66
Analysis by Its History – p.1/57

Analysis by Its History - unibo.it

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis by Its History - unibo.it

Analysis by Its History

– p.1/57

Page 2: Analysis by Its History - unibo.it

Analysis by Its History

Traditional “Bourbaki style” instruction :sets,numbers,mappings

⇒limits,continuousfunctions

⇒ derivatives ⇒ integrals.

– p.1/57

Page 3: Analysis by Its History - unibo.it

Analysis by Its History

Traditional “Bourbaki style” instruction :sets,numbers,mappings

⇒limits,continuousfunctions

⇒ derivatives ⇒ integrals.

“ But the misunderstanding was that [Bourbaki] should be a textbook for everybody.That

was the big disaster.”

(Pierre Cartier, Math. Intell., 1998, p.25)

“Es ist ... diesen Meisterwerken [Laplace, Lagrange] kaum mehr ihre Werdegeschichte zu

entnehmen. Dadurch ist dem Leser die ... fuer einen selbständigen Geist grösste Freude

versagt, unter der Führung des Meisters die gefundenen Resultate selbsttätig gleichsam noch

einmal zu entdecken. In diesem Sinne mangelt den Werken der klassischen Zeit das

eigentlich erzieherische Moment.”

(Felix Klein, Vorl. Entw. der Mathematik 19. Jahrhundert, 1926)– p.1/57

Page 4: Analysis by Its History - unibo.it

Analysis by Its History

Traditional “Bourbaki style” instruction :sets,numbers,mappings

⇒limits,continuousfunctions

⇒ derivatives ⇒ integrals.

Historical development was the other direction :

Cantor 1872Dedekind ⇐ Cauchy 1821

Weierstrass ⇐ Newton 1665Leibniz 1675 ⇐

ArchimedesFermat 1638Cavalieri 1647

– p.2/57

Page 5: Analysis by Its History - unibo.it

Analysis by Its History

Traditional “Bourbaki style” instruction :sets,numbers,mappings

⇒limits,continuousfunctions

⇒ derivatives ⇒ integrals.

Historical development was the other direction :

Cantor 1872Dedekind ⇐ Cauchy 1821

Weierstrass ⇐ Newton 1665Leibniz 1675 ⇐

ArchimedesFermat 1638Cavalieri 1647

Integration :

Archimedes, parabola B. Cavalieri Fermat 1638, publ. 1679,y = x−2– p.2/57

Page 6: Analysis by Its History - unibo.it

Differentiation :

(Leibniz 1684)

(Euler 1748, Préface) (Newton 1671, publ. 1736)

Reduces integration to inversion of differentiation formulas ...The extent of this calculus is immense ... And it gives rise toaninfinity of surprising discoveries concerning curved or straighttangents, questionsDe maximis & minimis, inflexion points andcusps of curves, envelopes, caustics from reflexion or refraction,&c. as we shall see in this work.

(Joh. Bernoulli - Marquis de L’Hospital 1696)

Critics of “infinitely small differentials” by Lagrange (1797)...“differential quotient” dy

dx ⇒ “derivative” y′

”integral”∫

y dx ⇒ “primitive” – p.3/57

Page 7: Analysis by Its History - unibo.it

Limits : Cauchy 1821 crit. Lagrange (counter-ex.y = e−1

x2 ),places theory of limits on top of treatise :

(Cauchy 1821, p. 13)

and reintroduces “infinitely smalls” and derivatives as limits

(Cauchy 1821, p. 62) – p.4/57

Page 8: Analysis by Its History - unibo.it

Sets and Numbers :G. Cantor 1872 : first set theory notation

(first notation for a set, the setA of rational numbers (Math. Annalen 5, p. 123))

... for establishing a theory ofreal numbers (his setB) ...√

3 ist also nur ein Zeichen für eine Zahl, welche erst noch gefunden werden

soll, nicht aber deren Definition. Letztere wird jedoch in meiner Weise, etwa

durch

(1.7, 1.73, 1.732, . . .)

befriedigend gegeben.

