Aroyo_GroupSubgr.pdf

Embed Size (px)

Citation preview

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    1/100

    INTERNATIONAL SCHOOLON FUNDAMENTAL

    CRYSTALLOGRAPHY

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    2/100

    Mois I. Aroyo

    Universidad del Pais Vasco, Bilbao, Spain

    Group-Subgroup

    Relations

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    3/100

    Group-Subgroup

    Relations ofSpace Groups

    I. Subgroups

    II. Wyckoff-position splittings

    III. Supergroups of space groups

    IV. Normalizers of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    4/100

    Subgroups: Some basic results (summary)

    Subgroup H < G

    1. H={e,h1,h2,...,hk} G

    2. H satisfies the group axioms of G

    Proper subgroups H < G, andtrivial subgroup: {e}, G

    Index of the subgroup H in G: [i]=|G|/|H|(order of G)/(order of H)

    Maximal subgroup H of G

    NO subgroup Z exists such that:H < Z < G

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    5/100

    Coset decomposition G:H

    Group-subgroup pair H < G

    left cosetdecomposition

    right cosetdecomposition

    G=H+g2H+...+gmH, giH,m=index of H in G

    G=H+Hg2+...+Hgm, giHm=index of H in G

    Normalsubgroups Hgj= gjH, for all gj=1, ..., [i]

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    6/100

    Conjugate subgroups

    Conjugate subgroups Let H1

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    7/100

    MAXIMAL SUBGROUPS

    OFSPACE GROUPS

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    8/100

    Subgroups of Space groups

    Coset decomposition G:TG

    (I,0) (W2,w2) ... (Wm,wm) ... (Wi,wi)

    (I,t1) (W2,w2+t1) ... (Wm,wm+t1) ... (Wi,wi+t1)

    (I,t2) (W2,w2+t2) ... (Wm,wm+t2) ... (Wi,wi+t2)

    (I,tj) (W2,w2+tj) ... (Wm,wm+tj) ... (Wi,wi+tj)

    ... ... ... ... ... ...

    ... ... ... ... ... ...

    Factor group G/TG

    isomorphic to the point group PG of G

    Point group PG = {I, W1, W2, ...,Wi}

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    9/100

    (I,0) (2,0) ( ,0) (m,0)

    (I,t1) (2,t1) ( , t1) (m, t1)

    (I,t2) (2,t2) ( , t2) (m,t2)

    (I,tj) (2,tj) ( , tj) (m, tj)

    ... ... ... ...

    ... ... ... ...

    1

    1

    1

    1

    TG TG 2 TG TG m1

    Coset decomposition G:TGExample: P12/m1

    Factor group G/TGPG PG = {1, 2, 1, m}

    n1/2

    n2/2

    n3/2

    n1

    n2

    n3

    -1

    -1

    -1

    inversion centres (1,t):1 at

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    10/100

    Translationengleche subgroups H

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    11/100

    a

    c

    =TGTG2P121

    P =TGTG11

    Example: P12/m1 Translationenglechesubgroups H

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    12/100

    index

    [1]

    [2]

    [4]

    Subgroup diagram of point

    group 2/mTranslationengleiche subgroups of

    space group P2/m

    Example: P12/m1 Translationenglechesubgroups H

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    13/100

    EXERCISES

    Problem 2.20

    Construct the diagram of the

    t-subgroups ofP4mm using the analogy

    with the subgroup diagram of 4mm

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    14/100

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    15/100

    Maximal subgroups of space groups

    International Tables for Crystallography, Vol. A1

    eds. H. Wondratschek, U. MuellerExample: P4mm

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    16/100

    ITA1 maximal subgroup data

    Remarks

    (P,p): OH= OG +p(aH,bH,cH)= (aG,bG,cG) P

    { braces forconjugate

    subgroups

    Maximal subgroups ofP4mm (No. 99)

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    17/100

    subgroup H

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    18/100

    Klassengleiche subgroups H

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    19/100

    Klassengleiche subgroups H1, prime

    P1(a,qb,c): q>1, prime... etc. INFINITE number of maximalisomorphic subgroups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    20/100

