262
A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z Polytopes, partition functions and box–splines Claudio Procesi. PISA 2010

 · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Polytopes, partition functions and box–splines

Claudio Procesi.

PISA 2010

Page 2:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

1 Introduction2 Combinatorics3 Splines4 Algebra5 Approximation theory6 Arithmetic7 Residues

Page 3:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

BASIC INPUT OF THE THEORY

A real, sometimes integer n ×m matrix A.We always think of A as a LIST of vectors in V = Rn, its columns:

A := (a1, . . . , am)

ConstrainWe assume that 0 is NOT in the convex hull of its columns.

From A we make several constructions, algebraic, combinatorial,analytic etc..

Page 4:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

BASIC REFERENCE

The book:C. De Boor, K. Höllig, S. Riemenschneider,

Box splines

Applied Mathematical Sciences 98 (1993).

Forthcoming book

Topics in hyperplane arrangements, polytopes andbox–splines

De Concini C., Procesi C.http://www.mat.uniroma1.it/ procesi/dida.html

Page 5:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SEVERAL NAMES OF CONTRIBUTORS

From numerical analysisA.A. Akopyan; Ben-Artzi, Asher; C.K. Chui, C. De Boor, W.Dahmen, H. Diamond, N. Dyn, K. Höllig, C. Micchelli, Jia, RongQing, A. Ron, A.A. Saakyan

From algebraic geometryOrlik–Solomon on cohomology, Baldoni, Brion, Szenes, Vergne andof Jeffrey–Kirwan, on partition functions.In fact a lot of work originated from the seminal paper ofKhovanskiı, Pukhlikov, interpret the counting formulas asRiemann–Roch formulas for toric varieties

From enumerative combinatoricsA.I. Barvinok, Matthias Beck, Sinai Robins, Richard Stanley

Page 6:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

CONVEX POLYTOPES FIRST OUTPUT

FROM THE MATRIX A WE PRODUCE:First a system of linear equations:

m∑i=1

aixi = b, or Ax = b, A := (a1, . . . , am) (1)

The columns ai , b are vectors with n coordinates(aj,i , bj , j = 1, . . . , n).

Page 7:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Variable polytopes

As in Linear Programming Theory we deduce and want to studytheVARIABLE POLYTOPES:

ΠA(b) := {x |Ax = b, xi ≥ 0, ∀i}

Π1A(b) := {x |Ax = b, 1 ≥ xi ≥ 0, ∀i}

which are convex and bounded for every b.

Page 8:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Variable polytopes

The fact that

ΠA(b) := {x |Ax = b, xi ≥ 0, ∀i}

Π1A(b) := {x |Ax = b, 1 ≥ xi ≥ 0, ∀i}

are convex polyhedra for every b is by definition.The property of being bounded is trivial for Π1

A(b) while for ΠA(b)depends on the fact that there is a linear function φ with φ(ai ) > 0for all i so that φ(ai ) > c > 0.∑

ixiai = b =⇒

∑ixiφ(ai ) = φ(b) =⇒

∑ixi < φ(b)c−1.

Page 9:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Geometric picture

The polytopes Π1A(b) are sections of a hypercube,

for instance the simple case of a cube A a list of 3 numbers:

Page 10:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Geometric pictures

Page 11:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The object of study

Basic functionsSet TA(x), BA(x) to be the volume of ΠA(x),Π1

A(x).If A, b have integer coordinates

Arithmetic case, A, x with integer coefficientsIn this case set PA(x) to be the number of solutions of the systemin which the coordinates xi are non negative integers.

In other words

PA(x) is the number of integral points in the variable polytopeΠA(x).

Page 12:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Up to a multiplicative normalization constant:TA(x) is the Multivariate–splineBA(x) the Box–splinePA(x) is called the partition function

We are interested inComputing the three functions TA(x), BA(x), PA(x) and describetheir qualitative properties.Applications of these functions to arithmetic, numerical analysis,Lie theory, equivariant cohomology, equivariant K–theory,symplectic geometry and index theory.

Page 13:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Variable polytopes

TheVARIABLE POLYTOPE:

ΠA(b) := {x |Ax = b, xi ≥ 0, ∀i}

Is the set of (x1, . . . , xm) ∈ Rm, xi ≥ 0, |∑m

i=1 xiai = b.So it is empty unless b belongs to the cone

C(A) := {m∑

i=1xiai , xi ≥ 0}

of positive combinations of the ai .

The hypothesis that 0 is NOT in the convex hull of the ai impliesthat C(A) is pointed, that is there is a linear function φ strictlypositive on all non zero points of C(A),

Page 14:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

IMPORTANT EXAMPLE

A is the list of POSITIVE ROOTS of a root system,e.g. B2:

A =

∣∣∣∣∣−1 1 1 01 0 1 1

∣∣∣∣∣

//

OO ??�������

__???????

We also identify vectors withlinear forms as:

−x + y , x , x + y , y

Page 15:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

IMPORTANT EXAMPLE

A is the list of POSITIVE ROOTS of a root system,the associated cone C(A) has three big cells

. . . . . . . . .

. . . . . . . .

. . . . . . .

. . . . . .

. //

OO >>}}}}}}}

``AAAAAAA

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA. . . .

Page 16:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE, the C 1 function TA, case ZP

In the literature of numerical analysis the Box spline associated tothe root system B2 is called the Zwart–Powell or ZP element:

A =

∣∣∣∣∣1 1 0 −11 0 1 1

∣∣∣∣∣//

OO ??�������

__???????

Page 17:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE, the C 1 function TA, case B2 or ZP

2TA is 0 outside the cone and on the three cells:

(x+y)2

2(x+y)2

2 − x2

triangle penthagon

0 triangle y2

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Page 18:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE, the C 1 function TA, case B2 or ZP

2TA is 0 outside the cone and on the three cells:

(x+y)2

2(x+y)2

2 − x2

triangle penthagon

0 triangle y2

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Page 19:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The box–spline for type B2, ZP element

9−6y+y2 ����������������

���������������������������������

12+3x+x2

2+y−xy− y2

2

92+3x+

(x−y)2

2−3y 5

2+x−x2−y

����������������

92+3x−x2

2

−3y−xy+y2

2

4−4x+x2

2+xy− y2

2

8−4x+x2

2 −4y

+xy+y2

2

7−2x−x2

2

−4y+xy+y2

2

?????????????????????????????????

?????????????????????????????????????????????????

1+2x+x2

−1+x2

2+2y+xy− y2

2

���������������������������������

− 12+x−x2+y

− 32+x+3y−y2 − 3

2+x−x2+3y−y2

���������������������������������

− 12−x+3y−y2

− 12−x+x2

2+3y−xy− y2

2

4−4x+x2????????????????

(x+y)2

2

????????????????????????????????? y2

−x2

2+xy+ y2

2

���������������������������������

− 12+x

− (x−y)2

2 +y

12−x+

(x−y)2

2 +y

���������������������������������

????????????????????????????????????????????????????????????????????

1

Page 20:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

WHAT DO WE SEE

The computation of the box–spline has some geometric,combinatorial and algebraic flavor. It appears as a piecewisepolynomial function on a compact polyhedron.

From simple data we get soon a complicatedpicture!

Page 21:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE PARTITION FUNCTION

When A, b have integer elements it is natural to think of anexpression like:b = t1a1 + · · ·+ tmam with ti not negative integers as a:

partition of b with the vectors ai ,in t1 + t2 + · · ·+ tm parts, hence the name partition function forthe number PA(b), thought of as a function of the vector b.

SIMPLE EXAMPLE m = 2, n = 1, A = {2, 3}

Parts are 2 and 3In how many ways can you write a number b as:

b = 2x + 3y , x , y ∈ N ?

Page 22:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE PARTITION FUNCTION

When A, b have integer elements it is natural to think of anexpression like:b = t1a1 + · · ·+ tmam with ti not negative integers as a:

partition of b with the vectors ai ,in t1 + t2 + · · ·+ tm parts, hence the name partition function forthe number PA(b), thought of as a function of the vector b.

SIMPLE EXAMPLE m = 2, n = 1, A = {2, 3}

Parts are 2 and 3In how many ways can you write a number b as:

b = 2x + 3y , x , y ∈ N ?

Page 23:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

ANSWER (Quasi polynomial!)

It depends on the class of n modulo 6.

n ∼= 0 n6 + 1

n ∼= 1 n6 −

16

n ∼= 2 n6 + 2

3

n ∼= 3 n6 + 1

2

n ∼= 4 n6 + 1

3

n ∼= 5 n6 + 1

6

Page 24:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

What is a quasi–polynomial?

Two equivalent definitions

FIRSTA function on a lattice Λ which is a polynomial on each cosetof some sublattice M of finite index

SECONDThe restriction to a lattice Λ of a function which is a sum ofproducts of a polynomial with an exponential function,periodic on some sublattice M of finite index

Page 25:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

OTHER EXAMPLE, THE HAT FUNCTION

A =

∣∣∣∣∣1 0 10 1 1

∣∣∣∣∣ the corresponding partition function PA is piecewise

polynomial with top degree coinciding with TA

0 x + 1

y + 1

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

0

0

Page 26:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

IMPORTANT EXAMPLE Lie theory

In Lie theory the Kostant partition function counts inhow many ways can you decompose a weight as a sum of positiveroots.This is used in many computations.