(G. Cantor, Math. Annalen 33 (1889), p. 476)

... in a paper on convergence of trigonometric series.Hence :

Cantor 1872Dedekind ⇐ Cauchy 1821

Weierstrass ⇐ Newton 1665Leibniz 1675 ⇐

ArchimedesCavalieriFermat 1638

– p.5/57

Page 9: Analysis by Its History - unibo.it

However ! Euler : (the great pedagogue)Introductio1748:

(beginning of Euler’sIntroductio(1748, french transl. 1796))

I. Newton did the same: 1669:De Analysi; 1671:Fluxiones.

Contents :

Chapter I. Introductio in Analysin InfinitorumChapter II. Differential and Integral CalculusChapter III. Foundations of Classical AnalysisChapter IV. Calculus in Several Variables

– p.6/57

Page 10: Analysis by Its History - unibo.it

Chapter I. Introductio in Analysin InfinitorumThe Birth of Algebra: (Al-Khowârizmî, Bagdad 830)

Problem:“a square and ten roots of the same square are equal to39 in numbers”.

x2x25x5x

5x5x25

x

x

5

5

(from Al-jabr w’al muqâbala; solution ofx2 + 10x = 39 by Al-Khowârizmî)

Solution:Attach two rectangles of 5 roots to the square and“complete the square” by adding the square52 = 25. Thissecond square is39 + 25 = 64, hence of root8. Thus our root is8 − 5 = 3. In modern notation (as in today’s high schools):

x2 + 10x = 39 ⇒ x2 + 10x + 25 = 64 ⇒ x + 5 = 8.– p.7/57

Page 11: Analysis by Its History - unibo.it

Cubic Equations. x3 + 6x = 20 (Scipio –Tartaglia – Cardano):

Cardano’sArs Magna1545

x xv

vv

uu

x xv

v

v

v

uu

Solution (same idea as Al-Khowârizmî’s first problem):Represent the term6x by 3 plates and3 columns, of totalvolume3uvx, attached to the cubex3. Hence

x = u − v, uv = 2 and u3 − v3 = 20.

Of the two quantitiesu3 and−v3 we thus know thesumand theproductu3(−v3) = −23 = −8. Thus they are the roots of

λ2 − 20λ − 8 = 0. – p.8/57

Page 12: Analysis by Its History - unibo.it

Cubic Equations. x3 + 6x = 20 (Scipio –Tartaglia – Cardano):

x2x25x5x

5x5x25

x

x

5

5

x xv

vv

uu

x xv

v

v

v

uu

Solution (same idea as Al-Khowârizmî’s first problem):Represent the term6x by 3 plates and3 columns, of totalvolume3uvx, attached to the cubex3. Hence

x = u − v, uv = 2 and u3 − v3 = 20.

Of the two quantitiesu3 and−v3 we thus know thesumand theproductu3(−v3) = −23 = −8. Thus they are the roots of

λ2 − 20λ − 8 = 0. – p.9/57

Page 13: Analysis by Its History - unibo.it

800 Years of Development of Algebraic Notation:

al-Khwarizmı (830)solution of

x2 + 21 = 10x

Cardano (1545)solution of

x3 + 6x = 20

Viète (1591)solution forA ofA2 + 2BA = Z

Descartes (1637)for probl. of Heraclitus

– p.10/57

Page 14: Analysis by Its History - unibo.it

Descartes’Geometrie. (Pappus, Book VII, Prop. 72)

Problem(Heraclitus):Given squareABDC

and given lengthBN ,find E on extendedAC

such thatEF = NB.

A

B

C

D

EN

F

(Descartes 1637, p. 387) – p.11/57

Page 15: Analysis by Its History - unibo.it

Descartes’ Solution.(Descartes 1637, p. 387-388)

A

B

C

D

EN

F⇒

a

u x

cc a−x

Pythagoras: u =√

a2 + x2 , Thales:x

u=

a − x

c,

x4 − 2ax3 + (2a2 − c2)x2 − 2a3x + a4 = 0

EulerE170:x

a+

a

x= y ⇒ y2 − 2y − c2

a2= 0 .

