20
2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630- 851- 4722 Fax: 630- 851- 5040 www.conwin.com Application Note AN2093 Page 1 Revision P02 Date 18 April 2018 OCXO Layout Guidelines 1.1 Introduction The techniques included in this application note will help to ensure successful printed circuit board layout using an oven-controlled crystal oscillator (OCXO). Problems with layout can result in noisy and distorted frequency transmissions, error-prone digital communications, latch-up problems, significantly reduced frequency stability, thermal instability within the OCXO, and other undesirable system behavior. 1.2 This document includes the following Power and ground circuit design tips. Theory of operation / Characterization Techniques to achieve optimal thermal conditions using multilayer boards A design checklist 1.3 About this document The methods presented in this application note should be taken as suggestions which provide a good starting point in the design and layout of a PCB. It should be noted that one design rule does not necessarily fit all designs. It is highly recommended that prototype PCBs be manufactured to test designs. For further information please contact Connor-Winfield Engineering Department. Application Note: AN2093 Section 1: About this document.

Application Note: AN2093 · ground circuit that is shared by all of the components ... Application Note AN2093 Page 2 Revision P01 ... 3.1 OCXO Theory of operation

Embed Size (px)

Citation preview

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Application Note AN2093Page

1Revision P02Date 18 April 2018

OCXO Layout Guidelines

Application Note AN2093Page 1 Revision P01Date 10 May 2013

1.1 Introduction

Thetechniquesincludedinthisapplicationnotewillhelptoensuresuccessfulprintedcircuitboardlayoutusinganoven-controlledcrystaloscillator(OCXO).Problemswithlayoutcanresultinnoisyanddistortedfrequencytransmissions,error-pronedigitalcommunications,latch-upproblems,significantlyreducedfrequencystability,thermalinstabilitywithintheOCXO,andotherundesirablesystembehavior.

1.2 This document includes the following • Powerandgroundcircuitdesigntips. • Theoryofoperation/Characterization • Techniquestoachieveoptimalthermalconditionsusingmultilayerboards • Adesignchecklist

1.3 About this document

ThemethodspresentedinthisapplicationnoteshouldbetakenassuggestionswhichprovideagoodstartingpointinthedesignandlayoutofaPCB.Itshouldbenotedthatonedesignruledoesnotnecessarilyfitalldesigns.ItishighlyrecommendedthatprototypePCBsbemanufacturedtotestdesigns.

ForfurtherinformationpleasecontactConnor-WinfieldEngineeringDepartment.

Application Note: AN2093

Section 1: About this document.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Application Note: AN2093 Page 2 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Section 2: Power & Ground Considerations.

2.1 Power Supply and Grounds. Allsystemdesignshaveapowersupplyandgroundcircuitthatissharedbyallofthecomponentsontheboard.Theoperationofonecomponentcanaffecttheoperationofothercomponentsthatsharethesamepowersupplyandgroundcircuit.

2.2 Power Supply. Thegoalofasystem’spowersupplyistomaintainastablevoltagewithinaspecifiedrangewhilesupplyingsufficientcurrent.Whileanidealpowersupplywouldmaintainthesamevoltageforanypossiblecurrentdraw,realworldsystemsexhibitthefollowingbehaviors:

• Achangeincurrentanditsassociated noisecausedbyonedeviceaffectsother devicesattachedtothesamepowersupply net.• Achangeincurrentdrawaffectsthevoltage ofthepowernet.

2.3 Typical Power Supply System. Atypicalpowersupplycircuitconsistsofthefollowing:

• Voltageregulatorsthatmaintainvoltage stabilitywithinarequiredrangewhile supplyingsufficientcurrenttoallcomponents served.• Bulk,decouplingandbypasscapacitors.• Powerandsupplycircuitrunnersorpower supplyplanesforpowerdistributionto components.• Localdecouplingandbypasscapacitorsat eachsupplysensitivecomponent.

2.4 Power Supply Management. Impropervoltageregulationcanresultininstabilityofmanysystemcomponentsorcompletesystemfailure. Periodsofinsufficientpowerareoftenreferredtoas“Brown-Outs”,wherepowersupplyvoltagedropstoaninsufficientlevel,or“Black-Outs”wherepowersupplyvoltagestotallydisappearforaperiodoftime.

