46
ATLCE - B5 07/03/2016 © 2016 DDC 1 07/03/2016 - 1 ATLCE - B5 - © 2016 DDC Politecnico di Torino - ICT School Analog and Telecommunication Electronics B5 - Multipliers/mixer circuits » Error taxonomy » Basic multiplier circuits » Gilbert cell » Bridge MOS and diode circuits » Balanced mixers AY 2015-16

Analog and Telecommunication Electronics

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 1

07/03/2016 - 1 ATLCE - B5 - © 2016 DDC

Politecnico di Torino - ICT School

Analog and Telecommunication Electronics

B5 - Multipliers/mixer circuits» Error taxonomy» Basic multiplier circuits» Gilbert cell» Bridge MOS and diode circuits» Balanced mixers

AY 2015-16

Page 2: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 2

07/03/2016 - 2 ATLCE - B5 - © 2016 DDC

Lesson B5: multipliers and mixers

• Analog multipliers– Parameters and errors– Transconductance multipliers, 1/2/4 quadrant – Gilbert cell – Diode bridge

• Mixer parameters – Balanced and I/Q mixers– Noise, gain

• References:– Elettronica per Telecom.: 2.2.4 Moltiplicatori Analogici– Design with Op Amp …: 13.2 Analog multipliers

Page 3: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 3

07/03/2016 - 3 ATLCE - B5 - © 2016 DDC

Frequency translation basics (beats)

• Werner’s relations– sinA x sinB = 0,5 [cos(A-B) - cos(A+B)]– sinA x cosB = 0,5 [sin(A-B) + sin(A+B)]– cosA x cosB = 0,5 [cos(A-B) + cos(A+B)]

• Telecom applications– Frequency translation: Heterodyne RX and TX

» I, II, … conversion, Image rejection mixers

– Mo-Demodulation» Standard AM mo-demod» Suppressed carrier (DSB), Single Side Band (SSB)» Digital AM (ASK. PAM)» Phase Detector» ….

Page 4: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 4

07/03/2016 - 4 ATLCE - B5 - © 2016 DDC

Mixers and Multipliers

• Mixers: – Frequency translation

» Frequency conversion in heterodyne receivers and transmitters– Phase detectors

» PLL and demodulators

• Multipliers:– Mo-demodulators

» AM and PAM modulation and demodulation– Variable gain amplifiers

– (analog computation) digital

Page 5: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 5

07/03/2016 - 5 ATLCE - B5 - © 2016 DDC

Mixers in the handset

I/Q Mixers(secondconversion)

RF Mixers(first conversion)

Page 6: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 6

07/03/2016 - 6 ATLCE - B5 - © 2016 DDC

Mixers in a GPS receiver

Image reject mixer Mixer II

Page 7: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 7

07/03/2016 - 7 ATLCE - B5 - © 2016 DDC

Many uses of multipliers: GP2015

Mixers Variable gain amplifier

Phase detectors

Page 8: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 8

07/03/2016 - 8 ATLCE - B5 - © 2016 DDC

Multiplier as mixer

• Mixing is achieved by multiplication

– senA x senB = 0,5 [cos(A-B) – cos(A+B)]

• With sine inputs, the output of a multiplier includes– Difference component– Sum component

– Other terms, caused by nonlinearity and errors

• Only one term is used (sum or difference beat)– Filters– Cancellation– …

Page 9: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 9

07/03/2016 - 9 ATLCE - B5 - © 2016 DDC

Ideal multipliers

• Ideal multiplier: Vo = Km Vx Vy

– Sine input signals, frequency Fx and Fy– Vo spectrum includes only Fx - Fy and Fx + Fy

ffx fy

ffy-fx fy+fx

fxfx

Page 10: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 10

07/03/2016 - 10 ATLCE - B5 - © 2016 DDC

Errors in multipliers: real circuits

• Ideal multiplier: Vo = Km Vx Vy– Sine input signals, frequency Fx and Fy– Vo spectrum includes only Fx - Fy and Fx + Fy

• Actual multiplier– Vo = Km (Vx + ΔVx) (Vy + ΔVy) + ΔVo– Vo = Km Vx Vy + ΔVy Vx + ΔVx Vy + Eo + other terms order >2– Vo = Km Vx Vy + Ex Vx + Ey Vy + Eo + …..

– Sine input signals, frequency Fx and Fy– Vo spectrum includes Fx-Fy, Fx+Fy, Fx, Fy, DC– + other higher order terms:

2Fx, 2Fx-Fy, 3Fx-2Fy, ...