– p.12/57

Page 16: Analysis by Its History - unibo.it

Cartesian Coordinates

Problem.(Pappus, Introduction to Book VII)Given 3 (4,5,6,..) fixedlinesa, b, c, (d, ..), find set of pointsP such that

a

b c

O A

P

B C

a

b cd

O A

P

B C

D

PA · PB = (PC)2 PA · PB = PC · PD . – p.13/57

Page 17: Analysis by Its History - unibo.it

Descartes’ Solution.

a

b cy

xO A

P

B C

a

b cdy

xO A

P

B C

D

“Que le segment de la ligneOA, qui est entre les poinsO & A,soit nomméx. & queAP soit nomméy”

So were born the Cartesian Coordinates!– p.14/57

Page 18: Analysis by Its History - unibo.it

The Binomial Theorem.

Al-Karajı, Xth centuryPascal 1654

Example:n = 2: (Eucl. II.4);n = 3:(a+b)3 = a3+3a2b+3ab2+b3 or (1+x)3 = 1+3x+3x2+x3 .

n = 4 : (1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4 .etc. – p.15/57

Page 19: Analysis by Its History - unibo.it

11 1

1 2 11 3 3 1

1 4 6 4 11 5 10 10 5 1

1 6 15 20 15 6 1

Pascal (1654, p. 7, “Consequence douziesme”):Ratios:11

21

12

31

22

13

41

32

23

14

51

42

33

24

15

61

52

43

34

25

16

– p.16/57

Page 20: Analysis by Its History - unibo.it

(1 + x)n = 1 +n

1x +

n(n−1)

1 · 2 x2 +n(n−1)(n−2)

1 · 2 · 3 x3 + . . .

– p.17/57

Page 21: Analysis by Its History - unibo.it

(1 + x)n = 1 +n

1x +

n(n−1)

1 · 2 x2 +n(n−1)(n−2)

1 · 2 · 3 x3 + . . .

Newton 1665:“interpolate”formula forrational andnegativen.

manuscript Newton 1665Examples:1

1 + x= 1 − x + x2 − x3 + ...

1

1 − x= 1 + x + x2 + x3 + ...

(1 + x)1

2 = 1 + 12 x − 1·1

2·4 x2 + 1·1·32·4·6 x3 − ...

(1 + x)−1

2 = 1 − 12 x + 1·3

2·4 x2 − 1·3·52·4·6 x3 + ...

– p.17/57

Page 22: Analysis by Its History - unibo.it

Exponential Function :

1

P

VT

y

b

z

1 0

1y1

b

y2

b

y3

b b

y

x

(a) (b) (c)

Debaune 1638:Find curve with fixed subtangent (Fig. (a))?Descartes:“ . . . tentavit, sed non solvit”Leibniz 1684: z−y

b = y1 ⇒ z = (1 + b)y (Fig. (b))

Fig. (c): yi = (1 + b)i Euler 1748:

y = (1 + xN )

N= 1 + x +

x2(1− 1

N)

1·2 +x3(1− 1

N)(1− 2

N)

1·2·3 + . . .

= 1 + x + x2

1·2 + x3

1·2·3 + x4

1·2·3·4 + . . . = ex (N →∞)– p.18/57

Page 23: Analysis by Its History - unibo.it

Logarithms : (J. Napier 1614, J. Bürgi 1619, H. Briggs 1624)“Students usually find the concept of logarithms very difficult tounderstand.”

(B.L. van der Waerden 1957, p. 1)Logarithms transform

products→ sums and powers→ products.

– p.19/57

Page 24: Analysis by Its History - unibo.it

Logarithms : (J. Napier 1614, J. Bürgi 1619, H. Briggs 1624)“Students usually find the concept of logarithms very difficult tounderstand.”

(B.L. van der Waerden 1957, p. 1)Logarithms transform

products→ sums and powers→ products.Ancient computations by repeated square roots:

NumbersLogarithms10.0000 1.7.4989 0.875√√

103 = 5.6234 0.754.2170 0.625√

10 = 3.1623 0.52.3714 0.375√√

10 = 1.7783 0.251.3335 0.1251.0000 0.

