23
1 Aspergillus oryzae Speaker: Chia-wen Chen Advisor: Huang, C.-T 2007/10/30 Applied and Environmental Microbiology, May 2006, p. 3448-3457, Vol. 72, No. 5 2 Aspergillus oryzae Rawlings, N.D., Morton, F.R. & Barrett, A.J. (2006) MEROPS: the peptidase database. Nucleic Acids Res 34, D270-D272. Kingdom Fungi Phylum Ascomycota Subphylum Pezizomycotina Class Eurotiomycetes Order Eurotiales Family Trichocomaceae Genus Aspergillus Species A. oryzae

Applied and Environmental Microbiology, May 2006, p. 3448-3457

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Applied and Environmental Microbiology, May 2006, p. 3448-3457

1

Aspergillus oryzae

Speaker: Chia-wen ChenAdvisor: Huang, C.-T2007/10/30

Applied and Environmental Microbiology, May 2006, p. 3448-3457, Vol. 72, No. 5

2

Aspergillus oryzae

Rawlings, N.D., Morton, F.R. & Barrett, A.J. (2006) MEROPS: the peptidase database. Nucleic Acids Res 34, D270-D272.

Kingdom FungiPhylum AscomycotaSubphylum PezizomycotinaClass EurotiomycetesOrder EurotialesFamily TrichocomaceaeGenus AspergillusSpecies A. oryzae

Page 2: Applied and Environmental Microbiology, May 2006, p. 3448-3457

3

Aspergillus oryzaeGRAS (generally regarded as safe)A large amounts of enzymes

(mainly hydrolytic enzymes )

A wide range(glucoamylse a, alanyl dipeptidyl peptidase ……)

Commercial production (often extracellular)

4

Page 3: Applied and Environmental Microbiology, May 2006, p. 3448-3457

5

Solid-State Culture Submerged CultureNature environment Artificial environment

Often used in filamentous fungi Can be used in plant and animal cell

Low cost High cost

Hard to manipulate physical andchemical properties

Easy to manipulate physical andchemical properties

Purity low Purity high

Purify ?? Purify ☆

Food Pharmaceutical products

Low price High price

6http://www.vesuite.org/index.php

Solid-State CultureSubmerged Culture

http://www.unitus.it/dipartimenti/dabac/progetti/ssbioreactors/solidstatebioreactor.htm

pilot solid-state bioreactor

Page 4: Applied and Environmental Microbiology, May 2006, p. 3448-3457

7

glaB (glucoamylase B)pepA (alanyl dipeptidyl peptidase)Glycolytic pathway & TCA cycle

8

Hydrolytic enzymes

A solid state-specific expression marker

Expression of glaB was also induced by starch ormalto-oligosacharides in surface cultures(Hata et al. 1998)

Page 5: Applied and Environmental Microbiology, May 2006, p. 3448-3457

9

Hydrolysis of X-Ala, His-Ser, and Ser-Tyrdipeptides at a neutral pH optimumThe encoding gene can’t be expressed insubmerged cultureCan be expressed when cultured onsteamed riceN-glycosylated.

(Kitano et al. 2002)

10

Realize the mechanism causing the differencebetween 2 culture systems

throughtranscriptional analysisproteomic analysisESTs (Expressed Sequence Tags) ……

Page 6: Applied and Environmental Microbiology, May 2006, p. 3448-3457

11ESTs are generated by sequencing cDNAUsually 200 to 500 nucleotides long

http://www.ncbi.nlm.nih.gov/About/primer/est.html

12

Databasehttp://www.ncbi.nlm.nih.gov/projects/dbESTToolsBLAST, FASTA, Entrez, GenBank

Page 7: Applied and Environmental Microbiology, May 2006, p. 3448-3457

13

14

Page 8: Applied and Environmental Microbiology, May 2006, p. 3448-3457

15

http://www.nrib.go.jp/ken/EST/db/index.html

16

http://www.nrib.go.jp/ken/EST/db/blast.html

Page 9: Applied and Environmental Microbiology, May 2006, p. 3448-3457

17http://www.bio.nite.go.jp/dogan/Top

18

A comparative proteome analysis

Protein secretion profiles

Compare the difference between solid-stateand submerged culture

Page 10: Applied and Environmental Microbiology, May 2006, p. 3448-3457

19

Yield

Peptide massfingerprinting

MALDI-TOF MS

Incubate40 hours

Classifying proteins

HydrophobicChromatography

SDS-PAGE

Northern analysis

2-D gelelectrophoresis

20

Dry mycelium weight →N- acetylglucosamineProtein concentration →

Bradford protein assay3 independent experiments

Page 11: Applied and Environmental Microbiology, May 2006, p. 3448-3457

21

The single unit of chitinChitin is the major component of fungi’s cellwall

http://www.ocean.udel.edu/horseshoecrab/Research/chitin.html

22

10g 100 mL

Solid-State fermentation: Submerged fermentation=4-6.4 fold(protein secreted/gram of dry mycelium)

