41
The colored slides are modified from Johan den Dunnen. The rest is modified from Anna Esteve Codina.

Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

The colored slides are modified from Johan den Dunnen. The rest is  modified from Anna Esteve Codina. 

Page 2: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Many years of hard work• BAC based approaches towards WGS• Amplification in bacterial culture• More than 20,000 BAC clones• Each containing about 100kb fragment• Together provided a tiling path through each human chromosome• Isolation, select pieces about 2‐3 kb• Subcloned into plasmid vectors, amplification, isolation• recreate contigs• Refinement, gap closure, sequence quality improvement• (less 1 error/ 40,000 bases)

Page 3: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

‘Sanger sequencing’ has been the only DNA sequencing method for 30 years but……hunger for even greater sequencing throughputand more economical sequencing technology…

NGS has the ability to process millions of sequencereads in parallel rather than 96 at a time (1/6 of 

the cost)Objections: fidelity, read length, infrastructure

cost, handle large volumn of data

Page 4: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Roche/454 FLX: 2004• Illumina Solexa Genome Analyzer: 2006• Applied Biosystems SOLiDTM System: 2007• Helicos HeliscopeTM : 2010• Pacific Biosciencies SMRT: launching 2010

Page 5: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

454 vs Solexa• Homopolymers (AAAAA..)• Read length: 400 bp• Number of reads: 400.000• Per‐base cost greater• Novo assembly, metagenomics• Read length: 40 bp• Number of reads: millions• Per‐base cost cheaper• Ideal for application requiring short reads: ncRNA

Page 6: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Ancient DNA• DNA mixtures from diverse ecosystems, metagenomics• Resequencing previously published reference strains• Identification of all mutations in an organism• Errors in published literature• Expand the number of available genomes• Comparative studies• Deciphering cell’s transcripts at sequence levelwithout knowledge of the genome sequence

• Sequencing extremely large genomes, crop plants• Detection of cancer specific alleles avoiding traditional cloning• Chip‐seq: interactions protein‐DNA• Epigenomics• Detecting ncRNA• Genetic human variation : SNP, CNV (diseases)

Page 7: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Key part in regulating gene expression 

• Chip: technique to study DNA‐protein interaccions

• Recently genome‐wide ChIP‐based studies of DNA‐protein interactions

• Readout of ChIP‐derived DNA sequences onto NGS platforms

• Insights into transcription factor/histone binding sites  in the human genome

• Enhance our understanding of the gene expression in the context of specific environmental stimuli

Page 8: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Degraded state of the sample mitDNA sequencing• Nuclear genomes of ancient remains: cave bear, mommoth, Neanderthal (106 bp )

Problems: contamination modern humans and coisolation bacterial DNA

Page 9: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

De novo genomes

Page 10: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• ncRNA presence in genome difficult to predict by computational methods with high certainty because the evolutionary diversity

• Detecting expression level changes that correlate with changes in environmental factors, with disease onset and progression, complex disease set or severity

• Enhance the annotation of sequenced genomes (impact of mutations more interpretable)

Page 11: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Characterizing the biodiversity found on Earth• The growing number of sequenced genomes enables us to interpret partial

sequences obtained by direct sampling of specific environmental niches.• Examples: ocean, acid mine site, soil, coral reefs, human microbiome which may

vary according to the health status of the individual

Page 12: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Metagenomics2

microbiome( biological diversity )

Page 13: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Enable of genome‐wide patterns of methylation and how this patterns change through the course of an organism’s development.

• Enhanced potential to combine the results of different experiments, correlative analyses of genome‐wide methylation, histone binding patterns and gene expression, for example.

Page 14: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Epigenetics: beyond the sequence. "The major problem, I think, is chromatin. What determines whether a given piece of DNA along the chromosome is functioning, since it's covered with the histones? What is happening at the level of methylation and 

epigenetics? You can inherit something beyond the DNA sequence. That's where the real excitement of genetics is now." (James D. Watson). Chromatin is defined as the 

dynamic complex of DNA and histone proteins that makes up chromosomes.