Page 27:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE OBJECTS OF STUDY

Main objects associated to A

First we may think of the elements ai as a list of linear equations,each defining a hyperplane (in the dual space U = V ∗), the pointsin which it vanishes. This is a

central hyperplane arrangement

One way to study this arrangement is to study the algebra ofpolynomials S[V ] localized at

∏mi=1 ai so we study the algebra

RA := S[V ][m∏

i=1a−1

i ].

Page 28:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE OBJECTS OF STUDY

The algebra RA consists of those rational functions which have atthe denominator a product of powers of the linear forms ai . It isclearly a module under the Weyl algebra of differential operatorswith polynomial coefficients and we analyze in depth the modulestructure.

Page 29:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE OBJECTS OF STUDY

When the coordinates of the elements ai = (ai ,1, . . . , ai ,s) areintegers we think of ai as a character

∏sj=1 x

ai,jj .

This defines a subgroup of the torus (C∗)s the points in which thecharacter is 1 or where 1−

∏sj=1 x

ai,jj vanishes.

This is called a central toric arrangement.One way to study this arrangement is to study the algebra ofLurent polynomials S[x±1

1 , . . . , x±1s ] localized at∏m

i=1(1−∏s

j=1 xai,jj ) so we study the algebra

S[x±11 , . . . , x±1

s ][m∏

i=1(1−

s∏j=1

xai,jj )−1].

We study also his as a module over the algebra of differentialoperators with coefficients Laurent polynomials.

Page 30:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE THEOREMS

Main

TheoremsThere are several general formulas to compute the previousfunctions which are obtained by a mixture of techniques.A main geometric notion that plays a role is that of BIG CELL

Page 31:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

What are the big cells?

ASSUME THAT A SPANS V .

The singular points are the points in the cone C(A) lying insome cone C(Y ) for any sublist Y of A which does NOT spanthe ambient space.The other points are called regularA big cell is a connected component of the set or regularpoints.

Page 32:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

What are the big cells?

In other words, take all the hyperplanes H spanned by sublists of Aand then the cones C(H ∩ A). The union of all these cones formsthe set of singular vectors.It is easy to see that the big cells are convex.

Page 33:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

CELLS ARE CONVEX POLYHEDRA

Take all bases b extracted from A, for each basis consider the coneC(b) generated by b. Its boundary is made of singular points.A standard fact of polyhedra is that

C(A) = ∪bC(b)

So if a point p ∈ C(A) is regular it lies either in the interior◦C (b)

of outside each C(b). It follows that the big cell c in which p lies isthe intersection of all the

◦C (b) containing it.

c = ∩b | p∈

◦C(b)

◦C (b).

Page 34:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

A 3-dimensional example

The positive roots of type A3 are

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

Visualize the cone and the big cells.We do everything on a transversal section, where the cone lookslike a bounded convex polytope and then project.We want to decompose the cone C(A) into big cells and see itssingular and regular points.

Page 35:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

PROJECTING A POLYHEDRON TO FORM A CONE

Page 36:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE Type A3 in section (big cells):

α2

====================================

������������������������������������

α1 + α2 α2 + α3

α1 + α2 + α3

α1

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk α3

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

We have 7 big cells.

Page 37:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Onen question, Type An :

Which and how many are the big cells?

Page 38:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Assume A spans Rn.

Let m(A) denote the minimum number of columns that one canremove from A so that the remaining columns do not span Rn.

The basic function TA(x) is a spline1 TA(x) has support on the cone C(A)

2 TA(x) is of class m(A)− 23 TA(x) coincides with a homogeneous polynomial of degree

m − n on each big cell.

Page 39:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Assume A spans Rn.

Let m(A) denote the minimum number of columns that one canremove from A so that the remaining columns do not span Rn.

The basic function TA(x) is a spline1 TA(x) has support on the cone C(A)

2 TA(x) is of class m(A)− 23 TA(x) coincides with a homogeneous polynomial of degree

m − n on each big cell.

Page 40:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SUMMARIZING

In order to compute TA(x) we need to1 Determine the decomposition of C(A) into cells2 Compute on each big cell the homogeneous polynomial of

degree m − n coinciding with TA(x) .

Page 41:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SUMMARIZING

In order to compute TA(x) we need to1 Determine the decomposition of C(A) into cells2 Compute on each big cell the homogeneous polynomial of

degree m − n coinciding with TA(x) .

Page 42:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SUMMARIZING

In order to compute TA(x) we need to1 Determine the decomposition of C(A) into cells2 Compute on each big cell the homogeneous polynomial of

degree m − n coinciding with TA(x) .

Page 43:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

GENERAL FORMULA FOR TA

One can find explicit polynomials pb,A(x), indexed by acombinatorial object called unbroken bases andcharacterized by certain explicit differential equations so that:Given a point x in the closure of a big cell c we have

Jeffry-Kirwan residue formula

TA(x) =∑

b | c⊂C(b)

| det(b)|−1pb,A(−x).

Page 44:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

From TA one computes BA

For a given subset S of A define aS :=∑

a∈S a

the basic formula is:

BA(x) =∑S⊂A

(−1)|S|TA(x − aS).

So TA is the fundamental object.

Notice that the local pieces of BA are no more homogeneouspolynomials.

Page 45:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

From TA one computes BA

For a given subset S of A define aS :=∑

a∈S a

the basic formula is:

BA(x) =∑S⊂A

(−1)|S|TA(x − aS).

So TA is the fundamental object.

Notice that the local pieces of BA are no more homogeneouspolynomials.

Page 46:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set ofpolynomials qb,φ(−x) indexed by pairs, a character φ of finiteorder and a unbroken basis in Aφ = {a ∈ A |φ(ea) = 1}.The analogue of the Jeffrey–Kirwan formula is:

TheoremGiven a point x in the closure of a big cell c we have

Residue formula for partition function

PA(x) =∑

φ∈P(A)

eφ∑

b∈NBAφ | c⊂C(b)

qb,φ(−x)

Page 47:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set ofpolynomials qb,φ(−x) indexed by pairs, a character φ of finiteorder and a unbroken basis in Aφ = {a ∈ A |φ(ea) = 1}.The analogue of the Jeffrey–Kirwan formula is:

TheoremGiven a point x in the closure of a big cell c we have

Residue formula for partition function

PA(x) =∑

φ∈P(A)

eφ∑

b∈NBAφ | c⊂C(b)

qb,φ(−x)

Page 48:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set ofpolynomials qb,φ(−x) indexed by pairs, a character φ of finiteorder and a unbroken basis in Aφ = {a ∈ A |φ(ea) = 1}.The analogue of the Jeffrey–Kirwan formula is:

TheoremGiven a point x in the closure of a big cell c we have

Residue formula for partition function

PA(x) =∑

φ∈P(A)

eφ∑

b∈NBAφ | c⊂C(b)

qb,φ(−x)

Page 49:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

From volumes to partition functions

One can deduce the partition function from some combinatoricsand multivariate splines (with parameters):

TheoremFor the points x in the interior of big cells c we have

PA(x) =∑

φ∈P(A)

QφTAφ,φ(x)

Qφ =∏

a/∈Aφ

11− e−a

∏a∈Aφ

a − 〈φ | a〉1− e−a+〈φ | a〉

Page 50:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

From volumes to partition functions

One can deduce the partition function from some combinatoricsand multivariate splines (with parameters):

TheoremFor the points x in the interior of big cells c we have

PA(x) =∑

φ∈P(A)

QφTAφ,φ(x)

Qφ =∏

a/∈Aφ

11− e−a

∏a∈Aφ

a − 〈φ | a〉1− e−a+〈φ | a〉

Page 51:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

FIRST

FIRST STEP

SOME COMBINATORICS

Page 52:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

IN THE COMBINATORIAL PART

one can explain the ideas relating unbroken bases with cells and allbases with the structure of the polyhedron where the box–splinehas its support.Let us illustrate these ideas through examples.

Page 53:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Unbroken bases

From the theory of matroids to cells.

Let c := ai1 , . . . , aik ∈ A, i1 < i2 · · · < ik , be a sublist of linearlyindependent elements.

DefinitionWe say that ai breaks c if there is an index 1 ≤ e ≤ k suchthat:

i ≤ ie .ai is linearly dependent on aie , . . . , aik .

Page 54:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Unbroken bases

From the theory of matroids to cells.

Let c := ai1 , . . . , aik ∈ A, i1 < i2 · · · < ik , be a sublist of linearlyindependent elements.

DefinitionWe say that ai breaks c if there is an index 1 ≤ e ≤ k suchthat:

i ≤ ie .ai is linearly dependent on aie , . . . , aik .

Page 55:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE of the elements breaking a basis

ExampleTake as A the list of positive roots for type A3.

A = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}.