FortheOCXOtopowerupandconfigureproperlyoninitialpower-up,Vccmustexceedthemaximumpower-onreset(VPOR)voltageinorderforthedevicetoproceedwithconfigurationandinitialization.TheVCCvoltageisinternallymonitoredonpower-uptoproperlytriggerthedeviceconfigurationcircuitry. Onsubsequentbrown-outconditionswherethedeviceisnotpower-cycled(i.e.,thesupplyvoltagesarenottakedownto0v),theVccvoltagemustbetakendownbelowtheminimumVPORvoltageinordertoclearoutthedeviceconfigurationcontent.Subsequently,thevoltagesmustexceedtheVPORvoltageonceagaininorderforthedevicetobeprogrammedwiththenewconfiguration. Abrown-outconditionisdefinedbytheVccraildroppingbelowitsrespectivedataretentionvoltagedefinedbytheVRAMinthedatasheet. PleaserefertotheOCXOdatasheetfortheminimumandmaximumVPORvoltagesandDataRetentionVoltages. Preventsystemmalfunctionduringperiodsofinsufficientpowersupplyvoltagebyusingexternallowervoltagedetectorlogicandsupplymanagementcircuitry.

2.5 POR/BOR Operation. Thepower-onresetoccurswhenthedeviceisstartedfromaVsslevel.Thebrown-outconditionoccurswhenapreviouslypowereddevicedropsbelowaspecifiedrange. ThedevicesRAMretentionvoltage(VRAM)islowerthantheVPOR/VBORvoltagetrippoint.WhenVPRO/VBOR<Vcc<2.7V,theelectricalperformanceoftheOCXOwillNOTmeetthedatasheetspecifications.2.6 Power-on Reset. Whenthedevicepowersup,thedeviceVccwillcrosstheVPOR/VBORvoltage.OncetheVccvoltagecrossestheVPOR/VBORvoltagethefollowingwilloccur: • Volatileregistersareloadedwith valuesformthecorresponding non-volatileregisters. • TheTCONFregisterwillloadthefactory programming. • ThedeviceiscapableofDigital/Analog operation.

Application Note AN2093Page 2Revision P01Date 10 May 2013

Application Note: AN2093 Page 3 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

2.7 Brown-Out Reset. Whenthedevicepowersdown,thedeviceVccwillcrosstheVPOR/VBORvoltage.OncetheVccvoltagedecreasesbelowtheVPOR/VBORvoltagethefollowingoccurs: • Factoryserialprogramminginterfaceis disabled. • Non-Volatileregisterarenolonger programmable.

IftheVCCvoltagedecreasesbelowtheVRAMvoltagethefollowingoccurs: • Volatileregistersmaybecomecorrupted. • TCONFregistermaybecomecorrupted. • OCXOovencoremaylosethermal equilibrium. • OCXOfrequencystabilitymaynotmeetthe datasheetspecifications. AsthevoltagerecoversabovetheVPOR/VBORvoltageseesection“Power-onReset”Onsubsequentbrown-outconditionswherethedeviceisnotpower-cycledproperly(i.e.,thesupplyvoltagesarenottakendownto0V),thepowersupplyvoltagemustbedroppedbelow1.6voltsinordertoclearouttheEEPROMdeviceconfigurationcontent.

2 8 Voltage Regulators. Avoltageregulatortakesaninputvoltagefromanexternalsourceandstepsitdowntoasuitablevoltagelevelthatcanpowercomponentsonthecircuitboard.Twocommontypesofvoltageregulatorsaredc-dcconvertersandlow-dropoutregulators(LDO).Whendecidingonavoltageregulator,alwaysreviewtheregulatordatasheetstomatchcomponentspecificationswithsystemrequirements. AsdigitallogicgatesofICsswitchfromonestatetoanother,theIC’scurrentdrawfluctuatesatafrequencydeterminedbythelogicstatetransitionrateor“rise-time”.Thesecurrentoscillationscausethepowersupplyvoltagetofluctuateasasmallvoltagedevelopsacrossthenetduetoitsintrinsicimpedance.Thecircuit’simpedancecanbeloweredbycarefullyselectingacapacitorthatprovidesalow-impedancepathtogroundforhighfrequencies.Asacapacitorchargesordischargescurrentflowsthroughitwhichitselfisrestrictedbytheinternalresistanceofthecapacitor.ThisinternalresistanceisknownasCapacitiveReactanceandisgiventhesymbolXCinohms.Unlikeresistancewhichhasafixedvalue,ie100Ω,1kΩ,etc.CapacitiveReactancevarieswithfrequencysoanyvariationinfrequencywillhaveaneffectonthecapacitor.Theloopfromthevoltagesupplypintodecouplingcapacitortogroundshouldbekeptassmallaspossiblebyplacingthecapacitornearthepowersupplypinandgroundpinofthedevice.

