51
AOSS 321, Winter 2009 Earth System Dynamics Lecture 9 2/5/2009 Christiane Jablonowski Eric Hetland [email protected] [email protected] 734-763-6238 734-615-

AOSS 321, Winter 2009 Earth System Dynamics Lecture 9 2/5/2009 Christiane Jablonowski Eric Hetland [email protected]@umich.edu [email protected]@umich.edu

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

AOSS 321, Winter 2009 Earth System Dynamics

Lecture 92/5/2009

Christiane Jablonowski Eric Hetland

[email protected] [email protected]

734-763-6238 734-615-3177

Today’s class• Discussion of the three momentum equations• Scale analysis for the midlatitudes• Geostrophic balance / geostrophic wind• Ageostrophic wind• Hydrostatic balance

Full momentum equation:in component form

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Let’s think about this equation (1)

The equations are explicitly non-linear.

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Let’s think about this equation (2)

These are the curvature terms that arise because the tangential coordinate system curves with the surface of the Earth.

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Let’s think about this equation (3)

These are the Coriolis terms that arise because the tangential coordinate system rotates with the Earth.

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Let’s think about this equation (4)

These are the friction terms, the viscous forces, that arise because the atmosphere is in motion. They oppose the motion.

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Let’s think about this equation (5)

These are the pressure gradient terms. They initiate the motion.

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Let’s think about this equation (6)

This is gravity (combined with the apparent centrifugal force). Gravity stratifies the atmosphere, with pressure decreasing with height. The motion of the atmosphere is largely horizontal in the x-y plane.

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Let’s think about this equation (7)

We are mixing (x, y, z) with (λ, Φ, z).

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Let’s think about this equation (8)

The equations are coupled.

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v 2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Let’s think about this equation (9)

We have u, v, w, ρ, p which depend on (x, y, z, t). Can we solve this system of equations?

Consider x and y componentsof the momentum equation

What are the units? Do they check out?€

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Time scales

D ( )/Dt looks like 1/T (with T: time scale)

We recognize that time can be characterized bya distance (length scale L) divided by a velocity (with velocity scale U): T = L/U This gives us the unit ‘s’ for the time scale.

LUULDtD /)//(1 =≈

Scale Analysis:Let us define

onacceleratifor scale time/

scale fluctation pressure horizontal /

scalelength vertical

scalelength horizontal

scale velocity vertical

scale velocity horizontal

≈≈Δ

≈≈≈≈

ULP

HLWU

ρ

What are the scales of the terms?

2H

UνU*U/L

U*U/a

U*W/a

Uf WfL

P

ρΔ€

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Scales of atmospheric phenomena: Tornadoes

• Funnel cloud that emerges from a thunderstorm

• Scale of the motion?

Scales of atmospheric phenomena: Hurricanes

• Satellite image• Tropical storm

that originates over warm ocean water

• Scale of the motion?

Scales of atmospheric phenomena:Extratropical storm systems

• Satellite image• Storm system in

the Gulf of Alaska• Scale of the

motion ?

Scales for large mid-latitude systems

U ≈

W ≈

L ≈

H ≈

a ≈

g ≈

ΔP /ρ ≈

T ≈ L /U ≈

ν ≈

at φ0 = 45o, f ≈ 2Ωsin(φ0) ≈

≈ 2Ωcos(φ0) ≈

horizontal wind

vertical wind

length

height

radius

gravity

pressure fluctuations

time

viscosity

Coriolis term

Typical scales ?

Scales for “large-scale” mid-latitude weather systems

U ≈10 m s-1

W ≈ 1 cm s-1 (units!) ≈10−2 m s-1

L ≈ 106 m

H ≈ 104 m

a ≈ 107 m

g ≈ 10 m s−2

ΔP /ρ ≈ 103 m2 s-2

T ≈ L /U ≈ 105 s

ν ≈10−5 m2s−1

at φ0 = 45o, f ≈ 2Ωsin(φ0) ≈ 2Ωcos(φ0) ≈ 10-4 s−1

What are the scales of the terms?Class exercise

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

What are the scales of the terms?