Let us draw in Red one particular basis and in Green the elementswhich break it.We have 16 bases10 broken and 6 unbroken

FIRST THE 10 broken

Page 56:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE of the elements breaking a basis

ExampleTake as A the list of positive roots for type A3.

A = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}.

Let us draw in Red one particular basis and in Green the elementswhich break it.We have 16 bases10 broken and 6 unbroken

FIRST THE 10 broken

Page 57:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

Page 58:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We have 6 unbroken, all contain necessarily α1:

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

Page 59:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Let us visualize the simplices generated by the 6 unbroken:α2

111111111111111111111111111

1111111111111

α1 α3

Page 60:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

α2

99999999999999

����������������������������

α2 + α3

pppppppppppppppppppppppp

α1

Page 61:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

α2

�������������������������������

α1 + α2 + α3

kkkkkkkkkkkkkkk

α1

Page 62:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

α1 + α2

��������������

LLLLLLLLLLLLLLLLLLLLLL

α1 α3

Page 63:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

α1 + α2 + α3

SSSSSSSSSSSSSSS

kkkkkkkkkkkkkkk

α1 α3

Page 64:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

α1 + α2

��������������α2 + α3

mmmmmmmmmmmmmmmmmmmmmmmmmmmm

α1

Page 65:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Decomposition into big cells and unbroken basesLet us visualize the decomposition into big cells, obtainedoverlapping the cones generated by unbroken bases.

Page 66:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

A remarkable fact

//////////////////////////

��������������������������

/////////////

/////////////

��������������������������

ttttttttttttttttttttt

��������������������������

tttttttttttttt�������������

JJJJJJJJJJJJJJJJJJJJJ

tttttttttttttt

JJJJJJJJJJJJJJ�������������

ttttttttttttttttttttt

Page 67:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

A remarkable fact

//////////////////////////

��������������������������

//////////////////////////

��������������������������

ttttttttttttttttttttt

��������������������������

tttttttttttttt�������������

JJJJJJJJJJJJJJJJJJJJJ

tttttttttttttt

JJJJJJJJJJJJJJ�������������

ttttttttttttttttttttt

Page 68:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

A remarkable fact

//////////////////////////

��������������������������

//////////////////////////

��������������������������

ttttttttttttttttttttt

��������������������������

tttttttttttttt

�������������

JJJJJJJJJJJJJJJJJJJJJ

tttttttttttttt

JJJJJJJJJJJJJJ�������������

ttttttttttttttttttttt

Page 69:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

A remarkable fact

//////////////////////////

��������������������������

//////////////////////////

��������������������������

ttttttttttttttttttttt

��������������������������

tttttttttttttt�������������

JJJJJJJJJJJJJJJJJJJJJ

tttttttttttttt

JJJJJJJJJJJJJJ�������������

ttttttttttttttttttttt

Page 70:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

A remarkable fact

//////////////////////////

��������������������������

//////////////////////////

��������������������������

ttttttttttttttttttttt

��������������������������

tttttttttttttt�������������

JJJJJJJJJJJJJJJJJJJJJ

tttttttttttttt

JJJJJJJJJJJJJJ

�������������

ttttttttttttttttttttt

Page 71:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

A remarkable fact

//////////////////////////

��������������������������

//////////////////////////

��������������������������

ttttttttttttttttttttt

��������������������������

tttttttttttttt�������������

JJJJJJJJJJJJJJJJJJJJJ

tttttttttttttt

JJJJJJJJJJJJJJ�������������

ttttttttttttttttttttt

Page 72:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

A remarkable fact

//////////////////////////

��������������������������

//////////////////////////

��������������������������

ttttttttttttttttttttt

��������������������������

tttttttttttttt�������������

JJJJJJJJJJJJJJJJJJJJJ

tttttttttttttt

JJJJJJJJJJJJJJ�������������

ttttttttttttttttttttt

Page 73:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The overlapping theorem

You have visually seen a theorem we proved in general:

by overlapping the cones generated by the unbroken bases oneobtains the entire decomposition into big cells!!

Page 74:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

HYPERPLANE ARRANGEMENTS

A list of vectors ai can be thought of as alist of linear equationsdefining aset of linear hyperplanes.

These intersect in a complicated pattern giving rise to a secondinteresting combinatorial geometric object, the set of all theirintersections called:

HYPERPLANE ARRANGEMENT

Page 75:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

PROJECTIVE PICTURE OF THE ARRANGEMENT A3

Same example but as linear functions, or hyperplane arrangement:

We have drawn in theprojective plane of 4−tuples ofreal numbers with sum 0, the6 lines

xi − xj = 0, 1 ≤ i < j ≤ 4

the 7 intersection points are also subspaces of the arrangement!

Page 76:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

PROJECTIVE PICTURE OF THE ARRANGEMENT A3

Same example but as linear functions, or hyperplane arrangement:

We have drawn in theprojective plane of 4−tuples ofreal numbers with sum 0, the6 lines

xi − xj = 0, 1 ≤ i < j ≤ 4

the 7 intersection points are also subspaces of the arrangement!

Page 77:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

HYPERPLANE ARRANGEMENTS

Linear equationsThe list of vectors gives rise to a list of linear forms and so to ahyperplane arrangement

Integral vectorsIn the case of vectors in a lattice it is better to think of thesevectors λ = (a1, . . . , as), ai ∈ Z as characters x 7→ xλ =

∏si=1 x

aii

on a torus and we we have the toric arrangement formedby the connected components of the intersections of the subgroupsxλ = 1.

Periodic arrangementUsing logarithms one can interpret the toric arrangement as aperiodic hyperplane arrangement.

Page 78:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

PROBLEM

Describe the previous pictures for root systems.For type An the unbroken bases are known and can be indexed bycertain binary graphs or by permutations of n elements.The decomposition into cells is unknown.

Page 79:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE BOX

The box spline BA(x) is supported in the compact polytope:

THE BOX B(A)

The Box B(A)

that is the compact convex polytope

B(A) := {m∑

i=1tiai}, 0 ≤ ti ≤ 1, ∀i .

Page 80:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE BOX

The box spline BA(x) is supported in the compact polytope:

THE BOX B(A)

The Box B(A)

that is the compact convex polytope

B(A) := {m∑

i=1tiai}, 0 ≤ ti ≤ 1, ∀i .

Page 81:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The box B(A) has a nice combinatorial structure, proved byShephard, it can be paved by a set of parallelepipeds indexed by:all the bases which one can extract from A!

ExampleIn the next example

A =

∣∣∣∣∣1 0 1 −1 2 10 1 1 1 1 2

∣∣∣∣∣we have 15 bases and 15 parallelograms.

Page 82:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The box B(A) has a nice combinatorial structure, proved byShephard, it can be paved by a set of parallelepipeds indexed by:all the bases which one can extract from A!

ExampleIn the next example

A =

∣∣∣∣∣1 0 1 −1 2 10 1 1 1 1 2

∣∣∣∣∣we have 15 bases and 15 parallelograms.

Page 83:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE paving the box

A =

∣∣∣∣∣1 0 1 −1 2 10 1 1 1 1 2

∣∣∣∣∣

Page 84:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Step–wise paving of the box

=

∣∣∣∣∣1 0 1 −1 2 10 1 1 1 1 2

∣∣∣∣∣START WITH

A =

∣∣∣∣∣1 00 1

∣∣∣∣∣

Page 85:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Step–wise paving of the box

A =

∣∣∣∣∣1 0 10 1 1

∣∣∣∣∣

�������

��������������

Page 86:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Step–wise paving of the box

A =

∣∣∣∣∣1 0 1 −10 1 1 1

∣∣∣∣∣

�������

???????

??????????????

�������

�������???????

�������

Page 87:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Step–wise paving of the box

A =

∣∣∣∣∣1 0 1 −1 20 1 1 1 1

∣∣∣∣∣

???????ooooooooooooo

ooooooooooooo�������

???????

???????

ooooooooooooo???????

�������

�������

ooooooooooooo

�������???????

�������

ooooooooooooo

Page 88:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Step–wise paving of the box

• •

@@@@@@@

oooooooooooooo •

~~~~~~~•

��������������•

@@@@@@@

��������������•

��������������

oooooooooooooo •

oooooooooooooo •

��������������

��������������

~~~~~~~•

@@@@@@@•

@@@@@@@

oooooooooooooo •

��������������

@@@@@@@

~~~~~~~•

~~~~~~~•

oooooooooooooo •

~~~~~~~

@@@@@@@@•

~~~~~~~

oooooooooooooo

A =

∣∣∣∣∣1 0 1 −1 2 10 1 1 1 1 2

∣∣∣∣∣

Page 89:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SECOND

SECOND STEP

THE SPLINES

Page 90:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SPLINES

The volume VA(x) =√detAAtTA(x) of the variable polytope

ΠA(x) equals, up to the multiplicative constant√detAAt to the

multivariate splinethat is the function TA(x) characterized by the formula:∫

Rnf (x)TA(x)dx =

∫Rm

+

f (m∑

i=1tiai )dt,

where f (x) is any continuous function with compact support.