Distortion

Feedthrough

Harmonics: M Fx ± N Fy

Offset

Page 11: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 11

07/03/2016 - 11 ATLCE - B5 - © 2016 DDC

Spectrum with real mixer

• Vo = Km Vx Vy + Ex Vx + Ey Vy + Eo + ….

f

fx fy

f

fx fy-fx fy fy+fxfo fa fb fd

Page 12: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 12

07/03/2016 - 12 ATLCE - B5 - © 2016 DDC

f

fx fy-fx fy fy+fxfo

Spurious outputs: feedthrough

• Input signals reach the output– Mainly due to mixer unbalance or signal DC:

Vo = Km Vx (Vy + ΔVy) = Km Vx Vy + Km Vx ΔVy

DC error on Vy (offset) ΔVy causesVx feedthrough

Page 13: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 13

07/03/2016 - 13 ATLCE - B5 - © 2016 DDC

f

fa fy-fx fc fy+fxfo fb fd

Nonlinearity

• Nonlinearity causes higher order terms

– 2fx, 2fy, 2fx+fy, 2fx-fy, 2fx+2fy, 3fx, 3fy, 3fx+fy, …..

– Can be removed with tuned circuits

Page 14: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 14

07/03/2016 - 14 ATLCE - B5 - © 2016 DDC

Lesson B5: multipliers and mixers

• Analog multipliers– Parameters and errors– Transconductance multipliers, – 1/2/4 quadrant – Balanced mixer, Gilbert cell– Diode bridge

• Mixer parameters– Noise, – gain, – intermodulation, IP

Page 15: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 15

07/03/2016 - 15 ATLCE - B5 - © 2016 DDC

Example of mixer with nonlinear circuit

• BJT amplifier with input Vx on B and Vy on E– Effective input voltage: VBE = Vx – Vy (or VBE = Vx + Vy)

– Nonlinearity makes Vx · Vy appear in Ic

• Tuned circuit isolates desired component

• Constraints on Vx and Vy:– VBE > 0, that is Vx > Vy– Need DC component high feedthrough errors

• Merged with input amplifier and local oscillator in (old) low-cost receivers

Page 16: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 16

07/03/2016 - 16 ATLCE - B5 - © 2016 DDC

Mixers with nonlinear networks

• Vi = Vx + Vy (frequency Fx and Fy)

– Vo = Fnonlin(Vi)

– With power series expansion …» Vo = A0 + A1(Vx + Vy) + A2(Vx+Vy)2 + …..

– Vo components» Vx, Vy frequency Fx e Fy» Vx • Vy frequency Fx - Fy and Fx + Fy» Vx2, Vy2 frequency 2Fx, 2Fy» Other terms frequency M Fx + N Fy» Order III intermodulation (2Fx - Fy)

• Useful component (diff or sum beat) isolated by a tuned circuit

Page 17: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 17

07/03/2016 - 17 ATLCE - B5 - © 2016 DDC

Transconductance multiplier

• For small-signal amplifier: Vo = - Vx gm Rc– Gain proportional to transconductance gm

– gm depends from Ic (Id)– Id is controlled by Vy: gm = K Vy

– Vo = K Rc Vx Vy

• Single transistor: Vx, Vy > 0: 1 quadrant– DC components high feedthrough

• Differential circuits: 2/4-quadrants– No DC, less feedthrough

• Limited to low-level signals

Page 18: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 18

07/03/2016 - 18 ATLCE - B5 - © 2016 DDC

Transconductance circuit - 1 quadrant

• VO = VX gm1 RC

• gm1 = IC/VT

• IC ≈ gm2 VY

• VO ≈ VX (gm2 VY /VT) gm1 RC

• VO ≈ K VX VY

(polarity !)

RC

IC

gm1

gm2

Page 19: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 19

07/03/2016 - 19 ATLCE - B5 - © 2016 DDC

Transconductance circuit – tuned load

• ZC(ω) to isolate desired component(sum or diff beat)

VO = K’ ZC(ω) VX VY

• VX and VY > 01 quadrant

– Feedtroughon X and Y!

