12
1 Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering University and ETH Zürich HBM 2014, Educational Course: Anatomy Anatomical Background for DCM 2 Relation between structure and function Effective connectivity Dynamic causal modeling (DCM) Outline Connectional fingerprints determine local function Anatomical Background for DCM 3 Unique anatomical connectivity patterns (connectional fingerprints) for cortical areas “Families” of cortical areas (clusters) with similar patterns Analogous results for electrophysio- logical response patterns Anatomical connectivity is the major determinant for the response profile of neuronal ensembles. Passingham et al., Nat Rev Neurosci, 2002

Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

1

Anatomical Background of Dynamic Causal Modeling and Effective

Connectivity Analyses

Jakob Heinzle

Translational Neuromodeling Unit (TNU),Institute for Biomedical Engineering

University and ETH Zürich

HBM 2014, Educational Course: Anatomy

Anatomical Background for DCM 2

• Relation between structure and function

• Effective connectivity

• Dynamic causal modeling (DCM)

Outline

Connectional fingerprints determine local function

Anatomical Background for DCM 3

• Unique anatomical connectivity patterns (connectional fingerprints) for cortical areas

• “Families” of cortical areas (clusters) with similar patterns

• Analogous results for electrophysio-logical response patterns

Anatomical connectivity is the major determinant for the response profile of neuronal ensembles.

Passingham et al., Nat Rev Neurosci, 2002

Page 2: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

2

Anatomical connections define processinghierarchies

Anatomical Background for DCM 4

Felleman & Van Essen, Cereb Cortex, 1991

Hilgetag et al, Phil Trans. B, 2000

Markov & Kennedy, TICS, 2014

Literature based database: http://cocomac.g-node.org/Stephan et al., Phil. Trans. B, 2001;

Kötter, Neuroinformatics, 2004

Weighted and directed connectivity matrix in macaque

Anatomical Background for DCM 5

Fraction of labeled neurons per area weightMarkov et al., Cereb Cortex, 2012; J Comp Neurol 2014;

Fro

ma

rea

To area

Activation, intrinsic functional connectivityand anatomy

Anatomical Background for DCM 6

Vincent et al, Nature, 2007

Spontaneous

correlation

pattern

Evoked response

pattern:

eye movement task

Anatomical

connectivity

pattern

Page 3: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

3

Tight link between functional and anatomical connectivity - human fMRI

Anatomical Background for DCM 7

Intrinsic functional connectivity in humans is visuotopicallyorganized matches monkey anatomy!

Heinzle et al, Neuroimage, 2011

Average CCRF

Some naming conventions

• Anatomical connectivity

- Fibre bundles, Close Contacts, Synapses

• Functional connectivity

- Statistical relation, e.g. Correlation, Mutual information

• Effective connectivity

- Directed influence, e.g. DCM, Transfer Entropy, Granger Causality

Anatomical Background for DCM 8

Outline

• Relation between structure and function

• Effective connectivity

• Dynamic causal modeling (DCM)

Anatomical Background for DCM 9

Page 4: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

4

Why effective connectivity?

Anatomical Background for DCM 10

Anatomical connectivity is critical for understanding brainfunction …

… but not sufficient on its own.

Functional connections synapses

Context dependent modulation of connection strengths, synaptic plasticity, neuronal adaptation mechanisms, etc. …

Synaptic connections show plasticity

Anatomical Background for DCM 11

• Numerous mechanisms at different time scales(ms to days) incl. very rapid changes!

• Regulated in several ways (e.g. modulatoryeffects of DA)

Reynolds et al., Nature, 2001

peak

PS

P (

mV

)

Matsuzaki et al., Nature, 2004

Connections are recruited in a context-dependent fashion

Anatomical Background for DCM 12

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

Synaptic strengths are context-sensitive: They depend on the spatio-temporal distribution of presynaptic inputs and post-synaptic events.

Page 5: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

5

To understand brain (dys)function ...

