60
Wednesday, April 29, 2015 AP Biology Day 90

AP Biology Day 90

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Wednesday,)April)29,)2015)

AP)Biology)Day)90)

Do9Now:)Unit)10)FRQs)• Discuss)and)plan)out)FRQ)A)from)the)worksheet))

•  If)you)have)Jme,)you)may)begin)your)response)

2

Announcements)• Upcoming)

– 500)shmoints)must)be)completed))– 2)PracJce)Tests)(with)FRQs))must)be)completed)!)see)Ms.)Fleming)• If#not#completed,#will#be#required#to#complete#3#prac6ce#tests#

Shmoop)Leaders!)P.#2#Leaders# P.#4#Leaders#

Kirsten)514) Enrique)820)

Gloria)506) Melissa)Marquez)704)

KirsJ)498) Kailey)604)

Ms.#Fleming#582#

CW/HW)Assignments)18. )Unit)10)PracJce)FRQs)))

PLANNER •  Finish Ch. 55 Notes Outline •  Finish Unit 10 Practice FRQs •  2 Practice Tests (shmoop) must be completed by Monday/

Tuesday •  Test " " "

EssenJal)knowledge)standards)•  2.A.1:#All#living#systems#require#constant#input#of#free#energy.#

•  2.D.1:#All#biological#systems#from#cells#and#organisms#to#populaCons,#communiCes,#and#ecosystems#are#affected#by#complex#bioCc#and#abioCc#interacCons#involving#exchange#of#maHer#and#free#energy#

•  4.A.6:#InteracCons#among#living#systems#and#with#their#environment#result#in#the#movement#of#maHer#and#energy#

FLT)•  #I#will#be#able#to:#– DisJnguish)between)the)following)sets)of)terms:)primary)and)secondary)producJon;)producJon)efficiency)and)trophic)efficiency)

– Explain)how)the)first)and)second)laws)of)thermodynamics)apply)to)ecosystems))

– Define)and)compare)gross)primary)producJon,)net)primary)producJon,)and)standing)crop)

– Explain)why)energy)flows)but)nutrients)cycle)within)an)ecosystem)

•  By#comple6ng#Ch.#55#Notes#

Ch.#55:#Ecosystems#

8

9

10

C.)Primary)ProducJvity)1.  Define)Primary#producCon#=#amount#of#light#energy#converted#to#chemical#energy#(synthesis#of#sugars#via#photosynthesis)#by#autotrophs#in#a#given#Cme#period#)

11

C.)Primary)ProducJvity)2.#Gross#Primary#ProducCvity#=#GPP#=#total#primary#producCon###3.#Net#Primary#ProducCvity#=#NPP#=#GPP#T#R#(energy#used#by#primary#producers#for#respiraCon).#•  In)other)words,)NPP)represents)the)difference)between)the)rate)at)which)plants)photosynthesize)and)the)rate)at)which)they)respire.))))

•  NPP#is#the#energy#available#to#consumers###)

12

13

C.)Primary)ProducJvity)•  3.)Net)Primary)ProducJvity))a.   Biomass#=#total#mass#of#living&organisms&(plants#

and#animals)#in#a#given#area##b.   Standing#crop#=#total#biomass#of#photosynthe1c&

autotrophs#at#a#parCcular#Cme##•  Measuring)biomass)helps)us)measure)producJon)and)use)of)resources)

)

14

C.)Primary)ProducJvity)3.)Net)Primary)ProducJvity))c-e: Tropical rain forests, estuaries, and coral reefs are among the most productive ecosystems per unit area )

15

Fig. 55-6

Net primary production (kg carbon/m2·yr)

0 1 2 3

·

D.)Energy)Transfers)and)Ecological)Pyramids)1.  Secondary)producJvity)Consumers)do)not)use)all)the)biomass)they)consume)(ex/)some)is)excreted)as)waste).)))))

17

D.)Energy)Transfers)and)Ecological)Pyramids)1.  Secondary)producJvity)•  Some energy must be used for metabolism •  Whatever is left over is the new biomass ))

18

D.)Energy)Transfers)and)Ecological)Pyramids)1.   Secondary#producCvity#=#rate#at#which#

heterotrophs#(consumers)#convert#their#food#(chemical#energy)#into#their#own#biomass#(transfer#between#trophic#levels)#

))

19

20

D.)Energy)Transfers)and)Ecological)Pyramids)2.)Ecological)efficiency)•  Is all NPP transferred to the next trophic level?