Page 91:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SPLINES

The volume VA(x) =√detAAtTA(x) of the variable polytope

ΠA(x) equals, up to the multiplicative constant√detAAt to the

multivariate splinethat is the function TA(x) characterized by the formula:∫

Rnf (x)TA(x)dx =

∫Rm

+

f (m∑

i=1tiai )dt,

where f (x) is any continuous function with compact support.

Page 92:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SPLINES

The volume VA(x) =√detAAtTA(x) of the variable polytope

ΠA(x) equals, up to the multiplicative constant√detAAt to the

multivariate splinethat is the function TA(x) characterized by the formula:∫

Rnf (x)TA(x)dx =

∫Rm

+

f (m∑

i=1tiai )dt,

where f (x) is any continuous function with compact support.

Page 93:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THIS IS FUBINI’S THEOREM

Decompose the map A : Rm → Rm,A(t1, . . . , tm) =∑

i tiai ascomposition BC where B is an orthogonal projection and Cinvertible. Set u := C(t).∫

Rm+

f (BC(t))dt = | det(C)|−1∫

C(Rm+)

f (Bu)du

∫C(Rm

+)f (Bu)du =

∫Rn

[

∫B−1x∩C(Rm

+)1dm]f (x)dx

B−1x ∩ C(Rm+) = C(ΠX (x)) so

∫B−1x∩C(Rm

+) 1dm is the volume ofC(ΠX (x)) which is cVX (x) for some constant c.

Page 94:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

WARNING

We have given a weak definition for TA(x)

In generalTA(x) is a tempered distribution, supported on the cone C(A)!

Only when A has maximal rank TA(x) is a function.

Page 95:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

WARNING

We have given a weak definition for TA(x)

In generalTA(x) is a tempered distribution, supported on the cone C(A)!

Only when A has maximal rank TA(x) is a function.

Page 96:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

WARNING

We have given a weak definition for TA(x)

In generalTA(x) is a tempered distribution, supported on the cone C(A)!

Only when A has maximal rank TA(x) is a function.

Page 97:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

BOX SPLINES

While the function TA(x) is the basic object, the more interestingobject for numerical analysis is the

box splinethat is the function BA(x) characterized by the formula:∫

Rnf (x)BA(x)dx =

∫[0,1]m

f (m∑

i=1tiai )dt,

where f (x) is any continuous function.

Page 98:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The bm−spline of Schoenberg A = {1, 1, . . . , 1},m + 1−times

bm(x) is of class Cm−1, it is supported in the interval [0,m + 1],and given by the formula:

bm(x) :=k∑

i=0(−1)i

(m + 1

i

)(x − i)m

m!, ∀x ∈ [k, k + 1].

Page 99:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The b5−spline of Schoenberg

Page 100:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

two box splines of class C 0, h = 2 and C 1, h = 3

A =

∣∣∣∣∣1 0 10 1 1

∣∣∣∣∣ Hat functionor Courant element

A =

∣∣∣∣∣1 0 1 −10 1 1 1

∣∣∣∣∣Zwart-Powell element

Page 101:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE OF A two dimensional box spline

Non continuous, A =

∣∣∣∣∣1 2 1 1 10 0 0 0 2

∣∣∣∣∣ (h = 1)

Page 102:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

3 reasons WHY the BOX SPLINE ?

∫Rn

BA(x)dx = 1

recursive definition

B[A,v ](x) =

∫ 1

0BA(x − tv)dt

in the case of integral vectors, we have

PARTITION OF UNITYThe translates BA(x − λ), λ runs over the integral vectors form a

partition of 1.

Page 103:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

3 reasons WHY the BOX SPLINE ?

∫Rn

BA(x)dx = 1

recursive definition

B[A,v ](x) =

∫ 1

0BA(x − tv)dt

in the case of integral vectors, we have

PARTITION OF UNITYThe translates BA(x − λ), λ runs over the integral vectors form a

partition of 1.

Page 104:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

3 reasons WHY the BOX SPLINE ?

∫Rn

BA(x)dx = 1

recursive definition

B[A,v ](x) =

∫ 1

0BA(x − tv)dt

in the case of integral vectors, we have

PARTITION OF UNITYThe translates BA(x − λ), λ runs over the integral vectors form a

partition of 1.

Page 105:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

TRIVIAL EXAMPLE

A = {1, 1} we have for the box spline

???????�������

Now let us add to it its translates!

Page 106:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 107:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 108:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 109:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 110:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 111:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 112:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 113:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 114:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 115:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 116:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 117:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 118:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 119:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 120:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 121:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 122:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 123:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 124:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 125:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 126:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 127:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????�������

Page 128:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 129:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

???????

???????�������

�������

Page 130:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Page 131:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE OF THE HAT FUNCTION

A =

∣∣∣∣∣1 0 10 1 1

∣∣∣∣∣From the function TA

0

x

y

�������������������������������������

0

0

Page 132:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE OF THE HAT FUNCTIONwe get the box spline hat function summing over the 6translates of TA

Page 133:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Recall the box–spline for type B2

9−6y+y2 ����������������

���������������������������������

12+3x+x2

2+y−xy− y2

2

92+3x+

(x−y)2

2−3y 5

2+x−x2−y

����������������

92+3x−x2

2

−3y−xy+y2

2

4−4x+x2

2+xy− y2

2

8−4x+x2

2 −4y

+xy+y2

2

7−2x−x2

2

−4y+xy+y2

2

?????????????????????????????????

?????????????????????????????????????????????????

1+2x+x2

−1+x2

2+2y+xy− y2

2

���������������������������������

− 12+x−x2+y

− 32+x+3y−y2 − 3

2+x−x2+3y−y2

���������������������������������

− 12−x+3y−y2

− 12−x+x2

2+3y−xy− y2

2

4−4x+x2????????????????

(x+y)2

2

????????????????????????????????? y2

−x2

2+xy+ y2

2

���������������������������������

− 12+x

− (x−y)2

2 +y

12−x+

(x−y)2

2 +y

���������������������������������

????????????????????????????????????????????????????????????????????

1

Page 134:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

APPROXIMATION THEORY

The box spline, when the ai are integral vectors, can be effectivelyused in the finite element method to approximatefunctions.We define the CARDINAL SPLINE SPACE

SX := {∑i∈Zs

BA(x − i)ai}

The function ai on Zs is called a mesh function.Define D(A) to be the space of polynomials contained in SX .For a function f weThe semi–discrete convolution

f 7→ BX ∗′ f :=∑i∈Zs

BA(x − i)f (i)

Page 135:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The theory of Dahmen–Micchelli

Consists of several Theorems.The basic is that

semidiscrete convolution maps D(A) into D(A).The dimension of D(A) equals the number of bases which onecan extract from A.D(A) contains all polynomials of degree < m(A) (m(A) is theminimum length of a cocircuit).D(A) is the space of solutions of the differential equationsDY f = 0 as

1 Y runs over the cocircuits of A.2 DY :=

∏a∈Y Da

3 Da is the directional derivative relative to a.

Page 136:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THIRD

THIRD STEP

FROM ANALYSIS TO ALGEBRA

Page 137:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Here comes the algebra

How to compute TA? or the partition function PA?We use the Laplace transform which will change the analyticproblem to one in

algebra

Page 138:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

LAPLACE TRANSFORM from Rs = V to U = V ∗.

Lf (u) :=

∫Ve−〈u | v〉f (v)dv .

In coordinates u = (y1, . . . , ys), v = (x1, . . . , xs) we have

Lf (y1, . . . , ys) :=

∫Rs

e−∑s

i=1 yi xi f (x1, . . . , xs)dx1 . . . dxs .

Page 139:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

basic propertiesp ∈ U,w ∈ V , write p, Dw for the linear function 〈p | v〉 and thedirectional derivative on V

L(Dw f )(u) = wLf (u), L(pf )(u) = −DpLf (u),

L(epf )(u) = Lf (u − p), L(f (v + w))(u) = ewLf (u).

Page 140:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

basic propertiesp ∈ U,w ∈ V , write p, Dw for the linear function 〈p | v〉 and thedirectional derivative on V

L(Dw f )(u) = wLf (u), L(pf )(u) = −DpLf (u),

L(epf )(u) = Lf (u − p), L(f (v + w))(u) = ewLf (u).

Page 141:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

basic propertiesp ∈ U,w ∈ V , write p, Dw for the linear function 〈p | v〉 and thedirectional derivative on V

L(Dw f )(u) = wLf (u), L(pf )(u) = −DpLf (u),

L(epf )(u) = Lf (u − p), L(f (v + w))(u) = ewLf (u).

Page 142:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Basic transformation rules

Consider any a ∈ V as a LINEAR FUNCTION ON U we have:

An easy computation gives the Laplace transforms:

LBA =∏a∈A

1− e−a

aand LTA =

∏a∈A

1a

Page 143:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Basic transformation rules

Consider any a ∈ V as a LINEAR FUNCTION ON U we have:

An easy computation gives the Laplace transforms:

LBA =∏a∈A

1− e−a

aand LTA =

∏a∈A

1a

Page 144:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The Laplace transform of the multivariatespline∫

Rne−∑

i yi xiTA(x)dx =

∫Rm

+

e−∑m

i=1 ti ai (y)dt1 . . . dtm,

=m∏

i=1

∫R+

e−ti ai (y)dti =m∏

i=1

1ai (y)

.