.00

.25

.50

.75

1.00

1101/4101/2 103/4 10– p.19/57

Page 25: Analysis by Its History - unibo.it

More precise tables: incredible amount of work:

J. Napier, Edinburgi 1614 H. Briggs, Londini 1624 – p.20/57

Page 26: Analysis by Its History - unibo.it

Computation of Areas (Archimedes, Cavalieri, Fermat).Example:y = xa (Fermat 1638) :

B

Ba

θB

θaBa

θ2Bθ2aBa

y = xa

Idea:Choose grid points asgeometric sequenceB, θB, θ2B,. . . ,⇒ areas of rectangles also geometric sequence, hence

S = geom. series =Ba+1

a + 1if a > −1.

does not work for hyperbola (a = −1) . . .– p.21/57

Page 27: Analysis by Its History - unibo.it

Area of Hyperbola is a Logarithm :(Gregory of St. Vincent 1647, Mercator 1668) :

1 2 3 4 5 60

1

y = 1/x same areas

1 20

1

y = 1/x

0

1

areas

a

1

− x

+ x2

− x3

+ x4

.0

.5

a

− a2/2

+ a3/3

− a4/4

+ a5/5

11+x = 1 − x + x2...

ln(1 + x) = x − x2

2 + x3

3 ...

– p.22/57

Page 28: Analysis by Its History - unibo.it

Trigonometric Functions. “Traditional” (BI Mannheim 1962):

... and three pages later :

No word from where come these definitions ... – p.23/57

Page 29: Analysis by Its History - unibo.it

... no word about Archimedes ...

– p.24/57

Page 30: Analysis by Its History - unibo.it

... or Ptolemy :(150 A.D., printed 1813)

α60

60

cordα

Tables ofcordα for measures in Astronomy and Geography.– p.25/57

Page 31: Analysis by Its History - unibo.it

... or Regiomontanus ...

Bhaskara⇒ Arabs⇒ Regiomontanus(publ. 1533):Sinus.

0 1

1

cos α

sin α

tan α1

cot α

α

Around 1464, Regiomontanus computed a table (“SEQVITVRNVNC EIVSDEM IOANNIS Regiomontani tabula sinuum, persingula minuta extensa. . .”) giving the sine of all angles atintervals of 1 minute, with five decimals.

– p.26/57

Page 32: Analysis by Its History - unibo.it

... or Euler ...

J.J. Stampioen(Leyden 1632)

cosinum anguli adA fore =rq − Cc

Ssr .

sinu crurisAB = S, cosinus eiusdem= C,sinu crurisAC = s et cosinu= c,cosinu baseosBC = q, et radio= r;

F.C. Maier( St. Pet., 1727)

cos :anguliA =cos :BC−cos :AB · cos :AC

sAB · sAC,

posito radio vel sinu toto1.

L. Euler(E14,1729)

A B

C

c

abcos A =

cos a − cos b · cos c

sin b · sin c

L. Euler(E214,1753)

– p.27/57

Page 33: Analysis by Its History - unibo.it

Formulas and Series (Ptolemy, Regiomontanus, Viète) :

0 1xy

x

1

cos ycos y

sin ysin y

cos y cos x

cos y sin xcos y sin x

sin y sin xsin y sin x

sin y cos xsin y cos x

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

Iterate (de Moivre 1730)(appear binom. coeff.):

cos nx = cosn x − n(n−1)1·2 sin2 x cosn−2 x + n(n−1)(n−2)(n−3)

1·2·3·4 sin4 x cosn−

Idea (Euler 1748, §134):x → 0, n → ∞, with nx fixed 7→ x,thencos x → 1, sin x → x, n sin x → nx 7→ x. Hence

cos x = 1 − x2

1 · 2 +x4

1 · 2 · 3 · 4 − ... sin x = x − x3

1 · 2 · 3 + ...– p.28/57

Page 34: Analysis by Its History - unibo.it

Picture:

5 10 15

−3

−2

−1

0

1

2

3 1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45y = sinx

5 10 15

−3

−2

−1

0

1

2

3

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44y = cosx

– p.29/57

Page 35: Analysis by Its History - unibo.it

Series for tan. (how Newton did it,De Analysi1669):

y = tan x =sin x

cos x= a1x + a3x

3 + a5x5 + a7x

7 + . . . .

divide

x−x3

6+

x5

120−. . . = (a1x+a3x

3+a5x5+. . .)(1−x2

2+

x4

24−. . .).

compare coefficientsx, x3, x5 ... :

1 = a1, −1

6= −a1

2+ a3,

1

120=

a1

24− a3

2+ a5,

tan x = x +x3

3+

2x5

15+

17x7

315+

62x9

2835+

1382x11

155925+

21844x13

6081075...

mysterious series ... regularity?⇒ Euler-Maclaurin1736/42/55.– p.30/57

Page 36: Analysis by Its History - unibo.it

Arcus functions : Giventangentx, find arc??

