50
Approximation to PDE by narrow-base trial functions Defining the PDE problem Introduction to the PDE approximation • Weak formulation and the Galerkin method Some 1D problems. Generalization to 2D and 3D problems 2D heat equation 2D elastic stress analysis Finite differences as a special case of finite elements

Approximation to PDE by narrow-base trial functions

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Approximation to PDEby narrow-base trial functions

• Defining the PDE problem• Introduction to the PDE approximation• Weak formulation and the Galerkin method• Some 1D problems.• Generalization to 2D and 3D problems• 2D heat equation• 2D elastic stress analysis• Finite differences as a special case of finite

elements

Defining the PDE problem

( )

( )

( )

( )( ) ( )

( )

( )

Γ−=∂∂

−=

Γ−==

Γ=+=≠=

∂∂

∂∂

+

∂∂

∂∂

=

Ω=

NEUMANN on ;

DIRICHLET on ;

in 0r

operator aldifferentilinear in 0

qqr

r

B

Qp

yyxx

pp

A

ηφ

κφ

φφφ

φφφκκ

φκ

φκφ

φ

φ

φ

M

M

M

L

: L

Introduction to the PDE approximationHow to choose the trial functions

( )( )

Γ∈=

==−=

Γ

=≅ ∑

xxx

mNr

xNxx

m

mmm

allfor )()(ˆ

,2,1;0 on

)()(ˆ)(

φφ

ψ

φφφ

LMM

Introduction to the PDE approximationThe trial functions and its derivatives

form weak ain problem theredefine it werelax toby imposed regularity theneeds

ˆ

ˆ

ˆ

)()(ˆ)(

222

L

LL

m

m

mm

m

mm

mmm

mmm

NxN

xx

xN

xx

N

xNxx

∂∂

=∂∂

≅∂

∂∂

=∂∂

≅∂∂

=

=≅

φφφ

φφφ

φφ

φφφ

Approximation by weighted residualWeak formulation and the Galerkin method

( )

( ) ( )

MmldrWdpWf

dNWdNWK

fK

drWdpWdNWdNW

drNWdpNW

dRWdRW

rNrBR

pNpAR

lll

mlmllm

lmlm

llm

mmlm

mml

mmml

mmml

ll

mmm

mmm

,,2,1,

0

0

ˆ

L=Γ−Ω−=

Γ+Ω=

=

Γ−Ω−=Γ

++Ω

+

=Γ+Ω

+=+==

+=+==

∫∫

∫∫

∫∫∑∫∑∫

∑∫∑∫

∫∫

ΓΩ

ΓΩ

ΓΩΓΩ

ΓΩ

ΓΓ

ΩΩ

Γ

Ω

ML

ML

ML

MM

LL

φ

φφ

φφ

φφφ

φφφ

Weak formulation and functional regularity

Weak formulation and functional regularity

( )

( ) ( )( )

functions trialandweight between nscomputatio theofcost thebalancing spaces functional the

for tsrequiremen regularity thereduce tofeasible isit way In this

0rˆˆˆ

rˆpˆ

0ˆˆpˆ

formweak

partsby n integratio

form strong

=Γ++Γ+Ω+Ω=

=Γ++Ω+

=Ω+Γ+Ω=Ω+

∫∫∫∫

∫∫

∫∫∫∫

ΓΓΩΩ

ΓΩ

ΩΓΩΩ

dWdWpdWdW

dWdW

pdWdWdWdW

llll

ll

llll

φφφ

φφ

φφφ

MEDC

ML

EDCL4444444 34444444 21

4444 84444 76

44 344 21

Some 1D problemsAgain solving example 5 now with FEM

[ ] [ ]