• Epigenetics is defined as the chemical modification of DNA that affects gene expression but does not involve changes to the underlying DNA sequence. As the emphasis in 

biology is switching away from genetic sequence and towards the mechanisms by which gene activity is controlled, epigenetics is becoming increasingly popular.

Epigenetic processes are essential for packaging and interpreting the genome, are fundamental to normal development and are increasingly recognized as being involved 

in human disease. Epigenetic mechanisms include, among other things, histonemodification, positioning of histone variants, nucleosome remodelling, DNA 

methylation, small and non‐coding RNAs. (Nature, 7 Aug 2008). 

Page 15: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Gene expression profiling

Page 16: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Lab2lab consistency

square root-transformed and scaled data

( biological replicas )

2 different labs2 transgenic mice

( Illumina <> Leiden )

for BIOBANKING

Page 17: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human genomes

Craig Venter

James Watson

( Individual genomes )

ANONYMOUS:Yoruban maleYoruban trioAsiatic genomeFemale Cancer

MarjoleinKriek

Page 18: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Australia

Page 19: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing
Page 20: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Not everybody agreed…

Page 21: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Principal component analysis of European populationsSimon Heath et al. (2008) EJHG 16, 1413 – 1429

1st principal component = 26% of variance

2ndpr

inci

pal c

omon

ent=

6%

of v

aria

nce

Page 22: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing
Page 23: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

After HumanGenome Project

Basic tools exist tocharacterize the biologybehind human diseases

Page 24: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Common variants have not yet completly explained complex disease genetics rare alleles also contribute

• Also structural variants, large and small insertions and deletions

• Accelerating biomedical research

Page 25: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

• Extreme example: multiplexing the amplification of 10 000 human exons using primers from a programmable microarray and sequencing them using NGS.

Page 26: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Exome sequencing

Page 27: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Table of Contents for The American Journal of Human Genetics,Volume 87, Issue 3. September 2010 Editors' Corner This Month in The JournalK.D. Bungartz and R.E. WilliamsonThis Month in GeneticsK.B. GarberBook ReviewA Guide to Genetic Counseling, 2nd EditionM. Fox

SEPTEMBER 2010

Direct Measure of the De Novo Mutation Rate in Autism and Schizophrenia CohortsP. Awadalla, J. Gauthier, R.A. Myers, F. Casals, F.F. Hamdan, A.R. Griffing, M. Côté, E. Henrion, D. Spiegelman, J. Tarabeux, A. Piton, Y. Yang, A. Boyko, C. Bustamante, L. Xiong, J.L. Rapoport, A.M. Addington, J.L.E. DeLisi, M.‐O. Krebs, R. Joober, B. Millet, É .  Fombonne, L. Mottron, M. Zilversmit, J. Keebler, H. Daoud, C. Marineau, M.‐H. Roy‐Gagnon, M.‐P. Dubé, A. Eyre‐Walker, P. Drapeau, E.A. Stone, R.G. Lafrenière, and G.A. RouleauBOOST: A Fast Approach to Detecting Gene‐Gene Interactions in Genome‐wide Case‐Control StudiesX. Wan, C. Yang, Q. Yang, H. Xue, X. Fan, N.L.S. Tang, and W. Yu

Mutability of Y‐Chromosomal Microsatellites: Rates, Characteristics, Molecular Bases, and Forensic ImplicationsK.N. Ballantyne, M. Goedbloed, R. Fang, O. Schaap, O. Lao, A. Wollstein, Y. Choi, K. van Duijn, M. Vermeulen, S. Brauer, R. Decorte, M. Poetsch, N. von Wurmb‐Schwark, P. de Knijff, D. Labuda, H. Vézina, H. Knoblauch, R. Lessig, L. Roewer, R. Ploski, T. Dobosz, L. Henke, J. Henke, M.R. Furtado, and M. KayserReports

