Page 3: ARTICLE Journal Name · 2014-07-25 · ARTICLE Journal Name. A water-based and high space-time yield synthetic route to MOF Ni. 2 (dhtp) and its linker 2,5-dihydroxyterephthalic acid

ARTICLE Journal Name

Figure S3: Chemical Structure of Ni2(dhtp) drawn using the available crystallographic

dataS12 and oriented toward the (-120) plane, matching the observed HRTEM

micrograph reported in Figure 4A)

Figure S4: Photographs of samples taken at different steps of the Ni2(dhtp) synthesis in

water (A: 1M aqueous solution of nickel (II) acetate; B: suspension of 2,5-

dihydroxyterephthalic acid in water; C: homogeneous solution obtained by mixing A

and B; D: precipitate obtained from solution C at room temperature; E: Ni2(dhtp)

obtained from solution C after 1h under reflux.

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

Page 4: ARTICLE Journal Name · 2014-07-25 · ARTICLE Journal Name. A water-based and high space-time yield synthetic route to MOF Ni. 2 (dhtp) and its linker 2,5-dihydroxyterephthalic acid

Journal Name ARTICLE

Figure S5: X-ray diffraction pattern of the intermediate which precipitate at room

temperature from the solution obtained by mixing nickel acetate and 2,5-

dihydroxyterephthalic acid in water (corresponding to Figure S4 D).

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 3

Page 5: ARTICLE Journal Name · 2014-07-25 · ARTICLE Journal Name. A water-based and high space-time yield synthetic route to MOF Ni. 2 (dhtp) and its linker 2,5-dihydroxyterephthalic acid

ARTICLE Journal Name

Figure S6: A: 1H NMR and B: 13C NMR spectra (in DMSO-d6) of the 2,5-

dihydroxyterephthalic acid synthetized by hydroquinone dicarboxylation (see Scheme

2).

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

Page 6: ARTICLE Journal Name · 2014-07-25 · ARTICLE Journal Name. A water-based and high space-time yield synthetic route to MOF Ni. 2 (dhtp) and its linker 2,5-dihydroxyterephthalic acid

Journal Name ARTICLE

Notes and references S1. P. Tarazona, Physical Review A, 1985, 31, 2672-2679. S2. P. Tarazona and R. Evans, Molecular Physics, 1984, 52, 847-857. S3. N. A. Seaton, J. P. R. B. Walton and N. Quirke, Carbon, 1989, 27, 853-861. S4. C. Lastoskie, K. E. Gubbins and N. Quirke, The Journal of Physical Chemistry, 1993, 97, 4786-4796. S5. C. Lastoskie, K. E. Gubbins and N. Quirke, Langmuir, 1993, 9, 2693-2702. S6. P. I. Ravikovitch, A. Vishnyakov and A. V. Neimark, Physical Review E, 2001, 64, 011602. S7. A. V. Neimark, Langmuir, 1995, 11, 4183-4184. S8. M. B. Sweatman and N. Quirke, The Journal of Physical Chemistry B, 2001, 105, 1403-1411. S9. P. I. Ravikovitch, A. Vishnyakov, R. Russo and A. V. Neimark, Langmuir, 2000, 16, 2311-2320. S10. K. Kaneko, R. F. Cracknell and D. Nicholson, Langmuir, 1994, 10, 4606-4609. S11. C. M. Lastoskie, A statistical mechanics interpretation of the adsorption isotherm for the characterization of porous sorbents, Cornell University, May, 1994. S12. P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom and H. Fjellvag, Chemical Communications, 2006, 959-961.

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 5