31
AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland [email protected] [email protected] 734-763-6238 734-615-

AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland [email protected]@umich.edu [email protected]@umich.edu

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

Page 1: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

AOSS 321, Winter 2009 Earth Systems Dynamics

Lecture 132/19/2009

Christiane Jablonowski Eric Hetland

[email protected] [email protected]

734-763-6238 734-615-3177

Page 2: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Today’s class

• Equations of motion in pressure coordinates• Pressure tendency equation• Evolution of an idealized low pressure system• Vertical velocity

Page 3: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Generalized vertical coordinate

x

z Constant surface s0

Δz

Δx

p1 p2

p3

The derivation can be further generalized for any verticalcoordinate ‘s’ that is a single-valued monotonic function of height with ∂s /∂z ≠ 0.

Pressure values

Page 4: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Vertical coordinate transformations

x

z

p0

p0+Δp

Δz

Δx

Pressure gradient along ‘s’:

∂p

∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟z

=∂p

∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟p

−∂p

∂z

∂z

∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟p

= − −ρg( )∂z

∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟p

= ρ∂gz

∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟p

= ρ∂Φ

∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟p

For s = p:(pressure levels)

p3 − p1

Δx=

p3 − p2

Δz

Δz

Δx+

p2 − p1

Δx

∂p

∂x

⎝ ⎜

⎠ ⎟s

=∂p

∂z

∂z

∂x

⎝ ⎜

⎠ ⎟s

+∂p

∂x

⎝ ⎜

⎠ ⎟z

= 0

Page 5: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

What do we do with the material derivative when using p in the vertical?

DT

Dt

⎝ ⎜

⎠ ⎟p

=∂T

∂t

⎝ ⎜

⎠ ⎟p

+ u∂T

∂x

⎝ ⎜

⎠ ⎟p

+ v∂T

∂y

⎝ ⎜

⎠ ⎟p

+ ω∂T

∂p

DT

Dt=

∂T

∂t+ u

∂T

∂x+ v

∂T

∂y+ ω

∂T

∂p

By definition:

ω===Dt

Dpv

Dt

Dyu

Dt

Dx,,

Total derivative DT/Dt on constant pressure surfaces:

(subscript omitted)

Page 6: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Our approximated horizontal momentum equations (in p coordinates)

du

dt

⎝ ⎜

⎠ ⎟p

= −∂Φ

∂x

⎝ ⎜

⎠ ⎟p

+ fv

dv

dt

⎝ ⎜

⎠ ⎟p

= −∂Φ

∂y

⎝ ⎜

⎠ ⎟p

− fu

Dr v h

Dt

⎝ ⎜

⎠ ⎟p

+ f r k ×

r v h = −∇ pΦ

No viscosity, no metric terms, no cos-Coriolis terms

Subscript h: horizontal Subscript p: constant p surfaces!Sometimes subscript is omitted, tells you that this is on p surfaces

Page 7: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Thermodynamic equation

(in p coordinates)

cv

DT

Dt+ p

Dt= J

(cv + R)DT

Dt− α

Dp

Dt= J

c p = cv + R

c p

∂T

∂t+ u

∂T

∂x+ v

∂T

∂y+ ω

∂T

∂p

⎝ ⎜

⎠ ⎟− αω = J

Two forms of the thermodynamic equation

use

Page 8: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Thermodynamic equation(in p coordinates)

c p

∂T

∂t+ u

∂T

∂x+ v

∂T

∂y+ ω

∂T

∂p

⎝ ⎜

⎠ ⎟−αω = J

∂T

∂t+ u

∂T

∂x+ v

∂T

∂y+ ω

∂T

∂p−

α

c p

⎝ ⎜ ⎜

⎠ ⎟ ⎟=

J

c p

∂T

∂t+ u

∂T

∂x+ v

∂T

∂y+ ω

∂T

∂p−

RT

pc p

⎝ ⎜ ⎜

⎠ ⎟ ⎟=

J

c p

Equation of state

Page 9: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Thermodynamic equation(in p coordinates)

∂T

∂t+ u

∂T

∂x+ v

∂T

∂y+ ω

∂T

∂p−

RT

pc p

⎝ ⎜ ⎜

⎠ ⎟ ⎟=

J

c p

∂T

∂t+ u

∂T

∂x+ v

∂T

∂y− Spω =

J

c p

with Sp =RdT

pc p

−∂T

∂p

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Sp is the static stability parameter.