Recessive Mutations in the Gene Encoding the Tight Junction Protein Occludin Cause Band‐like Calcification with Simplified Gyration and PolymicrogyriaM.C. O'Driscoll, S.B. Daly, J.E. Urquhart, G.C.M. Black, D.T. Pilz, K. Brockmann, M. McEntagart, G. Abdel‐Salam, M. Zaki, N.I. Wolf, R.L. Ladda, S. Sell, S. D'Arrigo, W. Squier, W.B. Dobyns, J.H. Livingston, and Y.J. Crow TBC1D24, an ARF6‐Interacting Protein, Is Mutated in Familial Infantile MyoclonicEpilepsyA. Falace, F. Filipello, V. La Padula, N. Vanni, F. Madia, D. De Pietri Tonelli, F.A. de Falco, P. Striano, F. Dagna Bricarelli, C. Minetti, F. Benfenati, A. Fassio, and F. Zara

A Focal Epilepsy and Intellectual Disability Syndrome Is Due to a Mutation in  TBC1D24M.A. Corbett, M. Bahlo, L. Jolly, Z. Afawi, A.E. Gardner, K.L. Oliver, S. Tan, A. Coffey, J.C. Mulley, L.M. Dibbens, W. Simri, A. Shalata, S. Kivity, G.D. Jackson, S.F. Berkovic, and J. GeczNonsense Mutations in FAM161A Cause RP28‐Associated Recessive Retinitis PigmentosaT. Langmann, S.A. Di Gioia, I. Rau, H. Stöhr, N.S. Maksimovic, J.C. Corbo, A.B. Renner, E. Zrenner, G. Kumaramanickavel, M. Karlstetter, Y. Arsenijevic, B.H.F. Weber, A. Gal, and C. Rivolta

Homozygosity Mapping Reveals Null Mutations in FAM161A as a Cause of Autosomal‐Recessive Retinitis PigmentosaD. Bandah‐Rozenfeld, L. Mizrahi‐Meissonnier, C. Farhy, A. Obolensky, I. Chowers, J. Pe'er, S. Merin, T. Ben‐Yosef, R. Ashery‐Padan, E. Banin, and D. Sharon

Mutations in DHDPSL Are Responsible For Primary Hyperoxaluria Type IIIR. Belostotsky, E. Seboun, G.H. Idelson, D.S. Milliner, R. Becker‐Cohen, C. Rinat, C.G. Monico, S. Feinstein, E. Ben‐Shalom, D. Magen, I. Weissman, C. Charon, and Y. FrishbergA Mutation in ZNF513, a Putative Regulator of Photoreceptor Development, Causes Autosomal‐Recessive Retinitis PigmentosaL. Li, N. Nakaya, V.R.M. Chavali, Z. Ma, X. Jiao, P.A. Sieving, S. Riazuddin, S.I. Tomarev, R. Ayyagari, S.A. Riazuddin, and J.F. HejtmancikMutations in ABHD12 Cause the Neurodegenerative Disease PHARC: An Inborn Error of Endocannabinoid MetabolismT. Fiskerstrand, D. H'mida‐Ben Brahim, S. Johansson, A. M'zahem, B.I. Haukanes, N. Drouot, J. Zimmermann, A.J. Cole, C. Vedeler, C. Bredrup, M. Assoum, M. Tazir, T. Klockgether, A. Hamri, V.M. Steen, H. Boman, L.A. Bindoff, M. Koenig, and P.M. KnappskogExome Sequencing Identifies WDR35 Variants Involved in Sensenbrenner Syndrome Christian Gilissen, Heleen H. Arts, Alexander Hoischen, LiesbethSpruijt, Dorus A. Mans, Peer Arts, Bart van Lier, Marloes Steehouwer, Jeroenvan Reeuwijk, Sarina G. Kant, Ronald Roepman, Nine V.A.M. Knoers, Joris A. Veltman, Han G. Brunner