    Series of maximal isomorphicsubgroups

    International Tables for Crystallography, Vol. A1

    eds. H. Wondratschek, U. MuellerExample: P-1

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    21/100

    Klassengleiche subgroups H

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    22/100

    Maximal subgroups of space groups

    International Tables for Crystallography, Vol. A1

    eds. H. Wondratschek, U. MuellerExample: P4mm

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    23/100

    Default settings of

    the space groups

    Bilbao Crystallographic Server

    87

    space group

    Static databases

    MAXIMAL SUBGROUPS OFSPACE GROUPS

    Problem:MAXSUB

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    24/100

    MAXIMAL SUBGROUPSDATA-

    BASE:

    MAXSUB

    Bilbao Crystallographic Server

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    25/100

    MAXIMAL SUBGROUPSDATABASE: MAXSUB

    group G {e, g2, g3, ..., gi,...,gn-1, gn}

    subgroup H

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    26/100

    Data generated online(max. index 131) Static databases

    Bilbao Crystallographic Server

    space group

    87

    MAXIMAL ISOMORPHICSUBGROUPS

    Problem:SERIES

    i C i S

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    27/100

    StaticDatabases

    Bilbao Crystallographic Server

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    28/100

    Problem 2.21

    The retrieval tool MAXSUB gives an access to the

    database on maximal subgroups of space groups aslisted in ITA1. Consider the maximal subgroups of thegroup P4mm, (No.99) and compare them with themaximal subgroups ofP4mm derived in Problem 2.17

    (ITA Exercises). Comment on the differences, if any.

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    29/100

    GENERAL SUBGROUPS

    OFSPACE GROUPS

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    30/100

    Chains of maximal subgroups

    G

    Z

    1Z

    1

    Z2 Z

    2

    H

    Z1

    Group-subgroup pair

    G > H : G, H, [i], (P, p)

    Pairs: group - maximal subgroup

    Zk > Zk+1, (P, p)k

    (P, p) =n

    k=1(P, p)k

    General subgroups H

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    31/100

    Theorem Hermann, 1929:

    Subgroups of space groups

    General subgroups H

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    32/100

    Group-subgroup relations

    Applications

    Possible low-symmetry structures

    Domain structure

    Prediction of new structures

    Symmetry modes

    AIM

    G> H, [i]

    chains of maximal subgroups

    Hk[i] H

    classification of Hk

    [i]

    H

    Applications

    Aim

    G

    H

    [i]

    Group-Subgroup Relations

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    33/100

    Crystallographiccomputing programs

    THE GROUP-SUBGROUPS SUITE

    Bilbao Crystallographic Server

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    34/100

    Bilbao Crystallographic Server

    SUBGROUPS OF SPACEGROUPS

    SUBGROUPGRAPHProblem:

    subgroup index

    99

    4

    [i]=[iP].[iL]

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    35/100

    Study the group--subgroup relations between thegroups G=P41212, No.92, and H=P21, No.4 using theprogram SUBGROUPGRAPH. Consider the cases withspecified index e.g. [i]=4, and not specified index of the

    group-subgroup pair.

    Problem 2.22

    What is [iL] for P41212 > P21, [i]=4 ?

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    36/100

    Problem 2.23

    Explain the difference between the contractedand completegraphs of the t-subgroups ofP4mm (No. 99) obtained bythe program SUBGROUPGRAPH. Compare the complete

    graph with the results of Problem 2.4 and 2.17 of ITAExercises.

    Explain why the t-subgroup graphs of all 8 space groupsfrom No. 99 P4mm to No. 106 P42bc have the same`topology' (i.e. the same type of `family tree'), only thecorresponding subgroup entries differ.

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    37/100

    PROBLEM: Domain-structure analysis

    G H[i]

    number of domain statestwins and antiphase domains

    symmetry groups of the domainstates; multiplicity and degeneracy

    twinning operation

    Ph t iti d i t t

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    38/100

    Phase transitions domain structures

    Homogeneous(parent) phase

    Deformed(daughter) phase

    Domain

    G H

    symmetryreduction

    Domain structureA connected homogeneous part of a domain structure or of atwinned crystal is called a domain. Each domain is a single crystal.The number of such crystalsis not limited; they differ in theirlocations in space, in their orientations, in their shapes and in their

    space groups but all belong to the same space-group type of H.

    Domainstates

    The domains belong to a finite (small) number ofdomain states.Two domains belong to the same domain state if their crystalpatterns are identical, i.e. if they occupy different regions of spacethat are part of the same crystal pattern.