Page 10: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Static stability parameter

Sp =RdT

pc p

−∂T

∂p

⎝ ⎜ ⎜

⎠ ⎟ ⎟= −

T

Θ

∂Θ

∂p

(lecture 11, slide 14) we get

With the aid of the Poisson equation we get:

Plug in hydrostatic equation :

T

Θ

∂Θ

∂z= Γd − Γ

Sp = (Γd − Γ) /(ρg)

Using

∂p

∂z= −ρg

Sp =T

Θ

∂Θ

∂z

1

ρg

The static stability parameter Sp is positive (statically stable atmosphere) provided that the lapse rate of the air is less than the dry adiabatic lapse rate d.

Page 11: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Continuity equation

Dt= −ρ∇ •

r v

∂u

∂x+

∂v

∂y

⎝ ⎜

⎠ ⎟p

+∂ω

∂p= 0

Let’s think about this derivation!

in z coordinates:

in p coordinates:

Page 12: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Continuity equation:Derivation in p coordinates

Consider a Lagrangianvolume: V= x y z

xy

z

Apply the hydrostatic equation p= -gz to express the volume element as V= - x y p/(g)

The mass of this fluid element is:M = V= - x y p/(g) = - x y p/g

Recall: the mass of this fluid element is conserved following the motion (in the Lagrangian sense): D(M)/Dt = 0

Page 13: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Continuity equation:Derivation in p coordinates

DδM

Dt= 0

1

δM

DδM

Dt= 0

−g

δxδyδp

D δxδyδp( )Dt

1

−g= 0

1

δxδyδp

Dδx

Dtδyδp +

Dδy

Dtδxδp +

Dδp

Dtδxδy

⎝ ⎜

⎠ ⎟= 0

1

δxδ

Dx

Dt

⎝ ⎜

⎠ ⎟+

1

δyδ

Dy

Dt

⎝ ⎜

⎠ ⎟+

1

δpδ

Dp

Dt

⎝ ⎜

⎠ ⎟= 0

δu

δx+

δv

δy+

δω

δp= 0

∂u

∂x

⎝ ⎜

⎠ ⎟p

+∂v

∂y

⎝ ⎜

⎠ ⎟p

+∂ω

∂p= 0

Thus:

Take the limit x,y,p 0

Continuity equation inp coordinates

Product rule!

Page 14: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Continuity equation(in p coordinates)

∂u

∂x

⎝ ⎜

⎠ ⎟p

+∂v

∂y

⎝ ⎜

⎠ ⎟p

+∂ω

∂p= 0

This form of the continuity equation contains no reference to the density field and does not involve time derivatives.

The simplicity of this equation is one of the chief advantages of the isobaric system.

Recall : ω =Dp

Dt

Page 15: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Hydrostatic equation(in p coordinates)

∂p

∂z= −ρg

∂z

∂p= −

1

ρg= −

α

g

∂(gz)

∂p= −α

∂Φ

∂p= −α = −

RdT

pHydrostatic equation inp coordinates

Start with

The hydrostatic equation replaces/approximates the 3rd momentum equation (in the vertical direction).

Page 16: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Approximated equations of motion in pressure coordinates

(without friction, metric terms, cos-Coriolis terms,with hydrostatic approximation)

Dr v h

Dt+ f

r k ×

r v h = −∇ pΦ

∂Φ

∂p= −

RdT

p

(∂u

∂x+

∂v

∂y)p +

∂ω

∂p= 0

∂T

∂t+ u

∂T

∂x+ v

∂T

∂y− Spω =

J

c p

p = ρRdT

Material derivative : D( )Dt

=∂( )∂t

+ u∂( )∂x

+ v∂( )∂y

+ ω∂( )∂p

Page 17: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Let’s think about growing and decaying disturbances.