Page 145:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

MORE PARTIAL FRACTIONS

We need to rewrite LTA =∏

a∈A1a for this we need to develop a

theory of partial fractions in several variables, in this case for thealgebra

S[V ][∏a∈A

a−1]

WE DO THIS BY NON COMMUTATIVE ALGEBRA!!!!

Page 146:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

BASIC NON COMMUTATIVE ALGEBRAS

Algebraic Fourier transform

Weyl algebrasSet W (V ),W (U) be the two Weyl algebras of differentialoperators with polynomial coefficients on V and U.

Fourier transformThere is an algebraic Fourier isomorphism between them, so anyW (V ) module M becomes a W (U) module M

Page 147:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

BASIC NON COMMUTATIVE ALGEBRAS

We want to interpret some of these formal properties in thelanguage of Algebra. Recall we set U := V ∗ the dual space.

Weyl algebrasSet W (V ),W (U) be the two Weyl algebras of differentialoperators with polynomial coefficients on V and U.

In coordinates x1, . . . , xs of V we identify the basis of V with∂

∂x1, . . . ,

∂xs

Page 148:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

BASIC NON COMMUTATIVE ALGEBRAS

Weyl algebrasW (V ) is the algebra generated by V ⊕ U with commutationrelations

[v , u] = 〈u | v〉, v ∈ V , u ∈ U.

W (U) is the algebra generated by U ⊕ V with commutationrelations

[v , u] = −〈u | v〉, v ∈ V , u ∈ U.

Page 149:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

BASIC NON COMMUTATIVE ALGEBRAS

Algebraic Fourier transform

Fourier transformThere is an algebraic Fourier isomorphism A 7→ A between them,

ˆ: v 7→ v , u 7→ −u

so any W (V ) module M becomes a W (U) module M

Page 150:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The formulas we have for the Laplace transform mean that it issemi–linear with respect to :

L(Af ) = AL(f ).

We shall apply this to tempered distributions, the dual of Schwarzspace of rapidly decreasing C∞ functions.

Page 151:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

D−modules in Fourier duality:

Two modules Fourier isomorphic

1. The D−module DA := W (V )TA generated, in the space oftempered distributions, by TA under the action of the algebraW (V ) of differential operators on V with polynomial coefficients.

2. The algebra RA := S[V ][∏

a∈A a−1] obtained from thepolynomials on U by inverting the element dA :=

∏a∈A a

RA = W (U)d−1A

Page 152:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

D−modules in Fourier duality:

Two modules Fourier isomorphic

1. The D−module DA := W (V )TA generated, in the space oftempered distributions, by TA under the action of the algebraW (V ) of differential operators on V with polynomial coefficients.

2. The algebra RA := S[V ][∏

a∈A a−1] obtained from thepolynomials on U by inverting the element dA :=

∏a∈A a

RA = W (U)d−1A

Page 153:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

RA and it is the coordinate ring of the open set AAcomplement of the union of the hyperplanes of Uof equations a = 0, a ∈ A.

It is a cyclic module under W (U) generated by d−1A .

Page 154:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The module RA

LocalizationIt is well known that once we invert an element in a polynomialalgebra we get a holonomic module over the algebra of differentialoperators. RA is holonomic!

In particular RA has a finitecomposition series and it is cyclic

We want to describe a composition series of RA.

Page 155:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The module RA

LocalizationIt is well known that once we invert an element in a polynomialalgebra we get a holonomic module over the algebra of differentialoperators. RA is holonomic!

In particular RA has a finitecomposition series and it is cyclic

We want to describe a composition series of RA.

Page 156:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The module RA

LocalizationIt is well known that once we invert an element in a polynomialalgebra we get a holonomic module over the algebra of differentialoperators. RA is holonomic!

In particular RA has a finitecomposition series and it is cyclic

We want to describe a composition series of RA.

Page 157:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The building blocks

The irreducible module NW

For each subspace W of U we have an irreducible module NWgenerated by the δ function of W .

As W runs over the subspaces of the hyperplanearrangement given by the equations ai = 0, ai ∈ Athe NW run over all the composition factors of RA (with multiplicities).

Page 158:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Take coordinates x1, . . . , xn

W = {x1 = x2 = . . . = xk = 0}

NW is generated by an element δW satisfying:

xiδW = 0, i ≤ k, ∂

∂xiδ, i > k.

NW is free of rank 1 generated by δW over:

C[x1, x2, . . . , xk ,∂

∂xk+1, . . . ,

∂xn].

Page 159:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Take coordinates x1, . . . , xn

W = {x1 = x2 = . . . = xk = 0}

NW is generated by an element δW satisfying:

xiδW = 0, i ≤ k, ∂

∂xiδ, i > k.

NW is free of rank 1 generated by δW over:

C[x1, x2, . . . , xk ,∂

∂xk+1, . . . ,

∂xn].

Page 160:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The filtration of RA by polar order

DefinitionRA is filtered by the W (U)−submodules:

filtration degree ≤ kRA,k the span of all the fractions f

∏a∈A a−ha , ha ≥ 0

for which the set of vectors a, with ha > 0, spans a space ofdimension ≤ k.

We have RA,s = RA.

Page 161:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The filtration of RA by polar order

For all k we have that RA,k/RA,k−1 is semisimple.

The isotypic components of RA,k/RA,k−1 are of type NW asW runs over the subspaces of the arrangement ofcodimension k.The space

RA,s/RA,s−1 is a free module over

S[U] = C[∂

∂x1, . . . ,

∂xs]

Page 162:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The filtration of RA by polar order

The linear span of all the fractions∏m

i=1 a−hii , hi ≥ 0 so that the

ai with hi > 0 span is a complement of RA,s−1 in RA,s and it is afree module over

S[U] = C[∂

∂x1, . . . ,

∂xs]

It is important to choose a basis.

Page 163:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The basis theorem

Theorem

A basis for RA,s/RA,s−1 over S[U] is given by

the classes of the elements∏

a∈b a−1 as b runsover the set of unbroken bases.

Page 164:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The expansion of d−1A =∏a∈A a−1

Denote by NB the unbroken bases extracted from A.

We have a more precise THEOREM.

1∏a∈A a =

∑b∈NB

pb∏a∈b

a−1, pb ∈ S[U] = C[∂

∂x1, . . . ,

∂xs]

Page 165:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE Courant element

ExampleUSE COORDINATES x , y SET

A = [x + y , x , y ] = [x , y ]

∣∣∣∣∣1 0 11 1 0

∣∣∣∣∣1

(x + y) x y =1

x (x + y)2 +1

y (x + y)2 =

− ∂

∂y( 1x (x + y)

)− ∂

∂x( 1y (x + y)

)

Page 166:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE ZP element

Example

A = [x + y , x , y ,−x + y ] = [x , y ]

∣∣∣∣∣1 0 1 −11 1 0 1

∣∣∣∣∣1

(x + y) x y (−x + y)=

1(x + y)3x +

4(x + y)3(−x + y)

− 1(x + y)3y =

1/2[∂2

∂2y( 1

(x + y)x)+(

∂x +∂

∂y )2( 1(x + y)(−x + y)

)− ∂2

∂2x( 1

(x + y) y)]

Page 167:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We now need the basic inversion

Let A = {a1, . . . , an} be a basis,d := | det(a1, . . . , as)|χC(A) the characteristic function of the positive quadrant C(A)generated by A.

Basic example of inversion

L(d−1χC(A)) =n∏

i=1a−1

i

Page 168:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We now need the basic inversion

Let A = {a1, . . . , an} be a basis,d := | det(a1, . . . , as)|χC(A) the characteristic function of the positive quadrant C(A)generated by A.

Basic example of inversion

L(d−1χC(A)) =n∏

i=1a−1

i

Page 169:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We now need the basic inversion

Let A = {a1, . . . , an} be a basis,d := | det(a1, . . . , as)|χC(A) the characteristic function of the positive quadrant C(A)generated by A.

Basic example of inversion

L(d−1χC(A)) =n∏

i=1a−1

i

Page 170:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We now need the basic inversion

Let A = {a1, . . . , an} be a basis,d := | det(a1, . . . , as)|χC(A) the characteristic function of the positive quadrant C(A)generated by A.

Basic example of inversion

L(d−1χC(A)) =n∏

i=1a−1

i

Page 171:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We are ready to invert!

We want to invert

d−1A =

∑b∈NB

pb,A(∂

∂x1, . . . ,

∂xs)∏a∈b

a−1

From the basic example and the properties!

We get ∑b∈NB

pb,A(−x1, . . . ,−xs)d−1b χC(b)

Page 172:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We are ready to invert!

We want to invert

d−1A =

∑b∈NB

pb,A(∂

∂x1, . . . ,

∂xs)∏a∈b

a−1

From the basic example and the properties!