))

21

D.)Energy)Transfers)and)Ecological)Pyramids)2.)Ecological)efficiency)•  When a caterpillar feeds

on a leaf, only about one-sixth of the leaf�s energy is used for secondary production

))

22

Fig. 55-9

Cellular respiration 100 J

Growth (new biomass)

Feces

200 J

33 J

67 J

Plant material eaten by caterpillar

D.)Energy)Transfers)and)Ecological)Pyramids)2.#Ecological#efficiency##Trophic#efficiency#is#the#%#of#producCon#transferred#from#one#trophic#level#to#the#next#•  Energy#transfer#between#trophic#levels#is#typically#only#10%#efficient#(approximate)

•  Trophic efficiency is multiplied over the length of a food chain

•  Approximately 0.1% of chemical energy fixed by photosynthesis reaches a tertiary consumer

)) 24

25

Ecological)Pyramids)

26

D.)Energy)Transfers)and)Ecological)Pyramids)3.)Loss)of)energy)in)a)food)chain)can)be)represented)by)a))

)a.#Pyramid#of#producCvity#=#Pyramid#where#net#producCon#represents#the#loss#of#energy#with#each#transfer#in#a#food#chain.##Always#upright.#)))

27

Sketch:)

28

D.)Energy)Transfers)and)Ecological)Pyramids)3.)Loss)of)energy)in)a)food)chain)can)be)represented)by)a))

)b.#Biomass#pyramids#=#shows#biomass#of#each#trophic#level##can#be#used#to#represent#the#amount#of#energy#available#at#each#trophic#level##!)Most)pyramids)show)a)sharp)decrease)at)successively)higher)trophic)levels)))))

29

Sketch:)

30

AddiJonal)Notes)•  Note: an energy pyramid will always be right

way up because energy is lost between each trophic level (2nd law of thermodynamics)

•  However, sometimes a biomass pyramid can be inverted

•  Inverted Example: in certain aquatic ecosystems, producers (phytoplankton) are consumed so quickly that they are outweighed by primary consumers

•  The)rapid)rate)of)reproducJon)for)phytoplankton)sustains)this)pagern)

31

32

AddiJonal)Notes)•  Dynamics of energy flow in ecosystems have

important implications for the human population •  Eating meat is a relatively inefficient way of

tapping photosynthetic production •  Worldwide agriculture could feed many more

people if humans ate only plant material

33

AddiJonal)Notes)•  The green world hypothesis proposes several

factors that keep herbivores in check: – Plant defenses – Limited availability of essential nutrients – Abiotic factors –  Intraspecific competition –  Interspecific interactions

34

PairTShareTRespond#1.  Define)primary)producJvity,)and)disJnguish)

between)GPP)and)NPP)2.  Define)secondary)producJvity,)and)explain)how)it)

relates)to)ecological)efficiency))3.  What)are)the)two)main)types)of)ecological)

pyramids?))What)do)the)levels)represent?)))4.  Compare)and)contrast)a)pyramid)of)producJvity)

with)a)biomass)pyramid)

35

IV.)Chemical)Cycling)

36

A.)Biogeochemical)cycles)•  Biogeochemical#cycles#=#the#cycling#of#maHer#through#bioCc#and#abioCc#components#of#a#system#

•  Life)depends)on)recycling)chemical)elements)

37

A.)Biogeochemical)cycles)•  All elements cycle between organic and

inorganic reservoirs

38

Fig. 55-13 Reservoir A Reservoir B

Organic materials available

as nutrients Fossilization

Organic materials unavailable as nutrients

Reservoir D Reservoir C

Coal, oil, peat

Living organisms, detritus

Burning of fossil fuels

Respiration, decomposition, excretion

Assimilation, photosynthesis

Inorganic materials available

as nutrients

Inorganic materials unavailable as nutrients

Atmosphere,soil, water

Minerals in rocks

Weathering, erosion

Formation of sedimentary rock

•  In studying cycling of water, carbon, nitrogen, and phosphorus, ecologists focus on four factors: – Each chemical�s biological importance – Forms in which each chemical is available or used

by organisms – Major reservoirs for each chemical – Key processes driving movement of each chemical

through its cycle

40

AddiJonal:)The)Water)Cycle)•  Water is essential to all organisms •  97% of the biosphere�s water is contained in

the oceans, 2% is in glaciers and polar ice caps, and 1% is in lakes, rivers, and groundwater

•  Water moves by the processes of evaporation, transpiration, condensation, precipitation, and movement through surface and groundwater