( )[ ] ( )[ ] 01ˆ0ˆ

ˆˆˆ

ˆ

1,2,1for 0dxd

linear piecewise for using )()(ˆ)(

1x0,x:in 1)1(;0)0(

1xx;0:in 0dxd

ODE following theofsolution )(ˆ Find

10

01

1

0

1

0

10

1

02

2

2

2

=−+−+

+

+−−

+==++

=≅

==Γ====

≤≤Ω=−

==

==

=Γ=Γ

∫ ∫

xlxl

xx

ll

xlxll

mm

mm

WW

dxd

Wdxd

WdxWdxdxd

dxdW

MlRWRWdxW

NxNxx

xx

x

φφ

φφφ

φ

φφ

φφφ

φφ

φφ

φ

K

Example 5 by piecewise linear Galerkin

[ ] ( )[ ]

unknowns asˆ

includingit keep topossible isit However

0 becauseout cancelled bemay termrhs the

ˆˆ

ˆ

01ˆˆ

ˆˆˆ

ˆ

with

0 & Choosing

1x

0x

1

0

1

0

1

0

)(DIRICHLET 0

1

)(DIRICHLET 0

0

01

1

0

1

0

=

=

Γ

=

=

=

=

=

=

==

ΓΓΓ

=

=+⇒

=−−−

+−−

Γ∪Γ=Γ

=−=

∫ ∫

∫ ∫

dxd

W

dxd

WdxWdxdxd

dxdW

WW

dxd

Wdxd

WdxWdxdxd

dxdW

WWW

l

x

x

lll

xlxl

x

l

x

lll

q

lll

φ

φφ

φ

φφ

φφφ

φ

φ

φ

φ

4342143421

Example 5 by piecewise linear Galerkin

121

1

0

1

0

1

0

1

0

1

0

1

0

,,,,

1,,2,1,;ˆ

ˆˆ

ˆ

+

=

=

=

=

=

+=

=

+=

=⇒

=+

∫ ∫

∫ ∫

MM

x

x

ll

mlml

lm

x

x

lll

MMmldxd

Wf

dxNWdxdx

dNdx

dWK

fK

dxd

WdxWdxdxd

dxdW

φφφφφ

φ

φ

φφ

φ

L

K

Example 5 by piecewise linear Galerkin

( )

+=

=

+

==

+−=

=

+==

==

−=−==−

=

∑=

31

61

element , if 0

;

;;;

0

22

0

1

e

e

hei

eie

jjeii

e

e

hej

ei

ej

eie

jieij

elm

E

e

elmlm

ije

ieeje

eei

hh

dNdx

dNKK

hh

dNNdx

dN

dxdN

KK

eml

KKK

xxhxxh

Nh

hN

e

e

χ

χ

χχχ

Example 5 by piecewise linear Galerkin

[ ]

++

++−

+−++

++−

+−++

++−

+−+

=⇒

==

dxd

dxd

dxd

dxd

hh

hh

hh

hhh

hh

h

hh

hhh

hh

h

hh

hh

K

fK

xx

e

e

e

e

e

e

e

ee

e

e

e

e

e

e

ee

e

e

e

e

e

e

e

432

132

3 ELEMENT

12 ELEMENT

1 ELEMENT

0

3 ELEMENT2 ELEMENT1 ELEMENT

,,, unknowns 4for or , unknowns 2for solved bemay system the

ˆ0000000000

ˆ

as gathered is f

31

61

00

61

31

00

00000000

0000

03

16

10

06

13

10

0000

0000

0000

003

16

1

006

13

1

as gathered is

)(gathering system theAssembling

φφφ

φφφ

φφ

φ

444 3444 214434421

444 3444 21

44444 344444 2144444 344444 2144444 344444 21

Example 5 by piecewise linear Galerkin

=

=

++−

+−+=

+−=

++−

+−

+

=

=

=

++−

+−

++−

+−

++−

+−+

1

0

31

61

00

006

13

1

and

61

0

31

26

16

13

12

unknowns 2with

00

1

0

31

61

00

61

31

26

10

06

13

12

61

006

13

1

unknowns 4with

4

3

2

1

4

1

3

2

4

1

4

3

2

1

φφφ

φ

φ

φ

φφ

φ

φ

φφφ

φ

e

e

e

e

e

e

e

e

e

ee

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

hh

hh

hh

hh

dxd

dxd

hhh

hh

h

hh

hh

dxd

dxd

hh

hh

hh

hh

hh

hh

hh

hh

hh

hh

Example 5 by piecewise linear Galerkin(routine Ej_4_1.m)