We get ∑b∈NB

pb,A(−x1, . . . ,−xs)d−1b χC(b)

Page 173:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE ZP element

Inverting

1/2[∂2

∂2y( 1x (x + y)

)+(

∂x +∂

∂y )2( 1(x + y)(−x + y)

)− ∂2

∂2x( 1y (x + y)

)]

we get

1/2[y2χC((1,0),(1,1)) +(x + y)2

2 χC((1,1),(−1,1) − x2χC((0,1),(1,1))]

Page 174:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The theory of Dahmen–Micchelli

We need a basic definition of combinatorial natureDefinitionWe say that a sublist Y ⊂ A is a cocircuit, if the elements inA− Y do not span V .

The basic differential operatorsFor such Y set DY :=

∏a∈Y Da, a differential operator with

constant coefficients.

(Da is directional derivative, first order operator)

Page 175:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The theory of Dahmen–Micchelli

We need a basic definition of combinatorial natureDefinitionWe say that a sublist Y ⊂ A is a cocircuit, if the elements inA− Y do not span V .

The basic differential operatorsFor such Y set DY :=

∏a∈Y Da, a differential operator with

constant coefficients.

(Da is directional derivative, first order operator)

Page 176:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

For a given unbroken circuit basis b, consider the elementDb :=

∏a/∈b Da.

Characterization by differential equationsThe polynomials pb,A are characterized by the differential equations

DY p = 0, ∀Y , a cocircuit in A

Dbpc,A(x1, . . . , xs) =

{1 if b = c0 if b 6= c

Page 177:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

For a given unbroken circuit basis b, consider the elementDb :=

∏a/∈b Da.

Characterization by differential equationsThe polynomials pb,A are characterized by the differential equations

DY p = 0, ∀Y , a cocircuit in A

Dbpc,A(x1, . . . , xs) =

{1 if b = c0 if b 6= c

Page 178:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

For a given unbroken circuit basis b, consider the elementDb :=

∏a/∈b Da.

Characterization by differential equationsThe polynomials pb,A are characterized by the differential equations

DY p = 0, ∀Y , a cocircuit in A

Dbpc,A(x1, . . . , xs) =

{1 if b = c0 if b 6= c

Page 179:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The space D(A)

A remarkable space of polynomials

D(A) := {p |DY p = 0, ∀Y , a cocircuit in A}

Page 180:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The theorem of Dhamen MicchellidimD(A) equals the total number of bases extracted from A

We have a more precise theorem

The polynomials pb,A form a basis for the topdegree part (m − n) of D(A).

The graded dimension of D(A) is given by

HA(q) =∑

b∈B(A)

qm−n(b).

n(b) is the number of elements of A breaking b.

Page 181:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The theorem of Dhamen MicchellidimD(A) equals the total number of bases extracted from A

We have a more precise theorem

The polynomials pb,A form a basis for the topdegree part (m − n) of D(A).

The graded dimension of D(A) is given by

HA(q) =∑

b∈B(A)

qm−n(b).

n(b) is the number of elements of A breaking b.

Page 182:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The theorem of Dhamen MicchellidimD(A) equals the total number of bases extracted from A

We have a more precise theorem

The polynomials pb,A form a basis for the topdegree part (m − n) of D(A).

The graded dimension of D(A) is given by

HA(q) =∑

b∈B(A)

qm−n(b).

n(b) is the number of elements of A breaking b.

Page 183:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The theorem of Dhamen MicchellidimD(A) equals the total number of bases extracted from A

We have a more precise theorem

The polynomials pb,A form a basis for the topdegree part (m − n) of D(A).

The graded dimension of D(A) is given by

HA(q) =∑

b∈B(A)

qm−n(b).

n(b) is the number of elements of A breaking b.

Page 184:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

For A3 we get

The graded dimension is:

6q3 + 6q2 + 3q + 1

Remark that for all polynomials in three variables it is:

. . .+ 10q3 + 6q2 + 3q + 1

Page 185:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Interpretation

The theorem of Dahmen–Micchelli can be formulated both interms of commutative as well as non–commutative algebra.

Page 186:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

APPROXIMATION THEORY

APPROXIMATION POWER

THE STRANG-FIX CONDITIONS

Page 187:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE STRANG-FIX CONDITIONS

The interest of the space of polynomials D(A) comes inapproximation theory from the problem of studying theapproximation of a function f (x) by thefinite element method :

discrete convolution

f (x) 7→∑i∈Zn

BA(x − i)f (i)

Or at order n ∈ N:

f (x) 7→∑i∈Zn

BA(nx − i/n)f (i/n)

Page 188:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

More generally we want to find weights ci and approximate fby f (x) 7→

∑i∈Zn BA(nx − i/n)ci and determine a constant k ∈ N

so that (on some bounded region):

|f (x)−∑i∈Zs

BA(nx − i/n)ci | ≤ Cn−k

The maximum k is the

approximation power of BA.

Page 189:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE CARDINAL SPLINE SPACE

Given a spline M(x) on Rs , with compact support one may defineTHE CARDINAL SPLINE SPACE to be the spaceSM of all (infinite) linear combinations:

SM := {∑i∈Zs

M(x − i)ci}.

The approximation power of M(x) is related to two questions:For which polynomials f (x) we have that

∑i∈Zs M(x − i)f (i) is a

polynomial?2. Which polynomials lie in the cardinal spline space?

Page 190:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE REMARKABLE SPACE D(A)

TheoremA polynomial f (x) is in the cardinal spline space if and only if

DY f = 0, ∀Y ⊂ A | the span of A \ Y is not V

In other words DY f = 0, ∀Y ⊂ A which are cocircuits.

Page 191:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Strang–Fix conditions

The Strang–Fix conditions is a general statement:

The approximation power of a function M isthe maximum r such that the space of allpolynomials of degree ≤ r is contained in thecardinal space SM.

Page 192:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The case of BA

For the cardinal spline space in the case BA(x) with A integral wehave:1. D(A) is characterized as the space of polynomials f (x) whichreproduce, i.e.map to polynomials under thediscrete convolution.2. D(A) is also characterized as the space of polynomials lying inthe cardinal spline space.

Strang-Fix conditionsThe power of approximation by discrete convolution is measured bythe maximum degree of the space of polynomials which reproduceunder discrete convolution.

Page 193:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SUPERFUNCTIONS

Consider the following algorithm applied to a function g :

gh :=∑i∈Λ

F (x/h − i)g(hi)

There are functions F in the cardinal spline space such that thistransformation is the identity on polynomials of degree < m(A),these are the super–functions. For such functions the previousalgorithm satisfies the requirements of the Strang–Fixapproximation

Page 194:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

TheoremWe have, under the explicit algorithm previously constructed that,for any domain G:

||fh − f ||L∞(G) = O(hm(A)).

For every multi–index α ∈ Ns with |α| ≤ m(A)− 1, we have:

||∂αfh − ∂αf ||L∞(G) = ||∂α(fh − f )||L∞(G) = O(hm(A)−|α|).

Page 195:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE DISCRETE CASE

PARTITION FUNCTIONS

THE DISCRETE CASE

Page 196:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

PARTITION FUNCTION

Also in general for vectors we have

The partition function is a quasi polynomial on each big cellin fact on the larger neighborhood c− B(A) on the big cell c.

B(A) :=∑m

i=1 tiai , 0 ≤ ti ≤ 1 is the support of the box spline.

Page 197:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

PARTIAL FRACTIONS

The classical method of study of the partition function associatedto a list of numbers a1, . . . , ai , . . . , am is to expand in partialfractions the generating function:

m∏i=1

11− xai

=m∏

i=1

∞∑k=0

xkai =∑

bPA(b)xb

This is done by using the decomposition 1− xn =∏n−1

k=0(1− ζkn x)

where ζn = e 2πin .

Page 198:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

PARTIAL FRACTIONS

One then develops in partial fractions as a sum of terms each withpole only in a root of 1, each term can be then developed in asimpler way and one obtains a possible formula.This is also achieved as a residue computation.

Page 199:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

IN HIGHER DIMENSION?

One can still develop a much more sophisticated theory of partialfractions and residues!!!

Page 200:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE DISCRETE CASE

We think of the partition function

PA(b) = #{t1, . . . , tm ∈ N |m∑

i=1tiai = b}

as a distribution

∑λ∈Λ

PA(λ)δλ.withLaplacetransform ∑

λ∈Λ

PA(λ)e−λ =∏a∈A

1(1− e−a)

.

Page 201:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE DISCRETE CASE

We think of the partition function

PA(b) = #{t1, . . . , tm ∈ N |m∑

i=1tiai = b}

as a distribution

∑λ∈Λ

PA(λ)δλ.withLaplacetransform ∑

λ∈Λ

PA(λ)e−λ =∏a∈A

1(1− e−a)

.

Page 202:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE DISCRETE CASE

We think of the partition function

PA(b) = #{t1, . . . , tm ∈ N |m∑

i=1tiai = b}

as a distribution

∑λ∈Λ

PA(λ)δλ.withLaplacetransform ∑

λ∈Λ

PA(λ)e−λ =∏a∈A

1(1− e−a)

.