… we need models of effective connectivity that:

• incorporate anatomical and physiological principles

• connect these to computational mechanisms

• allow for inference on neuronal mechanisms (e.g., synaptic plasticity) from measured brain responses

Anatomical Background for DCM 13

Anatomical Background for DCM 14

• Relation between structure and function

• Effective connectivity

• Dynamic causal modeling (DCM)

Outline

Dynamic causal modeling (DCM)

Anatomical Background for DCM 15

( , , )dx

f x udt

),(xgy

Model inversion:

Estimating neuronal mechanisms from brain

activity measures

Forward model:

Predicting measured activity given a putative

neuronal state

David et al., Neuroimage, 2006

Moran et al., NeuroImage, 2008

Friston et al., Neuroimage, 2003

Stephan et al., Neuroimage, 2008

Stephan et al., Neuroimage, 2010

EEG, MEG fMRI

Page 6: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

6

Nonlinear DCM for fMRI – neural model

Anatomical Background for DCM 16

x1 x2

x3

CuxDxBuAdt

dx n

j

jj

m

i

ii

1

)(

1

)(

u1

u2

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

Neu

ral p

opul

atio

n ac

tivity

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

fMR

I sig

nal c

hang

e (%

)

Stephan et al., Neuroimage, 2008Weights are constrained / reflect by anatomy

Hemodynamics DCM – forward model

Anatomical Background for DCM 17

0 2 4 6 8 10 12 14

0

0.2

0.4

0 2 4 6 8 10 12 14

0

0.5

1

0 2 4 6 8 10 12 14

-0.6

-0.4

-0.2

0

0.2

RBMN, = 0.5

CBMN, = 0.5

RBMN, = 1

CBMN, = 1

RBMN, = 2

CBMN, = 2

sf

tionflow induc

(rCBF)

s

v

stimulus functions

v

q q/vvEf,EEfqτ /α

dHbchanges in

100 )( /αvfvτ

volumechanges in

1

f

q

)1(

fγsxs

signalryvasodilato

u

s

CuxBuAdt

dx m

j

jj

1

)(

t

neural state

equation

1

3.4

111),(

3

002

001

32100

k

TEErk

TEEk

vkv

qkqkV

S

Svq

hemodynamic

state equations f

Balloon model

BOLD signal change equation Stephan et al., Neuroimage, 2007

Conductance-based DCMs (for EEG)

Anatomical Background for DCM 18

pyramidal cells

pyramidal cells

spiny stellate

cells

inhibitory interneurons

pyramidal cells

( )1,3

E ( )3 ,1

E

( )2 ,3

E

( )3 ,2

I

(1) (1) (1) (1) (1) (1)

(1) ( ) (3) (3) (1)1,3

(1) ( ) (2) (2) (1)1,2

( ) ( ) ( )

( ( , ) )

( ( , ) )

L L E E I I V

EE E V R E E

EI I V R I I

CV g V V g V V g V V u

g V g

g V g

(2) ( ) (3) (3) (2)2,3

(2) ( ) (3) (3) (2)2,3

( ( , ) )

( ( , ) )

EE E V R E E

INMDA NMDA V R NMDA NMDA

g V g

g V g

VEMgNMDAEELL VVVfgVVgVVgVC ))(()()( )2()2()2()2()2()2(

(3) ( ) (1) (1) (3)3,1

(3) ( ) (2) (2) (3)3,2

(3) ( ) (1) (1) (3)3,1

( ( , ) )

( ( , ) )

( ( , ) )

EE E V R E E

II I V R I I

INMDA NMDA V R NMDA NMDA

g V g

g V g

g V g

VEMgNMDAIIEELL VVVfgVVgVVgVVgVC ))(()()()( )3()3()3()3()3()3()3()3(

( )1,2

I

Marreiros et al., Neuroimage, 2010Moran et al., Neuroimage, 2011

0i i iCV g V V

Page 7: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

7

Conductance-based DCMs (for EEG)