• Can be extended to 2/4-quadrant

IC

ZC

Page 20: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 20

07/03/2016 - 20 ATLCE - B5 - © 2016 DDC

Transconductance circuit - 2 quadrant

• 2-quadrant: differential VX

Balanced mixer

• No feedthroughfrom VY

– If VX = 0,VO = 0 for any VY(VY seen as common mode)

• DC required on VY– Feedthrough from VX

Page 21: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 21

07/03/2016 - 21 ATLCE - B5 - © 2016 DDC

• Differential VX and VY: double balanced mixer• No feedthrough

on VX and VY

• Exploit gm

• Can use MOS or BJT

Transconductance circuit - 4 quadrant

Page 22: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 22

07/03/2016 - 22 ATLCE - B5 - © 2016 DDC

VDD

VX

I1 I2

VZ

MOS Gilbert cell

• Output voltage VZ depends on Drain current unbalance; – Drain currents depend on input voltage VX and

Source current I1 , I2– Source current unbalance must depend on input voltage VY

DG

S

Page 23: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 23

07/03/2016 - 23 ATLCE - B5 - © 2016 DDC

Multipliers with Gilbert cell

• V I Conversion– The differential V(I) is linear only for low V– Limited dynamic range for both inputs

» To limit spurious outputs, only small signals

• Corrective actions

– Linearize by negative feedback» Re pair in the differential amplifier

– Wide range V I converter

– Compensation of exponential nonlinearity» I = exp(log Vi) I = K Vi

Page 24: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 24

07/03/2016 - 24 ATLCE - B5 - © 2016 DDC

Linearized differential stage

• Emitter feedback

• Lower gain

• Wider inputdynamic range

• I1 - I2 = ΔI ≈ VX/(2RE)

• Needs matched RE(hard for ICs!)

RE RE

Page 25: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 25

07/03/2016 - 25 ATLCE - B5 - © 2016 DDC

Wide dynamic VI converter

• Differential VI converter

I1 - I2 = ΔI ≈ VX/RX

• Needs matched current sources(OK for ICs!)

• Used also for instrumentation amplifiers

• Errors from ΔVBE(IE)

Page 26: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 26

07/03/2016 - 26 ATLCE - B5 - © 2016 DDC

V I dynamic range limits

• Actual voltage drop on R is not Vx– VBE change with current unbalance

• Io matching

• Beta matching

• ….VBE1 VBE2

Page 27: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 27

07/03/2016 - 27 ATLCE - B5 - © 2016 DDC

Wide range multiplier: block diagram

I Vlog

V Iwide dynamic

V Iwide dynamic

Gilbert cell

Vx Vy

VzΔV = K’ log Vx

ΔIx = K Vx ΔIy = K Vy

Page 28: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 28

07/03/2016 - 28 ATLCE - B5 - © 2016 DDC

Complete wide range circuit

I1 I2 I3 I4

IA IB

7 85 6

Vo

V’X

YXYXA

CO

AX

X

X

XCO

VVRRI

R2V

I21

RV2

RV2RV

X

X12 R

V2II

Y

Y43 R

V2II

1

2

7

8V'V

VVV

6

5

II

IIe

eII

T

X

T

6BE5BE

Page 29: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 29

07/03/2016 - 29 ATLCE - B5 - © 2016 DDC

Diode Mixer: single-balanced

• Single diode– Single diode used as switch from Vx to GND– Input Vi = Vx + Vy– Small Vx, sign defined by Vy

» Diode acts as switch controlled by Vy» Output Vx/0» Multiplication by 0/1

• Diode half-bridge– Couple of diodes as switch from Vx to GND

» Diodes act as switches controlled by Vy» Output Vx/0» Multiplication by 0/1

Page 30: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 30

07/03/2016 - 30 ATLCE - B5 - © 2016 DDC

Diode Mixer: double-balanced

• Couple of diodes – Switches Vout between two opposite polarity Vx– Output +Vx/-Vx

• Diode bridge 1– inverts Vx towards the output

• Diode bridge 2– Sine on Vx , low level signal– Squarewave on Vy , large signal– Vx + Vy applied to a diagonal– Each diode is a switch controlled by Vy– Vx direct/inverter on the other diagonal

Page 31: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 31

07/03/2016 - 31 ATLCE - B5 - © 2016 DDC

VX

Vz

VY

Switch bridge Mixer

• Switch bridge (switches VX/-VX at output)– Command: VY

– Same as multiply by ±1– Strong nonlinearity

• Diode or MOS switches

• Double-balancedmixer

• Used for high frequencies

Page 32: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 32

07/03/2016 - 32 ATLCE - B5 - © 2016 DDC

VX

Vz = Vx

VY = H

VX

VY = L

Vz = -Vx

Switch Mixer

• VX analog

• VY digital

• Switches on linked side receive complementary commands

• The sign of the transfer function is controlled by VY

– VY = H VZ = + VX

– VY = L VZ = - VX

Page 33: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 33

07/03/2016 - 33 ATLCE - B5 - © 2016 DDC

Diode bridge circuits

• Vx comes from a transformer with center tap

• VY >> VX(VX has no effect on diode bias)