Ke = zeros(numel,2,2);fe = zeros(numel,2);

% loop over each elementfor k=1:numel

psi = (0:10)'/10; node1 = icone(k,1);node2 = icone(k,2);xx = psi*(xnod(node2,1)-xnod(node1,1))+xnod(node1,1); [N,L_N] = shape_function(xx); for mi=1:2

for mj=1:2Ke(k,mi,mj) = Ke(k,mi,mj) + trapz(xx,N(:,mi).*N(:,mj));Ke(k,mi,mj) = Ke(k,mi,mj) + trapz(xx,L_N(:,mi).*L_N(:,mj));

endend

end

Assembling

Example 5 by piecewise linear Galerkin (routineEj_4_1.m)

% gather Ke and fe in Kg and fgKg = zeros(Nx+1,Nx+1);fg = zeros(Nx+1,1);for k=1:numel

for mi=1:nenfor mj=1:nen

Kg(icone(k,mi),icone(k,mj))=Kg(icone(k,mi),icone(k,mj)) + Ke(k,mi,mj); endfg(icone(k,mi),1) = fg(icone(k,mi),1) + fe(k,mi);

endend

% reducing the global system for fixationsfree = (2:Nx)';fg(free,1) = fg(free,1) - Kg(free,1)*phi_lef - Kg(free,Nx+1)*phi_rig;Kg = Kg(free,free);fg = fg(free,1);% solverphi = Kg\fg;

phi = [phi_lef;phi;phi_rig];

Gathering

Applied BCand solving

Example 5: Heat

equation in 1D with

FEMResults

GRID USED

Exact solution to Example 5

( ) ( )

( )e

e

eeee

ee

ee

AeAeAeAeAx

x

AAAAeAeAx

x

eA

eA

xxxx

x

xx

x

xx

xkk

xk

k

k

111

1

11)1(

1)1( using

0)0(

0)0( using

10 1

get weODE in the replacing

form theof solutions admits 0dxd

solution.exact for the ODE thesolve error we theanalyze order toIn

11

21121

2121021

2

2

2

−=−

−=∴

−=⇒=+=+==

==

−=⇒=+=+==

==±=⇒=−

==−

−−

=

=

φ

φ

φ

φ

φλλ

φφφ

λ

λ

Example 5: Heat

equation in 1D with

FEMResults

[phi , phi_th] = [ …0 0

2.885539967914507e-001 2.889212154417394e-0016.097683214596928e-001 6.102431352945081e-0011.000000000000000e+000 1.000000000000000e+000 ]

Some 1D problemsExample 5 now with Neumann BC at x=1

[ ] [ ]

( )[ ] 01ˆ

ˆˆˆ

ˆ

1,2,1for 0dxd

linear piecewise for using )()(ˆ)(

1x0,x:in 1)1(dxd

;0)0(

1xx;0:in 0dxd

ODE following theofsolution )(ˆ Find

1

0

01

1

0

1

0

10

1

02

2

2

2

=

−+−+

+

+−−

+==++

=≅

==Γ====

≤≤Ω=−

=

=

==

=Γ=Γ

∫ ∫

x

lxl

xx

ll

xlxll

mm

mm

dxd

WW

dxd

Wdxd

WdxWdxdxd

dxdW

MlRWRWdxW

NxNxx

xx

x

φφ

φφφ

φ

φφ

φφφ

φφ

φφ

φ

K

Example 5 by piecewise linear Galerkin

[ ] [ ]

[ ]