    The number of domain states which are observed after a phasetransition is limited and determined by the group-subgrouprelations of the space groups G and H.

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    39/100

    Hermann, 1929:

    For each pair G>H, index [i], there

    exists a uniquely defined intermediatesubgroup M,GM H, such that:

    Mis a t-subgroup ofG

    His a k-subgroup ofM

    G

    M

    H

    iP

    iL

    SUBGROUPS CALCULATIONS: HERMANN

    Domain-structure analysis

    iP=PG/PH

    iL=ZH,p/ZG,p=VH,p/VG,p

    [i]=[iP].[iL]with twinsantiphase

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    40/100

    Problem:

    P421m

    Cmm2

    Pba2

    ik = 2

    it = 2

    i = 4

    G

    H

    Fm3m

    Pm3m Pm3m Pm3m Pm3m

    i = ik = 4

    G=M

    H

    P6222

    P3221

    i = it = 2

    H =M

    G

    twin domainsantiphase

    domains

    twin and

    antiphase

    domains

    Quartz Cu3Au Gd2(MoO4)3

    t-subgroup k-subgroup

    HERMANNCLASSIFICATIONOF DOMAINS

    Index [i] for a group subgroup pair G>HEXAMPLE

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    41/100

    Index [i] for a group-subgroup pair G>H

    Lead vanadate Pb3(VO4)2

    R-3m

    C2/m

    P21/c

    iP=PG/PH

    iL=ZH,p/ZG,p

    EXAMPLE

    High-symmetry phase R-3m

    Low-symmetry phase P21/c

    [i]=[iP].[iL]INDEX:

    [iP]=3

    [iL]=2

    ZG,p=1

    ZH,p=?

    |PG|=12

    |PH|=?

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    42/100

    Ferroelastic Domains in P21/c phase

    number of ferroelastic domains: iP = 12:4=3

    number of different subgroups P21/c: 3

    Maximal-subgroup graph

    number of domains= index [i] = [iP].[iL]=6

    SUBGROUPGRAPH

    Pb3(VO4)2:

    EXERCISES

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    43/100

    EXERCISES

    How many and what kind of domain states?

    High symmetry phase: P2/mLow symmetry phase: P1, small unit-cell deformation

    (A)

    High symmetry phase: P2/mLow symmetry phase: P1, duplication of the unit cell

    (B)

    How many and what kind of domain states?

    High symmetry phase: P4mmLow symmetry phase: P2, index 8

    (C)

    How many and what kind of domain states?

    High symmetry phase: P42bcLow symmetry phase: P21, index 8

    (D)

    Hint: Determine the index [i]=[iP].[iL]

    How many and what kind of domain states?

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    44/100

    Problem 2.24

    At high temperatures, BiTiO3 has the cubic perovskitestructure, space group Pm-3m (No. 221). Upon cooling, itdistorts to three slightly deformed structures, all threebeing ferroelectric, with space groups P4mm (No. 99),

    Amm2 and R3m. Can we expect twinned crystals of thelow symmetry forms? If so, how many kinds of domains?

    What INPUT data should be introduced?

    What program can be used?

    Hint: The program INDEX could be useful

    Bilbao Crystallographic Server

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    45/100

    iL=ZH,p/ZG,p=(fG/fH)ZH,c/ZG,c

    Bilbao Crystallographic Server

    Problem: INDEXINDEX [i] for G>H

    index [iL]

    221

    99

    iL=VH,p/VG,p= (fG/fH) VH,c/VG,c{

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    46/100

    BaTiO3: Ferroelectric Domains in P4mm phase

    number of ferroelectric domains: 6

    number of different subgroups P4mm: 3

    Maximal-subgroup graph

    index [i] = iP= 48 : 8=6

    Domain structure analysis: Twinning

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    47/100

    Coset decomposition of G:H

    left: G>H, G=H+(V2,v2)H + ...+ (Vn,vn)H

    right: G>H, G=H+H(W2,w2) + ...+ H(Wn,wn)

    Domain-structure analysis: Twinningoperation

    99

    221

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    48/100

    BaTiO3: Ferroelectric Domains in P4mm phase

    Twinning operations

    Coset decomposition:

    (1,0)

    coset representatives: qi

    (3,0) (3-1

    ,0)polarization: Pi= qiP

    (1,0)

    Pm3m : P4zmm, index 6

    (3-1

    ,0)(3,0)

    0

    0

    V

    0

    0

    -V

    V

    0

    0

    -V

    0

    0

    0

    V

    0

    0

    -V

    0

    F l t i D i i A 2 B TiO

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    49/100

    Ferroelectric Domains in Amm2 BaTiO3

    number of ferroelectric domains: 12

    number of different subgroups Amm2 : 6

    Maximal-subgroup graph

    index [i] = iP= 48 : 4=12

    SUBGROUPGRAPH

    F l t i D i i A 2 B TiO

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    50/100

    Ferroelectric Domains in Amm2 BaTiO3

    Number of domains = 48/4=12

    12 eq. directions for the order parameter:

    Order of m-3m = 48

    Amm2: Q(0,1/2,1/2)(m-3m, mm2)

    high symmetry Pm-3morder parameter:

    irrep T1u (vector representation)

    Order of mm2 = 4

    P

    P P

    P

    (0,1/2,1/2)

    (0,-1/2,1/2)(0,-1/2,-1/2)(0,1/2,-1/2)

    (1/2,0,1/2)

    (-1/2,0,1/2)(1/2,0,-1/2)(1/2,0,-1/2)

    (1/2,1/2,0)(-1/2,1/2,0)(-1/2,-1/2,0)

    (1/2,-1/2,0)

    (0,1/2,1/2)(0,-1/2,1/2)(0,-1/2,-1/2)(0,1/2,-1/2)

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    51/100

    SrTiO3 has the cubic perovskite structure, space groupPm-3m. Upon cooling below 105K, the coordinationoctahedra are mutually rotated and the space group is

    reduced to I4/mcm; c is doubled and the conventionalunit cell is increased by a factor of four.

    Determine the number and the type of domains of the

    low-temperature form of SrTiO3 using the computertools of the Bilbao Crystallographic server.

    Problem 2.25

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    52/100

    GENERATION

    OFSPACE GROUPS

    Generation of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    53/100

    Generation of space groups

    Set of generators of a group is a set of group

    elements such that each element of the group can beobtained as an ordered product of the generators

    g1 - identityg2, g3, g4 - primitive translations

    Composition series: P1 Z2 Z3 ... Gindex 2 or 3

    Crystallographic groups are solvable groups

    W=(gh) * (gh-1) * ... * (g2) * g1kh kh-1 k2

    g5, g6 - centring translationsg7, g8,... , - generate the rest of elements

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    54/100

    Generation of sub-cubic point groups

    Generation of orthorhombic and

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    55/100

    tetragonal groups

    1

    2

    4

    422

    222

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    56/100

    Generation of sub-hexagonal point groups

    Generation of trigonal and hexagonal

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    57/100

    g ggroups

    1

    3

    6

    622

    32

    EXERCISES

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    58/100

    Problem 2.26 (A)

    Generate the space group C2mm using theselected generators

    Compare the results of your calculation with the

    coordinate triplets listed under General positionof the ITA data of C2mm

    General Layout: Right-hand page

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    59/100

    y g p g

    EXERCISES

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    60/100

    Problem 2.26 (B)

    Generate the space group P4mm using theselected generators.

    Compare the results of your calculation with the

    coordinate triplets listed under General positionof the ITA data ofP4mm

    Construct the composition series for the space groupP4mm in analogy with the composition series of4mm

    1 2 4 4mm

    [2] [2] [2]

    2z 4z mx

    Hint:

    Space group P4mm

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    61/100

    Space group P4mm

    EXERCISES

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    62/100

    Problem 2.27 (additional)

    Generate the space group P42/mbcusing theselected generators.