D

E

x

arc

O

1

C

A B

C

F

x ∆x

1

1√1+x2

√1+x2

Proof of Leibniz 1676: Archimedes:arc= 2 · areaOEC.Thales, Pyth. and Eucl. I.41:2 · areaABC = AB · CF =

∆x

1 + x2= (1 − x2 + x4 − x6...) · ∆x.

(Fermat-Cavalieri)⇒ arctan x = x − x3

3+

x5

5− x7

7...

– p.31/57

Page 37: Analysis by Its History - unibo.it

Arcus sinus : Givensinus, find arcy ??

−1 0 1

1

x

xx

1

y∆y

∆x∆x√1 − x2

Newton,de Analysi1669

Original proof of Newton 1669: Similar triangles⇒∆y

∆x=

1√1 − x2

= 1 +1

2x2 +

1 · 32 · 4 x4 +

1 · 3 · 52 · 4 · 6 x6 + ...

as above by Fermat-Cavalieri ...

y = arcsin x = x +1

2

x3

3+

1 · 32 · 4

x5

5+

1 · 3 · 52 · 4 · 6

x7

7+ ...

Newton then:sin (invers.),cos(√...), tan(div.), arctan(invers.).– p.32/57

Page 38: Analysis by Its History - unibo.it

Chapter Iterminates with Section I.5 onComplex Numbers ...

G. Cardano (1545),(5 +√−15)(5 −

√−15) = 25 − (−15) = 40

“Complex” Debeaune curve:

0 1

1

0 1

1

0 1

1

1 + iϕ2

iϕ2

(1 + iϕ2 )2

N = 2

1 + iϕ4

(1 + iϕ4 )2

(1 + iϕ4 )3

(1 + iϕ4 )4

N = 4 N = 16

cos ϕ

sin ϕ ϕ

eiϕ

Beautiful relation eiϕ = cos ϕ + i sin ϕ (Euler 1743)– p.33/57

Page 39: Analysis by Its History - unibo.it

... and Section I.6 onContinued Fractions :

tan x =x

1 − x2

3 − x2

5 − x2

7 − x2

9 − . . .

tanm

n=

m

n − m2

3n − m2

5n − m2

7n − . . .Theorem (Lambert 1768): Ifx is rational,tan x is irrational.

Now, “les esprits” are sufficiently prepared for ...– p.34/57

Page 40: Analysis by Its History - unibo.it

Chapter II. Differential and Integral CalculusEt j’ose dire que c’est cecy le problésme le plus utile, & le plusgeneral non seulement que ie sçache, mais mesme que i’ayeiamais desiré de sçauoir en Geometrie. . .

(Descartes 1637, p. 342)

Problem. Let y = f(x) be a given curve. At each pointx wewish to know theslope, thetangentor thenormal.Motivations.– Calculation of the angles under which two curves intersect(Descartes);– construction of telescopes (Galilei), of clocks (Huygens1673);– search for the maxima, minima of a function (Fermat 1638);– velocity and acceleration of a movement (Galilei 1638,Newton 1687);– astronomy, verification of the Law of Gravitation (Kepler,Newton). – p.35/57

Page 41: Analysis by Its History - unibo.it

Example : Parabola. (x + ∆x)2 = x2 + 2x ∆x + ∆x2

0

2x ∆x + ∆x 2

x

∆xy = x2

Drawing by Joh. Bernoulli 1691

∆y = (x + ∆x)2 − x2 = 2x ∆x + ∆x2 ⇒ dy

dx= 2x

(known by Apollonius 250 B.C.). Similar:

y = xn ⇒ dy

dx= nxn−1.