∂u

∂x+

∂v

∂y

⎝ ⎜

⎠ ⎟p

+∂ω

∂p= 0

dω = −∂u

∂x+

∂v

∂y

⎝ ⎜

⎠ ⎟p

dp

Mass continuity equation in pressure coordinates:

Page 18: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Let’s think about growing and decaying disturbances

dω = −∂u

∂x+

∂v

∂y

⎝ ⎜

⎠ ⎟p

dp

dωω( psfc )

ω( p= 0)

∫ = −∂u

∂x+

∂v

∂y

⎝ ⎜

⎠ ⎟p

dppsfc

p= 0

ω( p = 0) − ω(psfc ) = −∂u

∂x+

∂v

∂y

⎝ ⎜

⎠ ⎟p

dppsfc

p= 0

ω( psfc ) = −∂u

∂x+

∂v

∂y

⎝ ⎜

⎠ ⎟p

dpp= 0

psfc

∫ = − ∇ p •r v h( ) dp

p= 0

psfc

Formally links vertical wind and divergence.

= 0 (boundary condition)

Integrate:

Page 19: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Since r v g =

1

ρf

r k ×∇p it follows

r v g • ∇p = 0

ω =∂p

∂t+

r v a • ∇p − wgρ

Let’s think about growing and decaying disturbances.

ω( psfc ) = −∂u

∂x+

∂v

∂y

⎝ ⎜

⎠ ⎟p

dpp= 0

psfc

∫ = − ∇ p •r v h( ) dp

p= 0

psfc

ω =Dp

Dt=

∂p

∂t+ (

r v h • ∇p) + w

∂p

∂z

ω =∂p

∂t+ (

r v g • ∇p +

r v a • ∇p) − wgρ

use r v h =

r v g +

r v a

Recall:

use hydrostatic equation

rv a • ∇pBoth and w are nearly zero at the surface (note:

not true in the free atmosphere away from the surface)

Page 20: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Surface pressure tendency equation

∂psfc

∂t≈ − (

∂u

∂x+

∂v

∂y)p dp

p= 0

psfc

∫ = − ∇ p •r v h( ) dp

p= 0

psfc

Convergence (divergence) of mass into (from) column above the surface will increase (decrease) surface pressure.

At the surface:

ω( ps) ≈∂psfc

∂t

It follows:

Page 21: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Possible development of a surface low.

Earth’s surface

pressure surfaces

Page 22: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Possible development of a surface low.

Earth’s surface

pressure surfaceswarming

Page 23: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Possible development of a surface low.

Earth’s surface

pressure surfaces

warming

warming increases thickness

aloft(hypsometric

equation)

Page 24: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Possible development of a surface low.

Earth’s surface

Pressure gradient force is created,

mass diverges up here,

causes surface pressure to fall

warmingWarming increases

thickness aloft

Page 25: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Possible development of a surface low.

Earth’s surface

mass diverges up here

warming

warming increases thickness

LOW

generates surface low here

Page 26: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Possible development of a surface low.

Earth’s surface

mass diverges up here

warming

LOW

generates low here

H H

and highs here

Page 27: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Possible development of a surface low.

Earth’s surface

mass diverges up here

warming

LOW

pressure gradient initiates

convergence down hereH H

Page 28: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

Possible development of a surface low.

Earth’s surface

mass diverges up here

warming

LOW

pressure gradient initiates

convergence down here

H H

Continuity Eqn.:upward

motion

Page 29: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

• Increase in thickness from heating at mid levels.

• Pushes air up, creates pressure gradient force• Air diverges at upper levels to maintain mass

conservation.• This reduces mass of column, reducing the

surface pressure. Approximated by pressure tendency equation.

• This is countered by mass moving into the column, again conservation of mass. Convergence at lower levels.

A simple conceptual model of a low pressure system

Page 30: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

A simple conceptual model of a low pressure system

• Pattern of convergence at low levels and divergence at upper levels triggers rising vertical motions.

• Rising motions might form clouds and precipitation.

• The exact growth (or decay) of the surface low will depend on characteristics of the atmosphere.

• Link of upper and lower atmosphere.

Page 31: AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland cjablono@umich.educjablono@umich.edu ehetland@umich.eduehetland@umich.edu

ω =Dp

Dt=

∂p

∂t+

r v h • ∇p + w

∂p

∂z

ω =∂p

∂t+

r v g • ∇p +

r v a • ∇p − wgρ

ω =∂p

∂t+

r v a • ∇p − wgρ

with the help of scale analysis

ω ≈ −wgρ

Vertical motions in the free atmosphere:The relationship between w and ω

= 0 hydrostatic equation

≈ 10 hPa/d≈ 1m/s 1Pa/km≈ 1 hPa/d

≈ 100 hPa/d