Page 203:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

One can see that the leading part of the formula for the partitionfunction is given by the multivariate spline TA and also that thereare formulas using differential operators to pass from the functionsTA to the partition functions.

Page 204:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

OTHER FOURIER ISOMORPHIC ALGEBRAS

The periodic Weyl algebras W (U) and W#(Λ)

W (U) = C[e±t1 , . . . , e±tn ,∂

∂t1, . . . ,

∂tn]

algebra of difference operators

W#(Λ) = C[x1, . . . , xn,∇±x1 , . . . ,∇±xn ]

∇xi (xj) =

{xj if i 6= jxi − 1

.

Page 205:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

D−modules in Fourier duality:

Two modules Fourier isomorphic

1. The W#−module D#A := W#(Λ)PA generated, in the space of

tempered distributions, by the partition distribution PA.

2. The W (U) module SA = C[Λ][∏

a∈A(1− e−a)−1] is the algebraobtained from the character ring C[Λ] by invertinguA :=

∏a∈A(1− e−a).

Page 206:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The toric arrangement

T the torus of character group Λ

SA = C[Λ][u−1A ] is the coordinate ring of the open set TA ⊂ T

complement of the union of the subgroups of T of equationsea = 1, a ∈ A.

Page 207:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The toric arrangement

T the torus of character group Λ

SA = C[Λ][u−1A ] is the coordinate ring of the open set TA ⊂ T

complement of the union of the subgroups of T of equationsea = 1, a ∈ A.

Page 208:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The toric arrangement

The toric arrangement

The toric arrangement is the finite set consisting of all theconnected components of the subvarieties obtained by intersectingthe subgroups of T of equations ea = 1, a ∈ A.

EXAMPLE s = 1, T = C∗, A = {5, 3}The arrangement consists of the connected components of thevariety x5 = 1 or x3 = 1, i.e. of the five, fifth roots of 1 and thethree third roots of 1.

Page 209:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Points of the arrangement

The elements of the toric arrangement are ordered by reverseinclusion, particular importance is given to thepoints of the arrangement, P(A)which are the zero-dimensional, i.e. points, elements of thearrangement.A very special case is when P(A) reduces to the point 1, this is theunimodular case.

Page 210:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Each point p ∈ P(A) determines a sublist:

Ap := {a ∈ A | ea(p) = 1}.

Page 211:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

EXAMPLE ZP

A =

∣∣∣∣∣1 1 0 −11 0 1 1

∣∣∣∣∣The subgroups are

xy = 1, x = 1, y = 1, x−1y = 1.

We have two points in P(A)

(1, 1), (−1,−1).

A(1,1) = A, A(−1,−1) =

∣∣∣∣∣1 −11 1

∣∣∣∣∣ .

Page 212:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE FILTRATION

We have as for hyperplanes a filtration by polar orders on SA.

Each graded piece is semisimple.The isopypic components appearing in grade k correspond to theconnected components of the toric arrangement of codimension k

For the top part SA,n/SA,n−1 we have a sum over thepoints of the arrangement P(A).

The isotypic component associated to a point eφ decomposes asdirect sum of irreducibles indexed by the unbroken bases in

Aφ := {a ∈ A | e〈a |φ〉 = 1}.

Page 213:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE FILTRATION

We have as for hyperplanes a filtration by polar orders on SA.

Each graded piece is semisimple.The isopypic components appearing in grade k correspond to theconnected components of the toric arrangement of codimension k

For the top part SA,n/SA,n−1 we have a sum over thepoints of the arrangement P(A).

The isotypic component associated to a point eφ decomposes asdirect sum of irreducibles indexed by the unbroken bases in

Aφ := {a ∈ A | e〈a |φ〉 = 1}.

Page 214:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE FILTRATION

We have as for hyperplanes a filtration by polar orders on SA.

Each graded piece is semisimple.The isopypic components appearing in grade k correspond to theconnected components of the toric arrangement of codimension k

For the top part SA,n/SA,n−1 we have a sum over thepoints of the arrangement P(A).

The isotypic component associated to a point eφ decomposes asdirect sum of irreducibles indexed by the unbroken bases in

Aφ := {a ∈ A | e〈a |φ〉 = 1}.

Page 215:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE FILTRATION

We have as for hyperplanes a filtration by polar orders on SA.

Each graded piece is semisimple.The isopypic components appearing in grade k correspond to theconnected components of the toric arrangement of codimension k

For the top part SA,n/SA,n−1 we have a sum over thepoints of the arrangement P(A).

The isotypic component associated to a point eφ decomposes asdirect sum of irreducibles indexed by the unbroken bases in

Aφ := {a ∈ A | e〈a |φ〉 = 1}.

Page 216:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The previous formula shows in particular, that the partitionfunction is on each cell a

Local structure of PA

LINEAR COMBINATION OFPOLYNOMIALS TIMEPERIODIC EXPONENTIALS.

Such a function is called aQUASI POLINOMIAL

Page 217:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Basic equations

As for the case of the multivariate spline:The quasi polynomials appearing in the formula for PA satisfy

special difference equations

Page 218:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

DIFFERENCE OPERATORS

For a ∈ Λ and f a function on Λ we define the the

difference operator:

∇af (x) = f (x)− f (x − a), ∇a = 1− τa.

ExampleAs special functions we have the characters, eigenvectors ofdifference operators.

Page 219:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

DIFFERENCE EQUATIONS

Parallel to the study of D(A), one can study thesystem of difference equations

∇Y f = 0, where ∇Y :=∏

v∈Y ∇v

as Y ∈ E(A) runs over the cocircuits.

Let us denote the space of solutions by:

∇(A) := {f : Λ→ C, | ∇Y (f ) = 0, ∀Y ∈ E(A)}.

Page 220:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

DIFFERENCE EQUATIONS

Parallel to the study of D(A), one can study thesystem of difference equations

∇Y f = 0, where ∇Y :=∏

v∈Y ∇v

as Y ∈ E(A) runs over the cocircuits.

Let us denote the space of solutions by:

∇(A) := {f : Λ→ C, | ∇Y (f ) = 0, ∀Y ∈ E(A)}.

Page 221:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SECOND THEOREM OF DAHMEN–MICCHELLI

Weighted dimension

The dimension of ∇(A) is the Volume of the box B(A)!δ(A) we have:

δ(A) :=∑

b∈B(A)

| det(b)|.

This formula has a strict connection with the paving of the box.

Page 222:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

ExampleLet us take

A =

∣∣∣∣∣0 1 1 −11 0 1 1

∣∣∣∣∣

See thatδ(A) = 1+1+1+1+1+2 = 7is the number of points inwhich the box B(A), shiftedgenerically a little, intersectsthe lattice!

Page 223:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

FROM DIFFERENCE TO DIFFERENTIALEQUATIONS

logarithm isomorphismThere is a formal machinery which allows us to interpret, locallyaround a point, difference equations as restriction to the lattice ofdifferential equations, we call it the

logarithm isomorphism

We have this for any moduleover the periodic Weyl algebraC[ ∂

∂xi, exi ] as soon as for

algebraic reasons (nilpotency)we can deduce from the actionof exi also an action of xi .

Page 224:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

ALGEBRAIC GEOMETRY

WONDERFUL MODELS

RESIDUES

Page 225:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

There is an approach to compute the partition function based onresidues

Start from the case of numbers. Fix positive numbersh := (h1, . . . , hm).

Given an integer n,the number of ways n =

∑i kihi is the coefficient of x−1 in

Ph(x) =∏

i

x−n−1

1− xhi;

Thus it is a residue.We can use the residue theorem by passing to the other poleswhich are roots on one.

Page 226:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

multidimensional residues

In order to define multidimensional residues we need divisors withnormal crossings or a function which in some coordinates xi has apole on the hyperplanes xi = 0, i = 1, . . . , s.The residue is the coefficient of

∏i x−1

i .

Page 227:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

DefinitionGiven a subset A ⊂ X the list A := X ∩ 〈A〉 will be called thecompletion of A. In particular A is called complete if A = A.

The space of vectors φ ∈ U such that 〈a|φ〉 = 0 for every a ∈ Awill be denoted by A⊥. Notice that clearly A equals to the list ofvectors a ∈ X which vanish on A⊥.From this we see that we get a bijection between the completesubsets of X and subspaces of the arrangement defined by X .

Page 228:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

A central notion in what follows is given by

DefinitionGiven a complete set A ⊂ X , a decomposition is adecomposition A = A1 ∪ A2 in non empty sets, such that:

〈A〉 = 〈A1〉 ⊕ 〈A2〉.

Clearly the two sets A1,A2 are necessarily complete.

We shall say that :a complete set A is irreducible if it does not have a non trivialdecomposition.

Page 229:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

TheoremEvery set A can be decomposed as A = A1 ∪ A2 ∪ · · · ∪ Ak withthe Ai irreducible and:

〈A〉 = 〈A1〉 ⊕ 〈A2〉 ⊕ · · · ⊕ 〈Ak〉.This decomposition is unique up to order.