[ ] 1,,2,1, ;ˆ

unknownan asˆ

retain Again we

ˆˆ

0ˆˆ

ˆˆ

h wit0 & Choosing

0

1

1

0

1

0

0x

1

0

1

0

1

0

1

)(DIRICHLET 0

0

0

1

0

1

0

+=−=

+=

=−++⇒

=+−−−−

Γ∪Γ=Γ=−=

=

=

=

=

=

=

=

=

=

ΓΓΓ

∫ ∫

∫ ∫

∫ ∫

MMmldxd

WWf

dxNWdxdx

dNdx

dWK

dxd

Wdxd

WdxWdxdxd

dxdW

WWdxd

WdxWdxdxd

dxdW

WWW

x

lxll

mlml

lm

xl

x

lll

xlxl

x

lll

qlll

K

43421

φ

φ

φφ

φ

φφ

φφ

φφ

Exact solution to Example 5 with Neumann BC

( ) ( )

( )e

e

eeee

ee

ee

AeAeAeAx

x

AAAAeAeAx

x

eA

eA

xxxx

x

xkk

x

xx

xkk

xk

k

k

k

111

1

11)1(

dxd

1)1(dxd

using

0)0(

0)0( using

10 1

get weODE in the replacing

form theof solutions admits 0dxd

11

211

2121021

2

2

2

+

−=−

+=∴

+=⇒=−===

==

−=⇒=+=+==

==

±=⇒=−

==−

−−

=

=

φ

λφ

φ

φ

φ

λλ

φφφ

λ

λ

λ

Example 5: Results

withNeumannBC at x=1

GRID USED

Example 5: Results

withNeumannBC at x=1

[phi , phi_th] = [ …0 0

2.192827911335199e-001 2.200407092120653e-0014.633853662097133e-001 4.647576055524206e-0017.599367659842332e-001 7.615941559557650e-001 ]

Example 8 : SoDE – 2nd order to 1st order

1@0;0@0

21

0

21

1;1;10;:

0

==−===

>

≤==≤≤Ω

=−

xdxd

qx

x

xQxx

Qdxd

dxd

φκφ

κ

φκ

Example 8 : two 1st order ODEs instead ofone 2nd order ODE

( )

φ

φ

φκ

φφ

φκ

φφ

φκφ

MldxQNdxdxqd

N

MldxqNdxdxd

N

NNqq

Qdxdq

dxd

q

q

Qdxd

dxd

x

ll

qll

mmm

mqmm

T

L

L

,2,1 0ˆ

,2,1 0ˆˆ

ˆ;ˆ

ionapproximat following with the

in 0

0 is solve tosystem the

, unknowns of vector with theODEs of systemorder 1st a as

0 ODE following theofsolution )(ˆ Find

1

02,

1

02,

1

01,

1

01,

,,

==−

==+∴

==

Ω

=−

=+

=

=−

∫∫

∫∫

∑∑

Example 8 : SoDE – 2nd order to 1st order

dx

QN

QNf

dx

dx

dNN

dx

dNN

dxdN

NNNdx

dNNNN

dx

dNN

dx

dNN

dxdN

NNNdx

dNNNN

K

NNNNNN

e

qq

qq

qq

qq

e

mmqmlll

=

=

====

1

0

2,2

2,1

1

0

,22,2

,12,2

,21,2,21,2

,11,2,11,2

,22,1

,12,1

,21,1,21,1

,11,1,11,1

,,2,1,

0

0

00

00

elementeach over on Contributi

;

φφ

φφ

φ

κκ

κκ

Example 8: Results

GRID USED

Example 8: Resultsfrom the

book

Weak form and mixed formulation

Some figure with weight and trialFunctions for different fields

Example 8 : weak form and mixed formulation

[ ] φ

φ

φ

φκ

φφ

φφ

MldxQNdxqNqdx

dN

dxQNdxdxqd

N

MldxqNdxdxd

N

NNqq

MM

q

l

x

xll

ll

qll

M

mmm

M

mqmm

q

q

L

L

,2,1 0ˆˆ

ˆ

,2,1 0ˆˆ

ˆ;ˆ

ˆfor linear piecewise and

ˆfor constant piecewise usingion approximat thechange topossible isit equation second for the form weak a Using