Application Note AN2093Page 3Revision P01Date 10 May 2013

Section 2: Power & Ground Considerations continued

Application Note: AN2093 Page 4 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Application Note AN2093Page 4Revision P01Date 10 May 2013

2.9 Low-Dropout Regulators. Low-DropoutRegulators(LDOs)arelessefficientthandc-dcconverters,buttheyalsointroducesignificantlylessnoiseintothepowercircuits.

2.10 Power Supply Bulk Decoupling and Bypassing. Noisecanbeintroducedintothepowercircuitfromthevoltageregulator,fromICsconnectedtothenet,andfromelectromagneticnoisethatcouplesintothepowersupplytraceandplanes.Powersupply“bulk”decouplingcapacitorshelptominimizetheeffectsofnoiseandprovideotherbenefitstothecircuitaswell.Largevaluebulkcapacitorsimproveperformanceduringlowfrequencyfluctuationsinsupplycurrentdrawbyprovidingatemporarysourceofcharge.Manyvoltageregulatorsmaintaintheirvoltagebyusinganegativefeedbacklooptopologythatcanbecomeunstableatcertainfrequencies.Acapacitorplacedattheregulator’soutputcanpreventthevoltagesupplyfrombecomingunstable.Checktheregulator’smanufacturerdatasheetforrecommendedcapacitorspecifications.Bulkdecouplingcapacitorsshouldbeplacedascloseaspossibletotheoutputpinofthevoltageregulator.

2.11 Ground Circuits. Thegroundcircuitcanintroducenoisetoanembeddedsystemandaffectcomponents.Anidealgroundcircuitis“equipotential”,meaningthatthevoltageofthecircuitdoesnotchangeregardlessofthecurrent.Real-worldgroundcircuitshaveacharacteristicimpedanceandexperiencechangesinvoltagewithchangesincurrent.CarefulPCBdesigncanminimizethisnon-idealbehaviortocreateagroundcircuitthatprovidesalowimpedancereturnpathforcurrent.

2.12 Designing with a Ground Plane. WhilesomesystemsconnectcomponentstoagroundcircuitthroughwiresortracesmostdesignsuseagroundplaneinwhichthePCB’scomponentsconnecttheirgroundpinstoacommonconductiveplane.Designingwithagroundplaneishighlyrecommendedfortworeasons: • Thereturncurrentnoiseofonedevicehas lesseffectonothercomponentswhensharing groundinaparallelconfiguration. • Shortconnectionstogroundminimizecurrent returnpathinductance,whichcaninduce largevoltageswingsinground.

2.13 Ground Plane Fill. Agroundplaneshouldcoverasmuchoftheboardaspossible,eveninspacesbetweendevicesandtraces.

“Islands”ofcopperformedbetweentracesordevicesshouldalwaysbeconnectedtogroundandshouldneverbeleftfloating.Spreadingthegroundplaneacrosstheboardalsoaidsinnoisedissipationandshieldstraces.

Caution!CaremustbetakentothermallyisolatetheOCXOfromtheunderlyingpowerandgroundplanestoensuretheOCXOcanreachthermalequilibrium.Separatingtheanalogcurrentreturnpathfromthenoisierdigitalcurrentreturnpathcanimproveanalogmeasurements.Groundisolationcanalsoimproveperformanceinboardsconnectedtoindustrialornoisysystems.Separategroundplanesshouldbeconnectedinonlyonelocation,usuallynearthepowersupply.

“Caution!CaremustbetakentothermallyisolatetheOCXOfromtheunderlyingpowerandgroundplanestoensuretheOCXOcanreachthermalequilibrium.”