    Compare the results of your calculation with the

    coordinate triplets listed under General positionof the ITA data ofP42/mbc

    Construct the composition series for the space

    group P42/mbcin analogy with the compositionseries of4/mmm

    1 2 4 422

    [2] [2] [2]

    2z 4z 2y

    Hint:

    [2]

    1

    4/mmm

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    63/100

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    64/100

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    65/100

    RELATIONS BETWEENWYCKOFF POSITIONS

    Symmetry reduction

    Relations between Wyckoff

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    66/100

    Symmetry reduction

    G= Pmm2 > H = Pm, [i] = 2

    S0, G= Pmm2 S1, H = Pm2h m.. (12, y , z) 2c 1 (x , y , z)

    2f .m. (x, 12, z) 1b2 m (x2,

    1

    2, z2)1b1 m (x1,12, z1)

    Splitting of Wyckoff positionsSYMMETRY REDUCTION

    2h m.. (1/2,y,z) 2c1 (x,y,z)

    2f.m. (x,1/2,z) 1b m (x2,1/2,z2)1b m (x1,1/2,z1)

    ypositions

    Consider the group

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    67/100

    EXAMPLE -subgroup pair P4mm>Pmm2

    Determine the splitting schemes for WPs 1a,1b, 2c, 4d, 4e

    [i]=2,a=a, b=b, c=c

    group P4mm subgroup Pmm2

    Group-subgroup pair

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    68/100

    EXAMPLE P4mm>Pmm2, [i]=2

    a=a, b=b, c=c

    P4mm Pmm2

    2c 2mm. 1/2 0 z01/2 z

    1/2 0 z 1c mm2

    0 1/2 z 1b mm2

    Data on Relations between WyckoffP i i i I i l T bl f

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    69/100

    Positions in International Tables forCrystallography, Vol. A1

    Example

    Splitting of WyckoffProblem:

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    70/100

    Splitting of Wyckoff positions

    Applications

    Phase transitions

    Derivative structures

    Symmetry modes

    Objetivo

    G> H, (P,p), WG

    splitting of WG in suborbits

    relation between the suborbits and WHi

    Splitting of Wyckoffpositions

    Applications

    AIM

    Problem:WYCKSPLIT

    Bilbao Crystallographic Server

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    71/100

    groupsubgroup

    Transformation

    matrix (P,p)

    Two-level input:

    Choice of theWyckoff positions

    Bilbao Crystallographic Server

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    72/100

    Two-level output:

    Relations betweencoordinate triplets

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    73/100

    Problem 2.28

    Consider the group-subgroup pair P4mm (No.99) > Cm(No.8) of index [i]=4 and the relation between the bases

    a=a-b, b=a+b, c=c. Study the splittings of the Wyckoffpositions for the group-subgroup pair by the programWYCKSPLIT.

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    74/100

    SUPERGROUPS OF

    SPACE GROUPS

    Supergroups of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    75/100

    Definition: The group G is a supergroup of H ifH is a subgroup of G, GH

    If H is a proper subgroup of G, HH

    Types of minimalsupergroups:

    If H is a maximal subgroup of G, HHtranslationengleiche (t-type)klassengleiche (k-type)

    isomorphicnon-isomorphic

    minimal non-isomorphic k- and t-

    supergroups types

    ITA1 data:

    The Supergroup Problem

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    76/100

    The Supergroup Problem

    Given a group-subgrouppair G>H of index [i]

    Determine: all Gk>Hof index [i], GiG

    H

    G G2 G3 Gn...

    all Gk>H contain H as subgroupH

    G

    [i] [i]

    Gk=H+Hg2+...+Hgik

    Example: Supergroup problem

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    77/100

    a p e: Supe g oup p ob e

    Group-subgroup pair

    P422>P222

    P422

    [2]

    Supergroups P422 of

    the group P222

    P222

    P4z22

    P222

    P4x22 P4y22

    [2]

    P422= 222+(222)(4,0)

    P4z22= 222+(222)(4z,0)

    P4x22= 222+(222)(4x,0)P4y22= 222+(222)(4y,0)

    Are there more

    supergroups P422 of P222?

    Example: Supergroups P422 of P222

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    78/100

    p p g p

    Group Supergroup Relations

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    79/100

    Group-Supergroup Relations

    Applications

    Possible high-symmetry structures

    Prediction of phase transitions

    Prototype structures

    AIM

    G> H, [i]

    to obtain the Gk[i] G

    Applications

    AIM

    G

    H

    [i]

    Group-Supergroup Relations

    International Tables for Crystallography, Vol. A1

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    80/100

    eds. H. Wondratschek, U. Mueller

    Minimal Supergroup Data

    Incomplete data

    P222

    P4z22 P4x22

    P4y22[2]Space-group type only

    No transformation

    matrix

    P4z22(...)