Dominant Mutations in RP1L1 Are Responsible for Occult Macular DystrophyM. Akahori, K. Tsunoda, Y. Miyake, Y. Fukuda, H. Ishiura, S. Tsuji, T. Usui, T. atase, M. Nakamura, H. Ohde, T. Itabashi, H. Okamoto, Y. Takada, and T. IwataA Locus on Chromosome 1p36 Is Associated with Thyrotropin and Thyroid Function as Identified by Genome‐wide Association StudyV. Panicker, S.G. Wilson, J.P. Walsh, J.B. Richards, S.J. Brown, J.P. Beilby, A.P. Bremner, G.L. Surdulescu, E. Qweitin, I. Gillham‐Nasenya, N. Soranzo, E.M. Lim, S.J. Fletcher, and T.D. SpectorProtein Tyrosine Phosphatase PTPN14 Is a Regulator of Lymphatic Function and Choanal Development in HumansA.C. Au, P.A. Hernandez, E. Lieber, A.M. Nadroo, Y.‐M. Shen, K.A. Kelley, B.D. Gelb, and G.A. Diaz

JULY 2010

Whole Exome Sequencing and Homozygosity Mapping Identify Mutation in the Cell Polarity Protein GPSM2 as the Cause of Nonsyndromic Hearing Loss DFNB82. Tom Walsh, Hashem Shahin, Tal Elkan‐Miller, Ming K. Lee, Anne M. Thornton, Wendy Roeb, Amal Abu Rayyan, Suheir Loulus, Karen B. Avraham, Mary‐Claire King, Moien Kanaan

Terminal Osseous Dysplasia Is Caused by a Single Recurrent Mutation in the FLNA Gene (Exome Sequencing) Yu Sun, Rowida Almomani, Emmelien Aten, Jacopo Celli, Jaap van der Heijden, Hanka Venselaar, Stephen P. Robertson, Anna Baroncini, Brunella Franco, Lina Basel‐Vanagaite, Emiko Horii, Ricardo Drut, Yavuz Ariyurek, Johan T. den Dunnen, Martijn H. Breuning

C S

S

S

S

S

S

S

C

S

S

S

C S

S

C

C

Page 28: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Bridging common and rare disease• Common to rare• Splitting up of fields in rarer subclasses• More homogeneous subgroups:

• Smaller, cheaper, shorter trials• Longer cost recovery period under patent

• Large biobanks needed for recruitment of small subgroups • Rare to common• Good human models for therapy development: • one knows what one should see when it works ‐ extended use later • Therapy business models more viable than thought• Next gen sequencing causes rapid advances, new therapies• Large, well‐informed and organized patient constituency

Page 29: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Exome sequencing( rare genetic disease )

Page 30: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Ion Torrent

electronic detection protons1-colour cycle sequencing

Page 31: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Ion Torrent

system € 55,000

seq.cost € 550 / run

Page 32: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

What's next ?• single molecule sequencing

–Helicos–short reads

–Pacific Biosciences–long reads

• new features–longer reads–faster–no label–cheaper–real-time imaging

Page 33: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Advantages SMS

• saves work (= time & cost)–'no' sample preparation

• no amplification (PCR)–no PCR errors (< sequence error)

–fewer contamination issues–analyse everything (unPCR-able /unclonable)

–analysis low quality DNA

• absolute quantification

( single molecule sequencing )

Page 34: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Helicos• HeliScope

– single moleculesequencing

– 1 Gb / hour

Page 35: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Primary burials©Eveline Altena

Page 36: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Yield human DNA

determine genderbone structure 3/5PCR 3/5Helicos 5/5

©Eveline Altena

Page 37: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Applications• archeology

–ancient samples– more data then expected

• forensics–mixed samples–low quality / damaged DNA

• archived material–FFPE–museum–...

Page 38: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Pacific Biosciences

Page 39: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Pacific Biosciences1

Page 40: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Oxford Nanopore3

no labels

Page 41: Anna Esteve Codina. - UCF Computer Sciencecs.ucf.edu/~xiaoman/fall/Lecture 4 Next generation sequencing... · • DNA mixtures from diverse ecosystems, metagenomics • Resequencing

Human and Clinical Genetics © JT den Dunnen

Performance3

• 2000–€ 1,000,000,000 in ~10 years

• 2008–€ 50 - 100,000 in ~4 months

• 2010–€ 5 - 10,000 in ~2 weeks

• ...2015–€ 1,000 in ~1 day

• ...2020–€ 10 in ~1 hour to minutes

A human genome sequence