Section 2: Power & Ground Considerations continued

Application Note: AN2093 Page 5 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 5Revision P01Date 10 May 2013

3.1 OCXO Theory of operation. TheOCXOenclosesacrystalinatemperature-controlledchambercalledanoven.Frequencystabilityisachievedbymaintainingtighttemperaturecontrolofthecrystalwithintheoscillatoroven.CaremustbetakennotwickthermalenergyawayfromtheOCXOpreventingthecorefromreachingthermalequilibrium. WhenanOCXOisturnedon,itgoesthrougha‘‘warm-up’’periodwhilethetemperatureofthecrystalintheinternalovenstabilizesatatemperaturesignificantlywarmerthanambient. During“warm-up”,theperformanceoftheoscillatorwillnotmeetthespecifiedfrequencystabilityuntilnormaloperatingtemperatureisreached.Aftertheovenhas“bridged”thetemperaturewithintheovenremainsconstantasambientvaries. Theovencontrolleroperatessuchthatiftheinternaltemperatureoftheovendecreasesduetoanambienttemperaturedrop,theovencontrollerwillprovidemorepowertocompensateforthermallosses.Similarly,anincreaseinambienttemperaturecausesareductioninappliedpowerintotheovenandthecompensationtemperaturedecreases. Inmostmoderndesignsadditionalheatisconsideredaproblemandwillcausemostdevicestodegradeinperformanceoreventuallyfail.TheheatgeneratedwithintheOCXOovencoreisusedtomaintainaconstanttemperatureatthecrystal.

“During“warm-up”,theperformanceoftheoscillatorisdegradeduntilnormaloperatingtemperatureisreached.”

Section 3: Theory of Operation / Characterization.

Figure: 5-01

ForfurtherinformationpleasecontactConnor-WinfieldEngineeringDepartment.

Application Note: AN2093 Page 6 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 6Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Typical Thermal Performance Characteristics.Test Conditions: OCXO mounted in socket, VCC=3.3V, Temperature = @25°C unless otherwise noted.

The following graphs represent the typical characteristics of a DOC052F-010.0MHz OCXO. Consult with Connor-Winfield Engineering Department for characterization data on any of our existing models.

Time (s)

Vol

tage

(V

)C

urre

nt (

A)

Figure: 6-01 Figure: 6-02

Figure: 6-03

Section 3: Theory of Operation / Characterization continued

Application Note: AN2093 Page 7 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 7Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Typical Thermal Performance Characteristics.

Figure: 7-01 Typical Warm-up Time (seconds) Figure: 7-02 Retrace after power cycle.

Figure: 7-03 Typical Warm-up Time (seconds) Figure: 7-04 Typical Warm-up Retrace Curves

Section 3: Theory of Operation / Characterization continued

Application Note: AN2093 Page 8 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 8Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Typical Thermal Performance Characteristics.

Figure: 8-01 Typical Warm-up Retrace Curves Figure: 8-02 Typical Oscillator Output Start Time

Figure: 8-03 Frequency Error vs Supply Voltage drift ( nom, +5,-5,nom)

Figure: 8-04 Typical Frequency Stability vs Temperature

Section 3: Theory of Operation / Characterization continued

Application Note: AN2093 Page 9 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 9Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Typical Thermal Performance Characteristics.Test Conditions: OCXO mounted on 0.062” 6 layer board, VCC=3.3V, Temperature = @25°C unless otherwise noted.

The following graphs represent the typical characteristics of a DOC052F-010.0MHz OCXO. Consult with Connor-Winfield Engineering Department for characterization data on any of our existing models.

Time (s)

Vol

tage

(V

)C

urre

nt (

A)

Figure: 9-01 Figure: 9-02

Figure: 9-03

Section 3: Theory of Operation / Characterization continued

Application Note: AN2093 Page 10 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 10Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Typical Thermal Performance Characteristics.

Figure: 10-01 Typical Warm-up Time (seconds) Figure: 10-02 Retrace after power cycle.

Figure: 10-03 Typical Warm-up Time (seconds) Figure: 10-04 Typical Warm-up Retrace Curves

Section 3: Theory of Operation / Characterization continued

Application Note: AN2093 Page 11 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 11Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Typical Thermal Performance Characteristics.