41

Fig. 55-14a

Precipitation over land

Transport over land

Solar energy

Net movement of water vapor by wind

Evaporation from ocean

Percolation through soil

Evapotranspiration from land

Runoff and groundwater

Precipitation over ocean

C.)The)Carbon)Cycle)•  Carbon-based organic molecules are essential

to all organisms •  Carbon reservoirs: fossil fuels, soils and

sediments, solutes in oceans, plant and animal biomass, and the atmosphere – CO2 is taken up and released through

photosynthesis and respiration – Volcanoes and the burning of fossil fuels

contribute CO2 to the atmosphere

43

Fig. 55-14b

Higher-level consumers Primary

consumers

Detritus

Burning of fossil fuels and wood

Phyto- plankton

Cellular respiration

Photo- synthesis

Photosynthesis

Carbon compounds in water

Decomposition

CO2 in atmosphere

D.)The)Nitrogen)Cycle)Main#reservoir:#atmospheric#N2###1.  Nitrogen)FixaJon)•  N2#must#be#converted#to#NH4

+#or#NO3–#for#uptake#

by#plants,#via#nitrogen#fixaCon#by#bacteria#)

45

46

D.)The)Nitrogen)Cycle)4.)AmmonificaJon)Organic nitrogen is decomposed to NH4

+ by ammonification#

47

D.)The)Nitrogen)Cycle)2.)NitrificaJon:)NH4

+ is decomposed to NO3– )

48

D.)The)Nitrogen)Cycle)3.)DenitrificaJon:)converts NO3

– back to N2 )

49

Fig. 55-14c

Decomposers

N2 in atmosphere

Nitrification

Nitrifying bacteria

Nitrifying bacteria

Denitrifying bacteria

Assimilation

NH3 NH4 NO2

NO3

+ –

Ammonification

Nitrogen-fixing soil bacteria

Nitrogen-fixing bacteria

E.)The)Phosphorus)Cycle)•  Phosphorus is a major constituent of nucleic

acids, phospholipids, and ATP •  Phosphate (PO4

3–) is the most important inorganic form of phosphorus

•  Main reservoirs: sedimentary rocks of marine origin, the oceans, and organisms

•  Phosphate binds with soil particles, and movement is often localized

51

Fig. 55-14d

Leaching

Consumption

Precipitation

Plant uptake of PO4

3– Soil

Sedimentation

Uptake

Plankton

Decomposition

Dissolved PO43–

Runoff

Geologic uplift

Weathering of rocks

AddiJonal)Notes)•  Decomposers (detritivores) play a key role in

the general pattern of chemical cycling •  Rates at which nutrients cycle in different

ecosystems vary greatly, mostly as a result of differing rates of decomposition

•  The rate of decomposition is controlled by temperature, moisture, and nutrient availability

•  Rapid decomposition results in relatively low levels of nutrients in the soil

53

CW#1.  Finish)Ch.)55)Notes)Outline)!)pay)parJcular)

agenJon)to)human)impacts!))You)should)be)able)to)cite)specific)examples)in)an)essay)response))

2.  Finish)the)Ch.)55)PracJce)FRQs)

54

Thursday,)April)30)–)Friday,)May)1,)2015)

AP)Biology)Day)91)

Do9Now:)Group)Discussion)•  Take)5)minutes)to)review)your)pracJce)FRQs)with)your)groups)))

• When)finished,)make)sure)your)planner)and)assignment)log)are)out))

•  You)may)also)want)a)calculator)and/or)formula)sheet)out)for)your)test)

56

")AP)Bio)Exam)–)Monday,)May)11th)")• Meet)here)at)797:15am)for)breakfast)snacks))

• We)will)walk)down)together)at)7:40am))• No)cell)phones)allowed)in)tesJng)locaJon.))Cell)phone)=)dismissal)from)test))

•  If)you)want)to)leave)anything)in)my)locked)cabinet,)you)can)bring)it)in)the)morning)

57

Shmoop)Leaders!)P.#2#Leaders# P.#4#Leaders#

Kirsten)514) Enrique)820)

Gloria)506) Melissa)Marquez)704)

KirsJ)498) Kailey)604)

Ms.#Fleming#582#

CW/HW)Assignments)18. )Unit)10)PracJce)FRQs))19. )AP)Bio)Grid9In)PracJce)Packet)))

PLANNER •  Grid-in packet ! show all work so we can review next

class •  Shmoop practice tests due •  500 shmoints