Page 12: Applied and Environmental Microbiology, May 2006, p. 3448-3457

23

Protein +Genome Proteome

Nature 405, 837-846(15 June 2000)

24Bakhtiar, R. et al. Mutagenesis 2000 15:415-430; doi:10.1093/mutage/15.5.415

Page 13: Applied and Environmental Microbiology, May 2006, p. 3448-3457

25

http://www.psrc.usm.edu/mauritz/maldi.html

26

mH + hv → mH*mH* + M →m-+[M+H]+

http://www.psrc.usm.edu/mauritz/maldi.html

Page 14: Applied and Environmental Microbiology, May 2006, p. 3448-3457

27http://qbab.aber.ac.uk/roy/mss/tofspec.htm

28

http://www.expasy.org/

Page 15: Applied and Environmental Microbiology, May 2006, p. 3448-3457

29

http://www.expasy.org/tools/aldente/

30

α-amylase

IPG:ph4-710-20% SDS polyacrylamide gel300 μgCBB stained

α-amylase α-amylase α-amylaseα-amylase

α-amylaseα-amylase α-amylase

Oryzin spotOnly appears in solid-state culture

Page 16: Applied and Environmental Microbiology, May 2006, p. 3448-3457

31

α-amylase

α-amylase α-amylase α-amylaseα-amylase

α-amylaseα-amylase α-amylase

Culture conditionsAge of the cultureSpots diffused-heterogeneity of proteins due to glycosylation

Wheat bran proteins degraded and vanished at 24 h

32

Reason: N-linked oligosaccharides can bedifficult to see by MALDI-TOF MSMake peptides above 3500 kDaDeglycosylation of proteins before 2-D PAGE→protein insolubleA reasonable choice

Page 17: Applied and Environmental Microbiology, May 2006, p. 3448-3457

33

Cleave the β-aspartylglucosamine bond ofasparagine-linked oligosaccharides

http://www.rcsb.org/pdb/explore.do?structureId=1PNGhttp://www.glycoforum.gr.jp/science/word/glycoprotein/GPA00E.html

34

http://www.rcsb.org/pdb/explore.do?structureId=2PTN

Trypsin Cleaves Exclusively C-terminal toArginine and Lysine Residues

http://gandalf.umd.edu/BCHM461/Exam2/Ex2_sol.pdf

Page 18: Applied and Environmental Microbiology, May 2006, p. 3448-3457

35

Solid-state culture Submerged culture

Cell wall-bound proteinin submerged culture

Incubate 40 hours10-20% SDS polyacrylamide gelCBB stainedIn-gel deglycosylated with PNGase F → trypsin digestionScores >60IPG:ph4-7

36

Over 50% of visible proteins areα-amylases and their proteolytic products

Page 19: Applied and Environmental Microbiology, May 2006, p. 3448-3457

37Glucoamylase A, Xylanase G2…….

38

α-amylase and β-glucosidase

Page 20: Applied and Environmental Microbiology, May 2006, p. 3448-3457

39

Hydrophobic ChromatographyA280nm

α-amylase activity

40

Page 21: Applied and Environmental Microbiology, May 2006, p. 3448-3457

41

Solid state

Submerged state

Both conditions

Be trapped in cell wall

42Northern analysis

Quantitative control

Page 22: Applied and Environmental Microbiology, May 2006, p. 3448-3457

43

Low external osmotic pressure in submergedculture→ a static cell wall→ protein can be trappedAspergillus kawachii can secrete α-amylaseand β-glucosidase → the help of extracellularpolysacharrides

44

Submerged and Solid-StateCulture produce different

proteins.

We can divide proteins into 4 types.

Solid-State Cultureusually producemore proteins

Page 23: Applied and Environmental Microbiology, May 2006, p. 3448-3457

45