1

02,

1

0

1

02,2,

1

02,

1

02,

1

01,

1

01,

1,

1,

==−+−

=−

==+∴

==

>⇒

∫∫

∫∫

∫∫

∑∑

=

=

==

Weak form andmixed formulation

=

=

==

=

2

0

1

02,2

,21,2,21,2

,11,2

2,1

2

1

0

0

,12,2

,12,1

,21,1

,11,1,11,1

,21,2

0

,22,2

,12,2

,21,2,21,2

,11,2,11,2

,22,1

,12,1

,21,1,21,1

,11,1,11,1

00

00

00

00

either and anymoreexist not does

equation) (second 2 and equation)(first 1 levelelement at

00

00

elementeach over on Contributi

φ

φκκ

φφ

κκ

φ

κκ

κκ

φφ

φφ

φ

φφ

φφ

qdx

dx

dNN

dx

dNNNN

dx

dNN

dxdN

N

K

q

dx

dx

dNN

dx

dNN

dx

dNN

dx

dNNNN

K

NN

MM

dx

dx

dNN

dx

dNN

dx

dNNNN

dx

dNNNN

dx

dNN

dx

dNN

dx

dNNNN

dx

dNNNN

K

e

e

e

h

q

q

q

e

h

q

q

q

ee

q

q

h

qq

qq

qq

qq

e

Weak form and mixed formulation

+

−=

−+

−=

−=

=

=

=

=

=

10

2,2

2,1

0

02,2

2,1

02,2

2,1

2

0

1

0

2,2

,21,2,21,2

,11,2

2,1

ˆ00

0

00

ˆ

0

as modified be should rhs eelement thlast theandfirst for the

0

00

00

1

x

h

xh

he

h

q

q

q

e

qdx

QN

QNf

qdx

QN

QNf

dxQN

QNf

qdx

dxdN

N

dx

dNNNN

dx

dNN

dxdN

N

K

eqMe

ee

e

e

φ

φκκ φφ

Mixed formulation for heat equation

for k=1:numelpsi = (0:20)'/20; node1 = icone(k,1);node2 = icone(k,3);xx = psi*(xnod(node2,1)-xnod(node1,1))+xnod(node1,1); eval(['Qx=' filename '(xx);' ]);[N,L_N] = shape_function(xx);

Ke(k,1,2) = Ke(k,1,2) + trapz(xx,L_N(:,1)); Ke(k,3,2) = Ke(k,3,2) + trapz(xx,L_N(:,2)); Ke(k,2,1) = Ke(k,2,1) + kappa*trapz(xx,L_N(:,1)); Ke(k,2,3) = Ke(k,2,3) + kappa*trapz(xx,L_N(:,2)); Ke(k,2,2) = Ke(k,2,2) + 1*trapz(xx,ones(size(xx)));

fe(k,1) = fe(k,1) - trapz(xx,Qx.*N(:,1)); fe(k,3) = fe(k,3) - trapz(xx,Qx.*N(:,2));

end

Assembling

Mixed formulation for heat equation

Gathering

for k=1:numelnode_i = icone(k,1);node_j = icone(k,3);node_e = icone(k,2); Kg(node_i,node_e)=Kg(node_i,node_e) + Ke(k,1,2); Kg(node_j,node_e)=Kg(node_j,node_e) + Ke(k,3,2);Kg(node_e,node_i)=Kg(node_e,node_i) + Ke(k,2,1);Kg(node_e,node_j)=Kg(node_e,node_j) + Ke(k,2,3); Kg(node_e,node_e)=Kg(node_e,node_e) + Ke(k,2,2);

fg(node_i,1) = fg(node_i,1) + fe(k,1);fg(node_e,1) = fg(node_e,1) + fe(k,2);fg(node_j,1) = fg(node_j,1) + fe(k,3);

end

% reducing the global system for fixationsfree = (1:2*Nx+1)'; free(1) = [];fg(free,1) = fg(free,1) - Kg(free,1) * phi_lef ;Kg = Kg(free,free);fg = fg(free,1);% solverphi_new = Kg\fg;phi = [phi_lef;phi_new];

Solving

Mixed formulation - Results

Piecewise constant q

Piecewise linear phi

Generalization to 2D and 3D problems

• 1D problems are attractive to check numerical schemes (exactsolution availability)