– p.36/57

Page 42: Analysis by Its History - unibo.it

Exponential function and logarithm:

y = ex

x = ln y y

∆x

x0

∆y

1

1

Thales:

∆y

∆x=

y

1⇒

dy

dx= y = ex,

dx

dy=

1

y.

Sinus and cosinus.Newton’s picture,Leibniz’ symbols,Thales:

0 1

1

∆s

−∆c−∆c

∆x

c

s1 x

s = sin x,

c = cos x,

ds

dx= c = cos x,

dc

dx= −s = − sin x.

– p.37/57

Page 43: Analysis by Its History - unibo.it

“His positi calculi regulae erunt tales:”(Leibniz 1684)

Productrule: u

∆u

v ∆v

uv

v∆u

u∆v⇒ d(uv) = u dv + v du

Fractions:

v

∆v

w = 1/v−∆w

1

∗ ⇒w =

1

v⇒ − v dw = w dv

dw = −w

vdv = −dv

v2

Quotient rule. (second access by algebra):

u + ∆u

v + ∆v− u

v=

v∆u − u∆v

v2 + v∆v⇒ d(

u

v) =

v du − u dv

v2 – p.38/57

Page 44: Analysis by Its History - unibo.it

Inverse function.

0 1

∆x

∆y

slope = 1/2

0

1

∆x

∆y

slope = 2

y =√

x x = y2

dy

dx=

1dxdy

Composition (chain rule).

10

1

∆x

∆y

x

y

10

1

∆x

∆z

x

z

10

1

∆z

∆y

z

yy = sin 2x z = 2x y = sin z

dy

dx=

dy

dz· dz

dx

– p.39/57

Page 45: Analysis by Its History - unibo.it

Problemes “de maximis et minimis”Example : Fermat’s Principle

. . . et trouver la raison de la réfraction dans notre principecommun, qui est que la nature agit toujours par les voies les pluscourtes et les plus aisées.

(Fermat to De La Chambre, août 1657,Œuvres2, p. 354)

α1α1

α2α2

xx l − xl − x

a

A

b

B

v1v1

v2v2

Drawing of Joh. Bernoulli

“cujus accuratissimam demonstrationem a principio nostroderivatam exhibet superoir analysis”

– p.40/57

Page 46: Analysis by Its History - unibo.it

Leibniz’ solution of Fermat’s principle.Leibniz (1684) proudly solves Fermat’s problem “in tribuslineis” :

T =

√a2 + x2

v1+

b2 + (ℓ − x)2

v2= min !

by differentiating with respect tox

T ′ =1

v1

2x

2√

a2 + x2︸ ︷︷ ︸

sin α1

− 2(ℓ − x)

2√

b2 + (ℓ − x)2

︸ ︷︷ ︸

sin α2

1

v2= 0.

in France:Descartes’ law; in Denmark:Snellius’ law.

– p.41/57

Page 47: Analysis by Its History - unibo.it

Leibniz’ solution of Fermat’s principle.Leibniz (1684) proudly solves Fermat’s problem “in tribuslineis” :

T =

√a2 + x2

v1+

b2 + (ℓ − x)2

v2= min !

by differentiating with respect tox

T ′ =1

v1

2x

2√

a2 + x2︸ ︷︷ ︸

sin α1

− 2(ℓ − x)

2√

b2 + (ℓ − x)2

︸ ︷︷ ︸

sin α2

1

v2= 0.

in France:Descartes’ law; in Denmark:Snellius’ law.

However: Min or Max ??Die Prüfung, ob ein Maximum oder Minimum vorhanden ist, macht am meisten

Schwierigkeiten ...(Weierstrass,Differentialrechnung, Vorl. an dem königl. Gewerbeinstitut, 1861)

... need to consult higher derivative ... – p.41/57

Page 48: Analysis by Its History - unibo.it

Higher derivatives.But the velocities of the velocities, the second, third, fourth, andfifth velocities, &c., exceed, if I mistake not, all humanunderstanding. The further the mind analyseth and pursueththese fugitive ideas the more it is lost and bewildered;. . .