Figure: 11-01 Typical Warm-up Retrace Curves Figure: 11-02 Typical Oscillator Output Start Time

Figure: 11-03 Frequency Error vs Supply Voltage drift ( nom, +5,-5,nom)

Figure: 11-04 Typical Frequency Stability vs Temperature

Section 3: Theory of Operation / Characterization continued

Application Note: AN2093 Page 12 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 12Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Typical Electrical CharacteristicsTest Conditions: OCXO mounted on 0.062” 6 layer board, VCC=3.3V, Temperature = @25°C unless otherwise noted.

The following graphs represent the typical characteristics of a DOC052F-010.0MHz OCXO. Consult with Connor-Winfield Engineering Department for characterization data on any of our existing models.

Figure: 12-01 Typical Oscillator Output Start Time Figure: 12-02 Control Voltage Tuning Linearity

Figure: 12-03 Typical Phase Noise Plot Figure: 12-04 Available Tuning Slopes

Section 3: Theory of Operation / Characterization continued

Application Note: AN2093 Page 13 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 13Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Typical Electrical Characteristics

Figure: 13-01 Figure: 13-02

Figure: 13-03 Figure: 13-04

Fre

que

ncy

Err

or

(pp

b)

Section 3: Theory of Operation / Characterization continued

Application Note: AN2093 Page 14 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

See FIGURE 13-01.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 14Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

4.1 Layout Considerations ToachievethestatedfrequencystabilityspecificationstheOCXOmustbeabletoreachandsustainthermalequilibriumoverALLoperatingconditions.Observationoftheambientoperatingtemperaturerange,controlledairflow,thermalrampratesandminimizingthermalenergygains/lossesarecriticalforasuccessfullayout. “Anyattempttocool,ordispersethisheatwillcauseovencoretemperaturetodriftandOCXOwillnotmeetthespecifiedfrequencystability.Improperboardlayoutcouldalsoallowheattransferfromnearbycomponentstooverheattheovencoreresultinginlossofspecifiedfrequencystability.” Severalthermaldesignparametersmustbecarefullyconsidered. • BoardLayoutConsiderations • ControllingThermalTransfer/Transients • ControllingAirFlow

4.2 Board Layout Considerations Carefulselectionoflayerstack-ups,groundfills,andtraceroutingishighlyrecommendedforasuccessfullayout. “ToachievethestatedfrequencystabilitytheOCXOmustbeabletoreachandsustainthermalequilibriumoverALLoperatingconditions” Considerthefollowinglayoutconcerns. 1. AlwaysplacetheOCXOnearthetimingcircuitry, andkeepallPower/GroundandRFtracesas smallaspossible. 2. Alwaysadheretostatedloadingspecifications} forOCXORFoutput.OCXOsareloadsensitive andrequireanequivalentloadcapacitorwitha flatcapacitancevs.temperaturecurveto achievestatedfrequencystabilityspecifications. ConsiderNPO/COGcapacitorswhenpractical foroptimaltemperaturecharacteristics.See FIGURE13-01FrequencyResponsetovarious equivalentcapacitiveloads. 3. UsesecondarybufferstofantheOCXORF signaltomultipleinputsortimingcircuits.Avoid designsthatwould“switchin”additional capacitiveloads.Avoiddesignsthatwould “switchbetween”multiplecapacitiveloads. OCXOsareloadsensitivedevices. SeeFIGUREXXX

Section 4: Multi-Layer Board Design / Thermal Considerations

4. Alwaysusespeedratedleveltranslatorsor buffersinapplicationsrequiringcommunication betweendigitaldevicesoperatingfrommultiple supplyvoltages.Neveruseresistordivider networksonRFsignals. 5. Itisrecommendedtoplacea10uFto47uFbulk capacitorasclosetoaspossibletotheVCCpin ofthedevice. 6. Placeasmallceramicdecouplingcapacitor typicallyNPO/COG/X7Rwitha2to3ohm reactanceattheoutputfrequencyofthe OCXOtoshuntanynoiseonthesupplyrailto ground.Additionaldecouplingcapacitors canbeusedtofilteroutotherunwantedsupply noisegeneratedfromotherdevices. 7. Avoidusingseriescurrentsenseresistorsin OCXOmonitoringapplications.Improper selectionofresistorvaluescouldcreate significantvoltagedropswhencombinedwith thethermalcoefficientsofthesupply,andlarge currentdrawfromtheOCXO. 8. Carefulevaluationofviasizeshouldbe consideredwithallhighpowerdevicesto guaranteesufficientcurrent.Maximum currentthroughaviacalculationsshouldbe madeusinghighestexpectedboardtemperature insteadofmaximumambienttemperatureas heatgeneratingcomponentswilltypicallyheat theboardwellbeyondtheambienttemperature rangeoftheOCXO.Improperviasizeselection couldcausecurrentstarvationissueswhich wouldresultincurrentoscillationsastheoven coreisstarvedofpowerandunabletoreach thermalequilibrium.Viatopadstringers orrunnersshouldalsobeevaluatedforsufficient currentcarryingcapacityatmaximumexpected boardtemperatures.Viainpadworkbest,but addsadditionalboardcost.