Anatomical Background for DCM 19

pyramidal cells

pyramidal cells

spiny stellate

cells

inhibitory interneurons

pyramidal cells

( )1,3

E ( )3 ,1

E

( )2 ,3

E

( )3 ,2

I

(1) (1) (1) (1) (1) (1)

(1) ( ) (3) (3) (1)1,3

(1) ( ) (2) (2) (1)1,2

( ) ( ) ( )

( ( , ) )

( ( , ) )

L L E E I I V

EE E V R E E

EI I V R I I

CV g V V g V V g V V u

g V g

g V g

(2) ( ) (3) (3) (2)2,3

(2) ( ) (3) (3) (2)2,3

( ( , ) )

( ( , ) )

EE E V R E E

INMDA NMDA V R NMDA NMDA

g V g

g V g

VEMgNMDAEELL VVVfgVVgVVgVC ))(()()( )2()2()2()2()2()2(

(3) ( ) (1) (1) (3)3,1

(3) ( ) (2) (2) (3)3,2

(3) ( ) (1) (1) (3)3,1

( ( , ) )

( ( , ) )

( ( , ) )

EE E V R E E

II I V R I I

INMDA NMDA V R NMDA NMDA

g V g

g V g

g V g

VEMgNMDAIIEELL VVVfgVVgVVgVVgVC ))(()()()( )3()3()3()3()3()3()3()3(

( )1,2

I

Marreiros et al., Neuroimage, 2010Moran et al., Neuroimage, 2011

0i i iCV g V V

Weights are constrained by anatomy

Generative models, model selection andmodel validation

Anatomical Background for DCM 20

Any given DCM = a particular generative model of how the measureddata (may) have been caused

Model selection = hypothesis testing = comparing competing models(i.e. different ideas about mechanisms underlying observed data)

Evaluate the relative plausibility of competing explanations for an established effect (e.g., activation)

Careful definition of model (hypothesis) space crucial!

Model validation requires external criteria (external to the measureddata)

model selection model validation!

Bayesian model selection (BMS)

Anatomical Background for DCM 21

log ( | ) log ( | , )

, |

, | ,

p y m p y m

KL q p m

KL q p y m

Model evidence:

accounts for both accuracy and complexity of the model

a measure of how well the model generalizes

all possible datasets

y

p(y|

m)

