9
. . . 40(2) 515-523 (2555) KKU Sci. J. 40(2) 515-523 (2012) Analytic Solution of Nonlinear Partial Differential Equations ABSTRACT In this article, we show the Hirota direct method to find exact solutions of nonlinear partial differential equations. These solutions are call ‘soliton solution’. The Hirota direct method is the most famous one method which can construct multi-soliton solutions. And the Hirota method has four processes. The importance process is transforming nonlinear partial differential equations to Hirota bilinear form that can write in polynomial of -operator. We have example of KdV equation for more understanding in the transforming nonlinear equations to bilinear form and find soliton solutions of this equation that we can find to three-soliton solutions. : Keywords: Nonlinear partial differential equations, Analytic solution, Hirota direct method, Soliton solution 1 10110 E-mail: [email protected]

Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

. . . 40(2) 515-523 (2555) KKU Sci. J. 40(2) 515-523 (2012)

Analytic Solution of Nonlinear Partial Differential Equations

‘ ’

ABSTRACTIn this article, we show the Hirota direct method to find exact solutions of nonlinear

partial differential equations. These solutions are call ‘soliton solution’. The Hirota directmethod is the most famous one method which can construct multi-soliton solutions. And theHirota method has four processes. The importance process is transforming nonlinear partialdifferential equations to Hirota bilinear form that can write in polynomial of -operator. Wehave example of KdV equation for more understanding in the transforming nonlinear equationsto bilinear form and find soliton solutions of this equation that we can find to three-solitonsolutions.

:Keywords: Nonlinear partial differential equations, Analytic solution, Hirota direct method,

Soliton solution

1 10110E-mail: [email protected]

Page 2: Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

KKU Science Journal Volume 40 Number 2516 Review

“ (Hirota’s direct method)”(Soliton solutions)

(solitary wave)40

( (plasma),(Josephson junctions), (poly acetylene molecule) )

(shallow water waves) (Russell, 1834)

. .1844

(Airy, 1845)(Korteweg and de Vries, 1985)

(KdV equation)(Fermi et al., 1955)

(Zabusky and Kruskal, 1965)(FPU)

“ ”(Hirota, 1971) “ ”

(modified Korteweg-de Vries, mKdV) (Hirota, 1972)(sine-Gordon, sG) (Hirota, 1972) (nonlinear Schrödinger, nlS) (Hirota,

1973) (Toda lattice, Tl) (Hirota, 1973)

Page 3: Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

517

1 (KP, The Kadomtsev-Petviashvili Equation)

22yyyxxxxxxxxxxtxxt

03 24 ffDDDD yxtx

2 (MKdV, The Modified KdV Equation)

22,fggffgtxu xx

Page 4: Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

KKU Science Journal Volume 40 Number 2518 Review

“ ”

( -operator

(Grammaticos et al., 1994)

(the perturbation expansion

(multi-soliton

(the KdV equation

(1)

(Hietarinta, 1991) . .1987. .1988

Page 5: Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

519

1 :

(2)

(3)

(4)

(5)

(3) (5)

(6)

2txDD

(7)

(6) 2

(8)

(6) 2 (6)

Page 6: Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

KKU Science Journal Volume 40 Number 2520 Review

(9)

3 : ((9 F

}11){(}11){(}11){(}.){( 21122

11 ffffDPffDPDPFFDP(10)

(exponential

]1[,, 1neTtxfTu

111

(10) 1

11xp 2j

12

21

cosh2pu

Page 7: Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

521

(10)

2121

21212121

12

221

21

2212

22

21

iiii tqxp 3 , 221

221

12 ppppA

Page 8: Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

KKU Science Journal Volume 40 Number 2522 Review

,

,

u

(periodic) (multi-periodic)

(nonlinear evolution equations),(wave equations) (coupled system equations)

(bilinear equation)

Russell, S. J., (1844). Fourteenth meeting of the British association of the advancement ofscience, Report on waves, London: eds. John Murray. 311 – 390.

Airy, G. B., (1845). Tides and waves. Encyclopedia Metropolitans. London. 5: 241-396.

Page 9: Analytic Solution of Nonlinear Partial Differential Equationsscijournal.kku.ac.th/files/Vol_40_No_2_P_515-523.pdf · 2015. 7. 15. · have example of KdV equation for more understanding

523

Korteweg, D. J. and de Vries, G. (1985), On the change of form of long waves advancing inrectangular canal and on a new type of long stationary waves. Philos. Mag. Ser. 5(39):422-443.

Fermi, A., Pasta, J. and Ulam, S. (1955). Studies of non-linear problems, I. Los. Alamos Report LA1940.

Zabusky, N. J. and Kruskal, M. D., (1965). Interaction of solitons in a collision less plasma and therecurrence of initial states, Phys. Rev. Lett. 15: 240-243.

Hirota, R. (1971). Exact solution of the Korteweg-de Vries equation for multiple collisions ofsolitons. Phys. Rev. Lett. 27: 1192.

Hirota, R. (1972). Exact solution of the modified Korteweg-de Vries equation for multiplecollisions of solitons. J. Phys. Soc. Japan. 33: 1456.

Hirota, R. (1972). Exact solution of the sine-Gordon equation for multiple collisions of solitons. J.Phys. Soc. Japan. 33: 1459.

Hirota, R. (1973). Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys.14: 805 809.

Hirota, R. (1973). Exact N-soliton solution of a nonlinear lumped network equation. J. Phys. Soc.Japan. 35: 286 288.

Grammaticos, B., Ramani, A. and Hietarinta, J. (1994). Multilinear operators: the natural extensionof Hirota’s bilinear formalism. Phys. Lett. A. 190: 65-70.

Hietarinta, J. (1991). Searching for integrable PDE’s by testing Hirota’s three soliton condition,Proceedings of the 1991 International Symposium on Symbolic and AlgebraicComputation, ISSAC’91”. Stephen M.Watt. (Association for Computing Machinery, 1991),295-300.

Hietarinta, J. (1987). A search of bilinear equations passing Hirota’s three-soliton condition: I. KdV-type bilinear equations. J. Math. Phys. 28: 1732-1742.

Hietarinta, J. (1987). A search of bilinear equations passing Hirota’s three-soliton condition: II.MKdV-type bilinear equations. J. Math. Phys. 28: 2094-2101.

Hietarinta, J. (1987). A search of bilinear equations passing Hirota’s three-soliton condition: III.sine-Gordon-type bilinear equations. J. Math. Phys. 28: 2586-2592.

Hietarinta, J. (1988). A search of bilinear equations passing Hirota’s three-soliton condition: IV.Complex bilinear equations. J. Math. Phys. 29: 628-635.