Application Note: AN2093 Page 15 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 15Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Multi-Layer Board Design / Thermal Considerations

9. Lowimpedancepowerandgroundplanes shouldbeusedinsteadofstringertracesorstar basedpowerdistributionmethodstoreduce inducedvoltagescausedbyhighcurrent devicessuchasOCXOs. 10. Forcontrolvoltageequippedmodelsitis importanttoconnectthegroundofthecontrol voltagesourceascloseaspossibletotheOCXO groundtominimizetraceimpedanceand thereforeminimizeanygeneratedvoltages whichcouldcauselargefrequencyerrors.Itis highlyrecommendedtousethesupplied OCXOVREFsourcetoderivethecontrolvoltage whenequipped.Formodelsthatdonotoffer theOCXOVREFsourceitisalsorecommended thatthecontrolvoltagesourcerunoffthesame railastheOCXOtoeliminatethesupplyvoltage thermaldrifterrorsthatcouldexistbetween multiplerails.Thiswillpreventlargeunwanted frequencyshifterrorsastherelativevoltagedrift betweenthesupplieswillbeeliminated. Scenario:Assumeacontrolvoltageequipped OCXOwithatuningsensitivityof7ppm/voltis poweredfroma3.3Vsupply(3V3_OCXOSupply) withatemperaturecoefficientof2.6mV/°C.

Freeviasizecalculationstoolsareavailableonline.SaturnPCBDesignInc.offersthisfreetoolavailableatthefollowingURL.

Figure: 15-01

TheDACwhichdrivestheOCXOCVpinis poweredfromasecondary3.3Vrail(3v3_ DacSupply)withathermalcoefficientof 0.2mV/°C(SeeFigure15-02Example schematicFigure15-03ThermalCoefficientvs. Temperature)InthisexampletheOCXOwas initiallytunedto0ppmat0°Cwithacalibration errorof±0.025ppm.Astheambient temperatureinthesystemchangesto70°Cover thenexthour,thevoltageerrorbetweenthetwo railswouldhavedriftedfrom0voltsbetween thetworails,to0.1834voltsresultingina 1.2838ppmfrequencyerror.

DNC

DNC

Figure: 15-03 Thermal Drift between Supply Rails

Figure: 15-02 Example Circuit

http://saturnpcb.com/pcb_toolkit.htm

Section 4: Multi-Layer Board Design / Thermal Considerations continued

Application Note: AN2093 Page 16 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 16Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Multi-Layer Board Design / Thermal Considerations

Figure: 16-01AsmallairgapshouldexistbetweentheOCXOandallthe

wallsofthecover.

Figure: 16-02OCXOPadLayoutw/TopLevelCopperpour.

11. Toreduceunwantedthermalgains/losses, openawindowinanytoplevelcopperpours underthedevice.Excessivethermallosses mayresultinhigherthannormalcurrent consumptionorcompletedevicefailure.See Figure16-03.Excessivethermalgainswill overheattheovencorecausingfrequency instability.FIGURE16-02illustratesahowto properlyfloodatoplayerwhilecreatinga “window”undertheOCXO.