• 1D problems have little practical (industrial) interests• 2D or 3D problems have analytical solution only for very simple

geometries and boundary conditions• In general only numerical methods may be used• In 2D and 3D the choice of the shape functions depends on the

equation to be solved and the type of element being used. • Triangular and quadrangular types are commonly used (not

necessarily restricted to these).• In 3D tetrahedra are widely used because of mesh generators

availability. • Hexahedra are less common but they are attractive for their

accuracy if the geometry allows for them.• Prismatic elements close to bodies where boundary layer are

expected may be included.• 2D & 3D the idea is to cover the whole domain with simple non-

overlapping elements

Example of 3D flow analysis

Aerodynamic analysis of a race carThe importance of computational geometry

FOTOGRAMETRIAFOTOGRAMETRIACADCAD

GENERACION GENERACION DE MALLASDE MALLAS

CFDCFD & VISUALIZACION& VISUALIZACION

CARGAS AERODINAMICASCARGAS AERODINAMICAS

CADCADCHASIS, ESTRUCTURA & CHASIS, ESTRUCTURA &

SUSPENSIONSUSPENSION

MODELO DINAMICO

MANIOBRAS & CIRCUITOSMANIOBRAS & CIRCUITOS

CURVAS CFDCURVAS CFD

REALIMENTACIONREALIMENTACIONAL MODELOAL MODELO

TELEMETRIATELEMETRIARESULTADOS

DINAMICOS+

CAD – From production to analysisGeometría relevada

Geometría simplificada (limpia)

Geometrical model & mesh generation

mesh generation details

The linear triangle

? ;;get toHow

element on ),(

),(),(),(),(for 0

),(),(for 1),(

elementsgular over trianlinear piecewise Using

ei

ei

ei

ei

ei

ei

ei

ikj

iei

eyxyxN

yxyxyxyx

yxyxyxN

γβα

γβα ++=

≠==

==

The linear triangle

)element of 2(area2111

det2

2

2

2

solutionwith

001

111

eAyxyxyx

xx

yy

yxyx

yxyxyx

e

kk

jj

iie

ejke

i

ekje

i

ejkkje

i

ei

ei

ei

kk

jj

ii

==

=∆

−=

−=

−=

=

γ

β

α

γβα

The linear triangle – How the numbering impact on thealgebraic structure of the stiffness matrix ?

Boundaries approximatedby straight lines

* Non zeros terms

The linear triangle – How the numbering impact on thealgebraic structure of the stiffness matrix ?

• The numbering influences the bandwidth

• The bandwidth is closely related with the computational cost andmemory requirements.

• Sparse matrices are found due to the narrow-based trialfunctions

• The computation may be divided in three main steps

– Element assembling– Gathering

– Solver

The linear triangle – How the numbering impact on thealgebraic structure of the stiffness matrix ?

* Non zeros terms

The bilinear rectangle

( ) ( )

≠====

=∴

−−=

),(),(),(),(),(for 0

),(),(for 1),(

),(

functions shape 3D trilinearaor 2Dbilinear a produces

1Din functions allinear tri ofproduct cartesian Thesegmentslinear ofproduct cartesian ofsort a is rectangleA

ilkj

iei

y

y

x

xei

yxyxyxyxyx

yxyxyxN

h

yh

hxh

yxN

The bilinear rectangle

=

+++=

0001

1111

? ;;;get toHow

element on ),(

ei

ei

ei

ei

llll

kkkk

jjjj

iiii

ei

ei

ei

ei

ei

ei

ei

ei

ei

yxyxyxyxyxyxyxyx

exyyxyxN

δγβα

δγβα

δγβα

Low order (linear) andlow regularity (C0) of shape function

Approximation of curved boundaries

3D elements – tetrahedron and hexahedron

( ) ( )( ) ( ) ( ) ( ) ( )

ezyxzyxN

zyxzyxzyxzyxzyx

zyxzyxzyxN

ei

ei

ei

ei

ei

ilkj

iei

element on ),,(

,,,,,,,,,,for 0

,,,,for 1),,(

δγβα +++=

≠===

==