2H

UνU*U/L U*U/a U*W/a Uf WfL

P

ρΔ

10-4 10-5 10-8 10-3 10-3 10-6 10-12

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

What are the scales of the terms?

2H

UνU*U/L U*U/a U*W/a Uf WfL

P

ρΔ

10-4 10-5 10-8 10-3 10-3 10-6 10-12

Du

Dt−

uv tan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωv sin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Largest Terms

Consider only the largest terms

−1

ρ

∂p

∂x+ 2Ωv sin(φ) ≈ 0

−1

ρ

∂p

∂y− 2Ωusin(φ) ≈ 0

This is a dominant balance between the • pressure gradient force• Coriolis force (the dominant sin() components of the Coriolis force)

This is the geostrophic balance.

Consider only the largest terms

1

ρ

∂p

∂x= +2Ωv sin(φ)

1

ρ

∂p

∂y= −2Ωusin(φ)

Note: There is no D( )/Dt term. Hence, no acceleration, no change with time. This is a balance.

This is the geostrophic balance.

Geostrophic balance

High Pressure

Low Pressure

Pressure gradientforce (PGF)

Coriolis force(Northern Hemisphere)

In Northern Hemisphere: Coriolis force points to the right (perdendicular) relative to the path of the air parcel

http://itg1.meteor.wisc.edu/wxwise/AckermanKnox/chap6/balanced_flow.htmlCheck out:

Geostrophic Wind

with the Coriolis parameter f = 2 sinNote: There is no D( )/Dt term. Hence, no acceleration, no change with time.€

ug = −1

ρf

∂p

∂y

vg =1

ρf

∂p

∂x

rv g =

1

ρf

r k ×∇p

Component form: Vector form:

The geostrophic wind describes the dominant balance between the pressure gradient force and the Coriois force.

Geostrophic wind 300 mb

Geostrophic & observed wind 300 mb

Geostrophic and observed wind 1000 mb (land)

Geostrophic and observed wind 1000 mb (ocean)

Geostrophic wind• The direction of the geostrophic wind is parallel to

the isobars.

• The geostrophic wind vg is a good approximation of the real horizontal wind vector, especially over oceans and at upper levels. Why?

• The closer the isobars are together, the stronger the magnitude of the geostrophic wind | vg | (isotachs increase).

Geostrophic Wind

with the Coriolis parameter f = 2 sinNote: There is no D( )/Dt term. Hence, no acceleration, no change with time.€

ug = −1

ρf

∂p

∂y

vg =1

ρf

∂p

∂x

rv g =

1

ρf

r k ×∇p

Component form: Vector form:

This is a DIAGNOSTIC equation

Geostrophic Wind

ug = −1

ρf

∂p

∂y, vg =

1

ρf

∂p

∂x

30º N

45º N

1026 hPa

1013 hPa

105º W 75º W135º W

15º N

MSLP (hPa) and 10 m wind (knots)

f = 2 sin(), 7.292 10-5 s-1

Geostrophic Wind

ug = −1

ρf

∂p

∂y

vg =1

ρf

∂p

∂x980 hPa

990 hPa

14º W 0º

MSLP (hPa) and 10 m wind (knots)

58º N

Δ 7°

f = 2 sin()

7.292 10-5 s-1

Rossby number• Rossby number: A dimensionless number that

indicates the importance of the Coriolis force

• Defined as the ratio of the characteristic scales for the acceleration and the Coriolis force

• Small Rossby numbers (≈ 0.1 and smaller): Coriolis force is important, the geostrophic relationship (in midlatitudes) is valid.

• What are typical Rossby numbers of midlatitudinal cyclones and tornadoes?

Ro =U 2

Lf0U

=U

f0L

Impact of friction• http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/fw/fric.rxml

• Friction (especially near the Earth’s surface) changes the wind direction and slows the wind down, thereby reducing the Coriolis force.

• The pressure gradient force becomes more dominant. As a result, the total wind deflects slightly towards lower pressure.

• The (ageostrophic) wind reduces the differences between high and low pressure!