Figure: 16-03

12. Optionallyathermal“moat”canbecreatedto preventthermalenergytransfersbetweenthe OCXOandboardasseeninFigure17-01.A thermalmoatisaroutedareaaroundtheOCXO andisveryeffectivemeanstopreventlosses fromtheoscillatorwhilestillallowingatoplayer pourontheboardtoheatsinkcoolother electricalcomponents. 13. Plasticandmetalcoverscanbeusedtofurther reducesmalltemperaturefluctuationsinthe systembyreducingvariableairflowacrossthe device.Aneffectivecoverwillshouldstillallow asmallairgapbetweentheOCXOandanywall ofthecover.SEEFIGURE16-01 14. DONOTCONNECTANYELECTRICALSIGNALS TOPINSMARKEDDNC.Thesepinsare reservedforfactoryuseonly,andconnectingor monitoringthesesignalscouldpermanently damagethedevice.

Section 4: Multi-Layer Board Design / Thermal Considerations continued

Application Note: AN2093 Page 17 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 17Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Multi-Layer Board Design / Thermal Considerations

Figure: 17-01

Optionallyathermal“moat”canbecreatedtopreventthermalenergytransfersbetweentheOCXOandthesurroundingheatgeneratingcomponents.

Section 4: Multi-Layer Board Design / Thermal Considerations continued

Application Note: AN2093 Page 18 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 18Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Multi-Layer Board Design / Thermal Considerations

4.3 Controlling Thermal Transfer / Transients ControllingthermaltransientsiscriticalforproperoperationofallOCXOs.Anysuddenchangesinair-flow,ortemperaturewilldrasticallyeffectshorttermfrequencystability.Ambientsystem,cabinet,orenclosuretemperaturemustalwaystransitionunderthemaximumstatedrateidentifiedontheproductdatasheet.Typical∆tºC/t(minutes)ratesforOCXOrangefrom0.5to1ºC/minute.Anyadditionalheatgeneratedbynearbyintegratedcircuits,ormechanicalpartscouldcausetheinternaloventemperaturetofalloutofequilibriumandnolongermaintainfrequencystability.TheOCXOcontrollercanonlyself-regulateovencoretemperatureifthermalenergyconductedthroughtheprintedcircuitboardiskepttoaminimum.

Avoidthefollowing,astheywillcausetheovencoretooverheatordropoutofthermalregulation.

• PlacingtheOCXOnearheatgenerating components(electricalormechanicalthatcould bleedthermalenergyintotheOCXOcausing theovencoretooverheat,evenwhenthe ambientairiswithintheoperatinglimits)

• PlacingtheOCXOintointermittentairflowpaths (ieswitchedorvariablespeedfans)asthiswill causetheovencoretofalloutofthermal regulation

• Onmulti-layerboardsavoidtoplevelcopper floods,poursandfillsundertheOCXOland patternthatwouldcontributetoexcessiveheat gains/lossesthroughtheprintedcircuitboard resultinginaninabilityfortheovencoreto maintainthermalequilibrium.

AvoidlayoutsasseeninFIGURE18-02

4.4 Controlling AirflowShieldingtheOCXOfromintermittentorvariablespeedairflowpathswillminimizesmalltemperaturefluctuationsandsubstantiallyimproveshort/mediumtermstability.ThiscanbestbeaccomplishedbyshieldingtheOCXObehindtallernon-heatgeneratingcomponentsormechanicalpartstocreateaphysicalbarrier,orwiththeuseofametalorplasticcover.

Seefigures18-01and18-02

Figure: 18-01GoodChoiceforOCXOplacement.OCXOisoutsideofairtunnel,notnearanyheatgeneratingcomponents

Figure: 18-02PoorlocationforOCXO.Variablespeedorswitchedfanscreatelargetemperaturefluctuations

Section 4: Multi-Layer Board Design / Thermal Considerations continued

Application Note: AN2093 Page 19 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 19Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Section 5: Design Checklist

5.1 Power Supply Checklist • SelectaLOWnoisepowercircuit/source • Addalargebulkcapacitoratthevoltageregulator’soutputthatcanprovidecurrentforlocalcapacitorsand ensureregulatorstability. • Placebulkcapacitorsasclosetothevoltageregulatoroutputaspossible. • Thelargebulkcapacitor’scapacitanceshouldbe10to100timesaslargeaslocalICdecouplingcapacitors. • Addasecondcapacitoranorderofmagnitudeortwosmallerincapacitancerelativetothelargebulk capacitortohelpfilterhigh-frequencynoise. • PlacealocalcapacitanceascloseaspossibletothepowersupplypinofeachIC. • ThesideofthelocalcapacitorthatconnectstogroundshouldbeplacedasclosetotheIC’sgroundpinas possibleinordertominimizetheloopareabetweenthecapandthepowerandgroundpins. • Addafilter,suchasanL-CfilteroranR-Cfilter,tothepowersupplycircuit.