(Bishop Berkeley 1734,The Analyst)

Joh. Bernoulli 1691/92

y0

y1

x0 x1

y0

y1

x0 x1

y′′ > 0

y′′ < 0

– p.42/57

Page 49: Analysis by Its History - unibo.it

Taylor (1715) Interpolation polynomial∆x → 0, n → ∞:

Hierin liegt nun tatsächlich einGrenzubergang von unerhorterKuhnheit. (F. Klein 1908, Zweite Aufl., p. 509)

x0 x1 x2

f(x)

p(x)

∆x = 0.4

x0x1x2

f(x)

p(x)

∆x = 0.2

x0x2

f(x)

p(x)∆x = 0.1

Polyn.: p(x) = y0 +x − x0

1

∆y0

∆x+

(x − x0)(x − x1)

1 · 2∆2y0

∆x2,

Series : f(x) = f(x0) + (x − x0)f′(x0) +

(x − x0)2

2!f ′′(x0) + . . .

ALL above series are examples !!– p.43/57

Page 50: Analysis by Its History - unibo.it

Envelopes of families of curves.Ex.: Canon ball trajectories:

Mon Frere, Professeur àBale, a pris de là occasion de rechercherplusieurs courbes que la Nature nous met tous les jours devantles yeux. . .

(Joh. Bernoulli 1692)

.5 1.0

.2

.4

y = ax − x2(1 + a2)

2– p.44/57

Page 51: Analysis by Its History - unibo.it

Envelopes of families of curves.Ex.: Canon ball trajectories:

Mon Frere, Professeur àBale, a pris de là occasion de rechercherplusieurs courbes que la Nature nous met tous les jours devantles yeux. . .

(Joh. Bernoulli 1692)

.5 1.0

.2

.4

.5 1.0

.2

.4

y = ax − x2(1 + a2)

2

∂y

∂a= 0

– p.44/57

Page 52: Analysis by Its History - unibo.it

Envelopes of families of curves.Ex.: Canon ball trajectories:

Mon Frere, Professeur àBale, a pris de là occasion de rechercherplusieurs courbes que la Nature nous met tous les jours devantles yeux. . .

(Joh. Bernoulli 1692)

.5 1.0

.2

.4

.5 1.0

.2

.4

.5 1.0

.2

.4

y = ax − x2(1 + a2)

2

∂y

∂a= 0 y = (1 − x2)/2

– p.44/57

Page 53: Analysis by Its History - unibo.it

Further examples : (Jac. und Joh. Bernoulli 1692)

−1 0 1

5 10 15

5

10

15

xx

yy

Caustic of a circle Lines (Dürer 1525)

y = −√

1 − x2/3(1

2+ x2/3) y = x − 2

√13x + 13

– p.45/57

Page 54: Analysis by Its History - unibo.it

Curvature (Newton 1671: inters. of two neighboring normals)

There are few Problems concerning Curves more elegant thanthis, or that give a greater Insight into their nature.

(Newton 1671, Engl. pub. 1736, p. 59)

a

f(a)

(x0,y0)

y0 − f(a)y0 − f(a)

a − x0a − x0 a + ∆a

(Newton,Fluxions1671, publ. 1736)

y = f(a) − 1

f ′(a)(x − a) r =

(1 + (f ′(a))2)3/2

|f ′′(a)|– p.46/57

Page 55: Analysis by Its History - unibo.it

Integral Calculus.. . . notam

∫pro summis, ut adhibetur notad pro differentiis. . .

(Letter of Leibniz to Joh. Bernoulli, March 8/18, 1696)

. . . vocabulum i n t e g r a l i s etiamnum usurpaverim. . .

(Letter of Joh. Bernoulli to Leibniz, April 7, 1696)

(Newton, publ. 1736)BB

D

y

dxz

xa

z

y

dx

dz = y dx

z =∫

y dx

“... sic nobis summæ & differentiæ seu∫

& d, reciproquæ sunt.” – p.47/57

Page 56: Analysis by Its History - unibo.it

ALL above examples are inversions of simple diff. rules:∫

xn dx =xn+1

n + 1+ C (n 6= −1)

∫1

xdx = ln x + C

∫1

1 + x2dx = arctan x+C

∫1√

1 − x2dx = arcsin x+C

Many new applications:Surfaces, arc lengths, gravity centers,total energy,...

x = −ax = −a

x = a

dxdx

(a2 − x2)1/2

0 10

1

dx

dx

dy dyds

– p.48/57

Page 57: Analysis by Its History - unibo.it

Differential equations. Example:Leibniz’ Isochrone:(ισoς =equal,χρoνoς =time)

B

O

A

C

Body falling fromO;

Galilei 1638:Velocity: (dy

dt)2

= −2gy

Leibniz, Sept. 1687:Given constantb,

find curveABC such thatdy

dt= −b.