Gharamani, 2004

McKay, Neural Comp, 1992

Penny et al., Neuroimage, 2004

( | ) ( | , ) ( | ) p y m p y m p m d

Various approximations, e.g.:- negative free energy, AIC, BIC

Page 8: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

8

Examples for the use of DCM

Anatomical Background for DCM 22

• Anatomical priors for DCM for fMRI

• Modulation of connectivity by predictionerrors

• Conductance based DCM

• if time permits: DCM validation in patientsor layered DCM

Anatomically informed priors

Anatomical Background for DCM 23

LG LG

FGFG

DCM

LGleft

LGright

FGright

FGleft

13 15.7%

34 6.5%

24 43.6%

12 34.2%

probabilistictractography

-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

6.5%

0.0384v

15.7%

0.1070v

34.2%

0.5268v

43.6%

0.7746v

Stephan et al., Neuroimage, 2009

anatomical probability

connection-specific priorsfor couplingparameters

Anatomically informed priors

Anatomical Background for DCM 24

0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

Posterior model probabilities

Stephan et al., Neuroimage, 2009

0 0.5 10

0.5

1m1: a=-32,b=-32

0 0.5 10

0.5

1m2: a=-16,b=-32

0 0.5 10

0.5

1m3: a=-16,b=-28

0 0.5 10

0.5

1m4: a=-12,b=-32

0 0.5 10

0.5

1m5: a=-12,b=-28

0 0.5 10

0.5

1m6: a=-12,b=-24

0 0.5 10

0.5

1m7: a=-12,b=-20

0 0.5 10

0.5

1m8: a=-8,b=-32

0 0.5 10

0.5

1m9: a=-8,b=-28

0 0.5 10

0.5

1m10: a=-8,b=-24

0 0.5 10

0.5

1m11: a=-8,b=-20

0 0.5 10

0.5

1m12: a=-8,b=-16

0 0.5 10

0.5

1m13: a=-8,b=-12

0 0.5 10

0.5

1m14: a=-4,b=-32

0 0.5 10

0.5

1m15: a=-4,b=-28

0 0.5 10

0.5

1m16: a=-4,b=-24

0 0.5 10

0.5

1m17: a=-4,b=-20

0 0.5 10

0.5

1m18: a=-4,b=-16

0 0.5 10

0.5

1m19: a=-4,b=-12

0 0.5 10

0.5

1m20: a=-4,b=-8

0 0.5 10

0.5

1m21: a=-4,b=-4

0 0.5 10

0.5

1m22: a=-4,b=0

0 0.5 10

0.5

1m23: a=-4,b=4

0 0.5 10

0.5

1m24: a=0,b=-32

0 0.5 10

0.5

1m25: a=0,b=-28

0 0.5 10

0.5

1m26: a=0,b=-24

0 0.5 10

0.5

1m27: a=0,b=-20

0 0.5 10

0.5

1m28: a=0,b=-16

0 0.5 10

0.5

1m29: a=0,b=-12

0 0.5 10

0.5

1m30: a=0,b=-8

0 0.5 10

0.5

1m31: a=0,b=-4

0 0.5 10

0.5

1m32: a=0,b=0

0 0.5 10

0.5

1m33: a=0,b=4

0 0.5 10

0.5

1m34: a=0,b=8

0 0.5 10

0.5

1m35: a=0,b=12

0 0.5 10

0.5

1m36: a=0,b=16

0 0.5 10

0.5

1m37: a=0,b=20

0 0.5 10

0.5

1m38: a=0,b=24

0 0.5 10

0.5

1m39: a=0,b=28

0 0.5 10

0.5

1m40: a=0,b=32

0 0.5 10

0.5

1m41: a=4,b=-32

0 0.5 10

0.5

1m42: a=4,b=0

0 0.5 10

0.5

1m43: a=4,b=4

0 0.5 10

0.5

1m44: a=4,b=8

0 0.5 10

0.5

1m45: a=4,b=12

0 0.5 10

0.5

1m46: a=4,b=16

0 0.5 10

0.5

1m47: a=4,b=20

0 0.5 10

0.5

1m48: a=4,b=24

0 0.5 10

0.5

1m49: a=4,b=28

0 0.5 10

0.5

1m50: a=4,b=32

0 0.5 10

0.5

1m51: a=8,b=12

0 0.5 10

0.5

1m52: a=8,b=16

0 0.5 10

0.5

1m53: a=8,b=20

0 0.5 10

0.5

1m54: a=8,b=24

0 0.5 10

0.5

1m55: a=8,b=28

0 0.5 10

0.5

1m56: a=8,b=32

0 0.5 10

0.5

1m57: a=12,b=20

0 0.5 10

0.5

1m58: a=12,b=24

0 0.5 10

0.5

1m59: a=12,b=28

0 0.5 10

0.5

1m60: a=12,b=32

0 0.5 10

0.5

1m61: a=16,b=28

0 0.5 10

0.5

1m62: a=16,b=32

0 0.5 10

0.5

1m63 & m64

anatomical probability

prio

r va

rianc

e

R2R1

R2R1

-2 -1 0 1 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-2 -1 0 1 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Models with anatomically informed priors were clearly superior :

Bayes Factor >109

Stephan et al., Neuroimage, 2009

Page 9: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

9

Prediction errors drive synaptic plasticity

Anatomical Background for DCM 25

McLaren 1989 x1 x2

x3

PE(t)

01

t

t kk

w w PE

0

0

( )t

tw a PE d

0a

R

synaptic plasticity during learning = f (prediction error)