5.2 Ground

• Designusingagroundplaneinsteadoftraceswhenconnectingcomponentstoground. • Ifatoplevelcopperpourisused,itshouldcoverasmuchoftheboardaspossible,includingthespaces betweendevicesandtraces.EXCLUDETHEAREAUNDERTHEOCXO. • Separatingtheanaloggroundplanefromthedigitalgroundplaneimprovesanalogperformance. • Separategroundplanesshouldbeconnectedinonlyonelocation,usuallyclosetothepowersupply.

5.3 General • Keepanaloganddigitalsignalsasfarapartfromeachotheraspossible. • Avoidroutinganaloganddigitaltracesperpendiculartoeachother. • Avoidroutinganalogordigitalsignalsunderoscillators. • Tracewidthshouldremainconstantthroughoutthelengthofthetrace. • Turnsintracesshouldberoutedusingtwo45degreeturnsinsteadofone90degreeturn. • Tracelengthshouldalwaysbeminimized. • Useviasonlywhenabsolutelynecessary. • Avoidtheuseofviaswhenroutinghigh-frequencysignals. • Keeptracesassmallaspossible. • PlacetheOCXOascloseaspossibletothetimingcircuitry. • Neverleavethecontrolvoltagesignalfloating. • Designusingapowerplaneinsteadoftracesroutedfromthepowersupply.

Application Note: AN2093 Page 20 of 20 Rev: P02 Date: 04/18/18© Copyright 2018 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

All Rights Reserved. See website for latest revision. Not intended for life support applications.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2012 The Connor-Winfield Corporation

Application Note AN2093Page 20Revision P01Date 10 May 2013

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630- 851- 5040

www.conwin.com

Design Checklist

5.4 OCXO Layout Considerations • AlwaysplaceOCXOasclosetotimingcircuitryaspossible.. • AlwaysadheretostatedloadingspecificationsforRFoutputofOCXOandconsiderusingNPO/COG capacitorstocreateequivalentloadingcapacitanceforoptimalcapacitancevs.temperaturecharacteristics. • Itisrecommendedtoplacea10uFto47uFbulkcapacitorasclosetoaspossibletotheVCCpinoftheOCXO. • PlaceasmallceramicdecouplingcapacitortypicallyX7Rwitha2to3ohmreactanceattheoutputfrequency oftheOCXOtoshuntanynoiseonthesupplyrailtoground. • CalculateviasizetoensuresufficientcurrentisavailabletotheOCXOattheanticipatedmaximumboard temperaturewhichmaybeSIGNIFICANTLYhigherthanambientairtemperature. • ConnectthegroundofthecontrolvoltagesourceascloseaspossibletotheOCXOgroundtominimizetrace impedance. • Openawindowinallgroundandpowerplanesunderthedevice.Excessivethermallossesmayresultin higherthannormalcurrentconsumptionorcompletedevicefailure. • DonotplaceOCXOinpathorturbulentairflowwhichcouldcausequicklychangingtemperaturefluctuations thatcouldcompromisetheovencoretemperature. • [Optional]Routeathermal“moat”topreventthermalenergytransfersbetweentheOCXOandboard. • [Optional]Useplasticandmetalcoverscanbeusedtofurtherreducesmalltemperaturefluctuationsinthe systembyreducingvariableairflowacrossthedevice. • DONOTconnectanysignalsto“DoNotConnect”(D.N.C.)pins.TheseareFACTORYuseonly.DNCpads maybesoldereddowntoelectricallyisolatedpadsforstructuralsupportonly.

Section 6: References

ChesterSimpson"LinearandSwitchingVoltageRegulatorFundamentals"NationalSemiconductorhttp://www.national.com/assets/en/appnotes/f4.pdf

HabeebUrRahmanMohammed,Ph.D"SupplyNoiseEffectonOscillatorPhaseNoise,"TexasInstruments,ApplicationReportSLWA066–November2011http://www.ti.com/lit/an/slwa066/slwa066.pdf

Section 5: Design Checklist continued