A = A1 ∪ A2 ∪ · · · ∪ Ak is called the decomposition intoirreducibles of A.

Page 230:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Example

An interesting example is that of the configuration space of s-plesof point in a line (or the root system As−1). In this caseX = {zi − zj |1 ≤ i < j ≤ s}.In this case, irreducible sets are in bijection with subsets of{1, . . . , s} with least 2 elements. If S is such a subset thecorresponding irreducible is IS = {zj − zj |{i , j} ⊂ S}.Given a complete set C , the irreducible decomposition of Ccorresponds to a family of disjoint subsets S1, . . . ,Sk of {1, . . . , s}each with at least 2 elements.

Page 231:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

DefinitionA family S of irreducibles Ai is called nested if, given elementsAi1 , . . . ,Aih ∈ S mutually incomparable we have thatC := A1 ∪ A2 ∪ · · · ∪ Ai is complete and C := A1 ∪ A2 ∪ · · · ∪ Ai isits decomposition into irreducibles.

Page 232:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Consider the hyperplane arrangement HX and the open set

AX = U/(∪H∈HXH)

complement of the union of the given hyperplanes.Let us denote by I the family of irreducible subsets in X .We construct a minimal smooth variety ZX containing AX as anopen set with complement a normal crossings divisor, plus a propermap π : ZX → U extending the identity of AX .

Page 233:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

For any irreducible subset A ∈ I take the vector space V /A⊥ andthe projective space P(V /A⊥).Notice that, since A⊥ ∩ AX = ∅ we have a natural projectionπA : AX → P(V /A⊥). If we denote by j : AX → U the inclusionwe get a map

The model

i := j × (×a∈I πA) : AX → U × (×a∈I P(U/A⊥))

DefinitionThe model ZX is the closure of i(AX ) in U × (×a∈IP(U/A⊥)).

Page 234:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

There is a very efficient approach to computations byresidue at points at infinity in the wonderful compactificationof the associated hyperplane arrangement.Divisors at infinity correspond to irreducible subsets.Points at infinity correspond to maximal nested sets. Around eachsuch point one can consider a s−dimensional torus and its class inhomologyA basis of the homology or of the corresponding residuescorresponds to the tori around special points indexed by unbrokenbases.

Page 235:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The non linear coordinates

Given a MNS S choose a basis b := b1, . . . , bs from X so that ifAi is the minimal element of S containing bi we have all the Aidistinct.Construct new coordinates zA, A ∈ S using the monomialexpressions:

bA :=∏

B∈S, A⊆BzB. (2)

The residue at the point 0 for these coordinates is denoted by resb.There is a similar theory for toric arrangements. Now we need tobuild such data for each point of the arrangement getting residuesresb,φ.

Page 236:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

GENERAL FORMULA FOR TX

One can find explicit polynomials pb,A(x), indexed by the points atinfinity associated to the maximal nested set generated byunbroken bases so that:Given a point x in the closure of a big cell c we have

Jeffry-Kirwan residue formula

TA(x) =∑

b | c⊂C(b)

| det(b)|−1pb,A(−x).

Page 237:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set ofpolynomials qb,φ(−x) indexed by pairs, a character φ of finiteorder and a unbroken basis in Aφ = {a ∈ A |φ(ea) = 1}.The analogue of the Jeffrey–Kirwan formula is:

TheoremGiven a point x in the closure of a big cell c we have

Residue formula for partition function

PA(x) =∑

φ∈P(A)

eφ∑

b∈NBAφ | c⊂C(b)

qb,φ(−x)

Page 238:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set ofpolynomials qb,φ(−x) indexed by pairs, a character φ of finiteorder and a unbroken basis in Aφ = {a ∈ A |φ(ea) = 1}.The analogue of the Jeffrey–Kirwan formula is:

TheoremGiven a point x in the closure of a big cell c we have

Residue formula for partition function

PA(x) =∑

φ∈P(A)

eφ∑

b∈NBAφ | c⊂C(b)

qb,φ(−x)

Page 239:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

The residue

The polynomials building the multivariate spline and the partitionfunctions areresidues:

Spline

pb,X (−y) = det(b)resb( e〈y |x〉∏

a∈X 〈x | a〉). (3)

Partition function

qb,Xφ(−y) = det(b)resb,φ( e〈y |z〉∏

a∈X (1− e−a(z)−〈φ | a〉)

). (4)

Page 240:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

SUMMARIZING

Page 241:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Given a list of vectors A.

We have the two functions TA,BA.TA is supported on the cone C(A) and coincides on each bigcell with a homogeneous polynomial in the space D(A)defined by the differential equations DY f = 0, Y ∈ E(A).The space D(A) has as dimension the number d(A) of basesextracted from A.There are explicit formulas to compute TA on each cell.BA is deduced from TA.

Page 242:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Given a list of vectors A.

We have the two functions TA,BA.TA is supported on the cone C(A) and coincides on each bigcell with a homogeneous polynomial in the space D(A)defined by the differential equations DY f = 0, Y ∈ E(A).The space D(A) has as dimension the number d(A) of basesextracted from A.There are explicit formulas to compute TA on each cell.BA is deduced from TA.

Page 243:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Given a list of vectors A.

We have the two functions TA,BA.TA is supported on the cone C(A) and coincides on each bigcell with a homogeneous polynomial in the space D(A)defined by the differential equations DY f = 0, Y ∈ E(A).The space D(A) has as dimension the number d(A) of basesextracted from A.There are explicit formulas to compute TA on each cell.BA is deduced from TA.

Page 244:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Given a list of vectors A.

We have the two functions TA,BA.TA is supported on the cone C(A) and coincides on each bigcell with a homogeneous polynomial in the space D(A)defined by the differential equations DY f = 0, Y ∈ E(A).The space D(A) has as dimension the number d(A) of basesextracted from A.There are explicit formulas to compute TA on each cell.BA is deduced from TA.

Page 245:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

Given a list of vectors A.

We have the two functions TA,BA.TA is supported on the cone C(A) and coincides on each bigcell with a homogeneous polynomial in the space D(A)defined by the differential equations DY f = 0, Y ∈ E(A).The space D(A) has as dimension the number d(A) of basesextracted from A.There are explicit formulas to compute TA on each cell.BA is deduced from TA.

Page 246:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

When A is in a lattice we have the partition function PA.

PA is supported on the intersection of the lattice with thecone C(A) and coincides on each big cell with a quasipolynomial in the space ∇(A) defined by the differenceequations ∇Y f = 0, Y ∈ E(A).The space ∇(A) has as dimension δ(A) the weighted numberof bases extracted from A.There are explicit formulas to compute PA on each cell.

Page 247:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

When A is in a lattice we have the partition function PA.

PA is supported on the intersection of the lattice with thecone C(A) and coincides on each big cell with a quasipolynomial in the space ∇(A) defined by the differenceequations ∇Y f = 0, Y ∈ E(A).The space ∇(A) has as dimension δ(A) the weighted numberof bases extracted from A.There are explicit formulas to compute PA on each cell.

Page 248:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

When A is in a lattice we have the partition function PA.

PA is supported on the intersection of the lattice with thecone C(A) and coincides on each big cell with a quasipolynomial in the space ∇(A) defined by the differenceequations ∇Y f = 0, Y ∈ E(A).The space ∇(A) has as dimension δ(A) the weighted numberof bases extracted from A.There are explicit formulas to compute PA on each cell.

Page 249:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

When A is in a lattice we have the partition function PA.

PA is supported on the intersection of the lattice with thecone C(A) and coincides on each big cell with a quasipolynomial in the space ∇(A) defined by the differenceequations ∇Y f = 0, Y ∈ E(A).The space ∇(A) has as dimension δ(A) the weighted numberof bases extracted from A.There are explicit formulas to compute PA on each cell.

Page 250:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We have shown that there are interesting constructions incommutative and non commutative algebra associated to the studyof these functions.

A particularly interesting case is when we take for A the list ofpositive roots of a root system, or multiples of this list. In this caseone has applications to Clebsh–Gordan coefficients.

Page 251:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We have shown that there are interesting constructions incommutative and non commutative algebra associated to the studyof these functions.

A particularly interesting case is when we take for A the list ofpositive roots of a root system, or multiples of this list. In this caseone has applications to Clebsh–Gordan coefficients.

Page 252:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

We have shown that there are interesting constructions incommutative and non commutative algebra associated to the studyof these functions.

A particularly interesting case is when we take for A the list ofpositive roots of a root system, or multiples of this list. In this caseone has applications to Clebsh–Gordan coefficients.

Page 253:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END

Page 254:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END

Page 255:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END

Page 256:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END

Page 257:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END

Page 258:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END

Page 259:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END

Page 260:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END

Page 261:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END

Page 262:  · AobjectstheoremsCombinatoricsSplinesAlgebraApproximationArithmeticResiduesZ SEVERALNAMESOFCONTRIBUTORS Fromnumericalanalysis A.A.Akopyan;Ben-Artzi,Asher;C.K.Chui,C

A objects theorems Combinatorics Splines Algebra Approximation Arithmetic Residues Z

THE END