Learning of dynamic audio-visual associations

Anatomical Background for DCM 26

den Ouden et al., J Neurosci, 2010

Model behavior with a hierarchicalBayesian Model estimate ofprediction errors PE(Behrens et al., Nat Neurosci, 2007)

Prediction error (PE) activity in the putamen

Anatomical Background for DCM 27

PE duringRF learning

PE during incidentalsensory learning

O'Doherty et al., Science, 2004

den Ouden et al., Cereb Cortex, 2009

Could the putamen be regulating trial-by-trial changes of task-relevant connections?

PE = “teaching signal” for synaptic plasticity during

learning

p < 0.05 (SVC)

PE duringactive sensory

learning

Page 10: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

10

PE control plasticity during adaptive cognition

Anatomical Background for DCM 28

• Influence of visual areas on premotor cortex:– stronger for

surprising stimuli

– weaker for expected stimuli

den Ouden et al., J Neurosci, 2010

PPA FFA

PMd

Hierarchical Bayesian learning model

PUT

p = 0.010 p = 0.017

ongoing pharmacologicaland genetic studies

What is a good model?

Anatomical Background for DCM 29

“… essentially, all models are wrong,but some are useful.”

George E.P. Box

Strategies for model validation

Anatomical Background for DCM 30

numerical analysis & simulation studies

clinical facts

experimentally controlled system perturbations

in silico

animals &humans

patients

experiments of knowncognitive/neurophys. processes

humans

Examples: Validation ofDCM in animal studies:

• infers site of seizure origin(David et al. 2008)

• infers primary recipient ofvagal nerve stimulation (Reytet al. 2010)

• infers synaptic changes aspredicted by microdialysis(Moran et al. 2008)

• infers fear conditioninginduced plasticity in amygdala (Moran et al. 2009)

• tracks anaesthesia levels(Moran et al. 2011)

• predicts sensory stimulation(Brodersen et al. 2010)

Page 11: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

11

Dopaminergic modulation of AMPA/NMDA receptors

Anatomical Background for DCM 31

Moran et al., Curr Biol, 2011

• exogenousinputs to layer IV

• NMDA inputs tolayer III pyramidal cells andinterneurons

a AMPA NMDA GABA

Estimates of AMPA/NMDA correlate with behaviour

Anatomical Background for DCM 32

Moran et al., Curr Biol, 2011

Validating models against clinical facts

Anatomical Background for DCM 33

model of neuronal (patho)physiology individual diagnosis

individual therapeutic response

individual outcomepredicting

Brodersen et al., PLoS Comp Biol, 2011;Brodersen et al, Neuroimage Clin. 2013

Page 12: Anatomical Background of Dynamic Causal Modeling and ... and its... · Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational

12

Summary

Anatomical Background for DCM 34

• Anatomical connectivity information is important, but not everything

• Models of effective connectivity neural system mechanisms can beinferred from neuroimaging data

• DCM is one (not the only) method for this:

– Neuronal interactions are modeled at the hidden neuronal level

– Bayesian system identification method

– Key role for model selection

– Can be integrated with measures of anatomical connectivity

– Can be integrated with computational models

• Validation is critical (for any modeling approach)

Acknowledgments

Anatomical Background for DCM 35

TNU-TeamE. AponteT. BaumgartnerD. ColeA. DiaconescuS. GrässliH. Haker RösslerQ. HuysS. IglesiasL. KasperE. LomakinaC. Mathys

S. PaliwalF. PetzschnerS. PrinczS. RamanD. RenzG. StefanicsK.E. StephanL. WeberT. WentzS. Wilde

Translational Neuromodeling Unit

CollaboratorsJ.-D. Haynes, BerlinT. Kahnt, ChicagoH. den Ouden, NijmegenP. Koopmans, OxfordK.A.C. Martin, Zürich

Many thanks to K.E. Stephan for sharing slides.