    ...

    ...

    Bilbao Crystallographic Server

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    81/100

    supergroup

    space group

    index

    OutputSupergroups

    optionnormalizers

    SUPERGROUPS OF SPACEGROUPS

    Problem: SUPERGROUPSMINSUP

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    82/100

    Problem 2.30

    Consider the group--supergroup pair H < G with H = P222,No. 16, and the supergroup G= P422, No. 89, of index [i]=2.Using the program MINSUP determine all supergroups P422of P222 of index [i]=2.

    How does the result depend on the normalizer of thesupergroup and/or that of the subgroup?

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    83/100

    NORMALIZERS OF

    SPACE GROUPS

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    84/100

    Normalizers of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    85/100

    Normalizers of space groups

    Normalizers of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    86/100

    Normalizers N(G) : g-1{G}g = {G}

    p g p

    Euclidean

    Affine{

    Normalizers of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    87/100

    Example: Pmmn

    the symmetry of

    symmetry

    Normalizers N(G) : g-1{G}g = {G}

    p g p

    Euclidean

    Affine{

    Normalizers of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    88/100

    Example: Pmmn

    the symmetry of

    symmetry

    Normalizers N(G) : g-1{G}g = {G}

    p g p

    Euclidean

    Affine{

    Normalizers of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    89/100

    Example: Pmmn

    the symmetry of

    symmetry

    Normalizers N(G) : g-1{G}g = {G}

    p g p

    Euclidean

    Affine{

    Normalizers of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    90/100

    Example: Pmmn

    the symmetry of

    symmetry

    Normalizers N(G) : g-1{G}g = {G}

    p g p

    Euclidean

    Affine{

    Normalizers of space groups

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    91/100

    p g p

    Normalizers N(G) : Euclidean

    Affine

    Space group: Pmmn (a,b,c)

    Euclidean normalizer:Pmmm (1/2a,1/2b,1/2c)

    {the symmetryof symmetry

    g-1{G}g = {G}

    NormalizersNormalizers for specialized metrics

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    92/100

    Space group:Pmmn (a,b,c), a=b

    Euclidean normalizer forspecialized metrics:P4/mmm (1/2a,1/2b,1/2c)

    Applications: Equivalent point configurations

    Wyckoff sets

    Equivalent structure descriptions

    International Tables for Crystallography, Vol. A, Chapter 15

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    93/100

    Example: Pmmn

    Normalizers of space groups

    E. Koch and W. Fischer

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    94/100

    Normalizersof space groupsProblem: NORMALIZER

    Example NORMALIZER: Space group Pnnm (59)

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    95/100

    Example NORMALIZER: Space group Pnnm (59)

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    96/100

    Symmetry-equivalent

    Normalizers

    W k ff S

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    97/100

    Symmetry equivalentWyckoff positions

    Wyckoff Sets

    a b

    Symmetry-equivalentWyckoff positions

    Wyckoff Sets

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    98/100

    Wyckoff positions

    Table 14.2.3.2

    (selection)

    International Tables forCrystallography, Vol. A

    Fischer and Koch, Chapter 14.

    BilbaoCrystallographic

    Server

    Problem 2 31

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    99/100

    Problem 2.31

    Using the computer tool NORMALIZER determine theEuclidean normalizer of the group P222 (general metric)and the Euclidean normalizers of enhanced symmetry forthe cases of specialized metric ofP222. Compare your

    results with the data used in Problem 2.25 of the ITAExercises.

    Determine the assignment of Wyckoff positions into

    Wyckoff sets with respect to the different Euclideannormalizers ofP222 (for general and specialized metrics)and comment on the differences, if any.

  • 7/27/2019 Aroyo_GroupSubgr.pdf

    100/100

    Problem 2.29

    Study the splittings of the Wyckoff positions for the group-subgroup pair P42/mnm (No.136) > Cmmm (No.65) of index

    2 by the program WYCKSPLIT.

    Both transformation matrices a+b, -a+b, c and a+b, -a+b,c; 0, 0, 1/2 specify the samesubgroupCmmm (No.65) of

    P42/mnm (No.136). Compare the splitting schemes of theWyckoff positions for the two transformation matrices andexplain the differences, if any.