Vir CeleberrimusChristianus Hugenius(Oct. ’87)gives solution “sed suppressa demonstratione & explicatione”;

Leibniz 1689:“celeb. Auctoris Demonstratio Synthetica”;

Jak. Bernoulli 1690:Solution with “modern” calculus⇒ ...

– p.49/57

Page 58: Analysis by Its History - unibo.it

Jakob’s solution of Leibniz’ isochrone. (A.E. 1690, p. 218)

−1

1

dy

dx

y

x

1

−1 − 2gyb2

S1

S2

A

B

C

Galilei: (ds

dt)2

= −2gy

want: (dy

dt)2

= b2

divide:1 · dx = −√

−1 − 2gy

b2· dy.

x =b2

3g(−1 − 2gy

b2)3/2

.

“Solutio sit linea paraboloeides quadrato cubica. . .” (Leibniz)

first use of term“integral”, first differential equation solved“by separation of variables”.

– p.50/57

Page 59: Analysis by Its History - unibo.it

Galilei. Discorsi 1638:

Giornata seconda:“ ...questa catenella si piega in figuraparabolica,...” p.54Giornata terza:“Da quanto si è dimostrato sembra si possaricavare che il movimento più veloce da estremo ad estremo nonavviene lungo la linea più breve, cioè la retta, ma lungo un arcodi cerchio.”

AB

C

D

E

F

G

“... Mr. Leibnits remarque en Galiléedeux fautes considerables:c’est quecet homme-là, qui étoit, sans contredit,le plus clairvoyant de son temsdans cette matiére, vouloit conjecturerque la courbe de la chainetteétoit une Parabole, que celle de laplus vite descente étoit un Cercle.."(Joh. Bernoulli, 1697)

– p.51/57

Page 60: Analysis by Its History - unibo.it

Other differential equations treated:Catenary

(Leibniz, Joh.Bernoulli 1691)

Brachystochrone

(Joh. and Jak. Bernoulli 1696)

Tractrix

(Leibniz 1676, 1693)

Isochronous pendulum

(Huygens 1673) – p.52/57

Page 61: Analysis by Its History - unibo.it

Now, “les esprits” are prepared for the search of more rigor ...

3. Foundations of Classical Analysis– What is a derivative really?Answer: a limit.– What is an integral really?Answer: a limit.– What is an infinite seriesa1 + a2 + a3 + . . . really?

Answer: a limit.This leads to– What is a limit?Answer: a number.And, finally, the last question:– What is a number?Answer very difficult : Euklid Book V, Bolzano, Weierstrass,Dedekind, Cantor, Méray, Heine (all 1872).

Here starts the “traditional” itinerarynumbers⇒ limits ofsequences⇒ series⇒ absolutely conv. ser.⇒ continuosfunctions⇒ uniform convergence⇒ integration⇒differentiation⇒ Taylor series. . . – p.53/57

Page 62: Analysis by Its History - unibo.it

The judgement of the students.

At the end of the year the students were given a questionary andasked to check the

easiestmost difficult

most interesting

sections of the course. With the results ...

– p.54/57

Page 63: Analysis by Its History - unibo.it

1990: easy difficult interest.

– p.55/57

Page 64: Analysis by Its History - unibo.it

1991: easy diffic. inter.

– p.56/57

Page 65: Analysis by Its History - unibo.it

the easiest at the beginning...the most difficult towards the end...and the most interesting in the middle ...

The results ...

– p.57/57

Page 66: Analysis by Its History - unibo.it

the easiest at the beginning...the most difficult towards the end...and the most interesting in the middle ...

The results ...

are convincing!!Thank you.

– p.57/57