Diagnostic and Prognostic• In order to predict what is going to happen next, we need

to know the rate of change with time. We need D ( )/Dt. This is known as a prognostic equation.

• Scale analysis shows that for middle latitude large scale motion (1000 km spatial), 1 day (temporal)) the acceleration term is an order of magnitude smaller than the geostrophic terms.

• Hence, for much of the atmosphere we can think of the geostrophic balance as some notion of an equilibrium state, and we are interested in determining the difference from this equilibrium state.

• Ageostrophic is this difference from geostrophic.

What are the scales of the terms?

2H

UνU*U/L U*U/a U*W/a Uf WfL

P

ρΔ

10-4 10-5 10-810-3 10-3 10-6 10-12

Du

Dt−

uvtan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωvsin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Geostrophic termsAccelerationIn the freeatmosphere

A simple prognostic equation

Du

Dt= fv −

1

ρ

∂p

∂x= f (v − vg ) = fva

Dv

Dt= − fu −

1

ρ

∂p

∂y= − f (u − ug ) = − fua

vg: geostrophic wind vector, not the real wind. Within 10-15% of real wind in middle latitudes, large-scale.va: ageostrophic wind vector, difference between actual (real) wind and geostrophic wind.

A simple prognostic equation

Du

Dt= f (v − vg )

Dv

Dt= − f (u − ug )

This shows, explicitly, that the acceleration, the prognostic attribute of the atmosphere, is related to the difference from the geostrophic balance.

A simple prognostic equation

)(v

)vv(

g

g

uufDt

D

fDt

Du

−−=

−=

Looks like we are getting towards two variables u and v, but we have buried the pressure and density in geostrophic balance. This links, directly, the mass field and velocity field. And what about w?

Geostrophic and observed wind 1000 mb (land)

2H

WνW*U/L U*U/a UfgH

Psfc

ρ

Dw

Dt−

u2 + v2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

Scale analysis of the vertical momentum equation

2H

WνW*U/L U*U/a Ufg

Psfc

ρH

10-7 10-5 10 10-310 10-15

Dw

Dt−

u2 + v2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

Scale analysis of the vertical momentum equation

Largest Terms

How did we get that vertical scale for pressure?

Troposphere: depth ~ H = 1.0 x 104 m

ΔP ~ 900 mb

This scale analysis tells us that the troposphere is thin relative to the size of the Earth and that mountains extend half way through the troposphere.

Hydrostatic relation

gz

p−=

∂∂

ρ1

And the vertical acceleration Dw/Dt is 8 orders of magnitude smaller than this balance. So the ability to use the vertical momentum equation to estimate w is essentially nonexistent.

Hydrostatic relation

gz

p−=

∂∂

ρ1

Hence: w must be “diagnosed” from some balance.

exception: small scales: thunderstorms, tornadoesNon-hydrostatic scale of ~ 10000 m, 10 km.

Du

Dt−

uvtan(φ)

a+

uw

a= −

1

ρ

∂p

∂x+ 2Ωvsin(φ) − 2Ωw cos(φ) + ν∇ 2(u)

Dv

Dt+

u2 tan(φ)

a+

vw

a= −

1

ρ

∂p

∂y− 2Ωusin(φ) + ν∇ 2(v)

Dw

Dt−

u2 + v2

a= −

1

ρ

∂p

∂z− g + 2Ωucos(φ) + ν∇ 2(w)

D()

Dt=

∂()

∂t+

r v • ∇() =

∂()

∂t+ u

∂()

∂x+ v

∂()

∂y+ w

∂()

∂z

Momentum equation

Currently, we have 5 independent variables u, v, w, ρ, p and 3 momentum equations.Can we solve this system of equations? Are we done?

Are we done?• Currently, 5 unknowns and 3 equations• But wait, we also discussed the ideal gas law (also

called Equation of State)

• This adds another unknown ‘T’ to the system• Now we have 6 unknowns (u, v, w, ρ, p, T) and

4 equations. Are we done?• Recall what we said about conservation laws

– Momentum– Energy– Mass

p = ρRdT =1

αRdT with α =

1

ρ (specific volume)