VX

VY

VZ

VX

VY

VZ

+

+

VX

VY

VZ

+

+

Page 34: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 34

07/03/2016 - 34 ATLCE - B5 - © 2016 DDC

MOS/BJT bridge circuits

• Same structure as diode bridge– Input X on diagonal H– Input Y as command (on B or G) – Output from diagonal V

Page 35: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 35

07/03/2016 - 35 ATLCE - B5 - © 2016 DDC

Lesson B5: multipliers and mixers

• Analog multipliers– Parameters and errors– Transconductance multipliers, – 1/2/4 quadrant – Balanced mixer, Gilbert cell– Diode bridges

• Mixer parameters– Noise, – gain, – intermodulation, IP

Page 36: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 36

07/03/2016 - 36 ATLCE - B5 - © 2016 DDC

Mixers and amplifiers

• Mixer seen as amplifier with variable gain (VGA)

• Constant input = fixed gain for other input – Constant Vy amplifier for Vx– Constant Vx amplifier for Vy

• Same requirements as amplifiers– No harmonics, no distortion– Low noise, wide dynamic

• Parameters as amplifier + additional– 1 dB compression, IP2, IP3– Insulation, reflection, …– Mixer-specific parameters

Page 37: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 37

07/03/2016 - 37 ATLCE - B5 - © 2016 DDC

Mixer parameters

• Conversion gain– IFrms/RFrms

• Isolation– Leakage in unwanted paths

• Noise figure

• Nonlinearity – Input dynamic range– Intermodulation– Compression level– Intercept Point (order 2, 3, …)

Page 38: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 38

07/03/2016 - 38 ATLCE - B5 - © 2016 DDC

Ideal multiplier linear mixer

• Only sum and difference spectral lines at output

VX (fX) , VY (fY)

VZ (fX - fY , fX + fY)VX

VYVZ

fX - fY , fX + fY

fX

fY

X

ffx-fy fy fx fy+fx

Page 39: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 39

07/03/2016 - 39 ATLCE - B5 - © 2016 DDC

Ideal Mixer output spectrum

• Sine VY (fY), Wideband VX (FA FB)– Output includes sum and difference beats– VX spectrum translated around 0 and 2 fY

f0 fy

fFb-fy fy fy+Fb2fy

Fa FbDifference beat Sum beat

Page 40: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 40

07/03/2016 - 40 ATLCE - B5 - © 2016 DDC

Mixer and nonlinearity

• Input nonlinearity generates harmonics

• Inputs to ideal mixer with order 2, 3 terms

• With multicomponentinput signals

Vx = Vxa(Fa) + Vxb(Fb),

possible intermodulation– Same problems as amplifiers

VZX

VX

VY

fY, 2fY , 3fY, ...fY

fX ± fY, 2fY ± fX , 3fY ± fX, ...

Page 41: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 41

07/03/2016 - 41 ATLCE - B5 - © 2016 DDC

Effects of mixer nonlinearity

• Input nonlinearity– Products among Vx, Vy signals

and their harmonics – Fx±Fy, 2Fx±Fy, 2Fy±Fx,

2Fy±2Fx …

• Output nonlinearity– Products among Vx, Vy signals– Harmonics of the product – Fx±Fy, 2(Fx±Fy), 3(Fy±Fx), …

• Inband terms more dangerous (intermodulation)

VZX

VX

VY

VZX

VX

VY

Page 42: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 42

07/03/2016 - 42 ATLCE - B5 - © 2016 DDC

Actual mixer real multiplier

nonlinearity harmonics

Harmonicsbeat and intermodulation

VZX

VX

VY

fX, 2fX , 3fX, ...fX

fX - fY , 2fX - fY , fX - 2fY, 3fX, ...

Page 43: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 43

07/03/2016 - 43 ATLCE - B5 - © 2016 DDC

Spectrum with nonlinearities

• Nonlinearity on Vy: components fY , 2fY, 3fY, ...– Multiple spectral translations: Vx to fY , 2fY, 3fY, …

f0 fy

fy-Fb fy

Fb 2fy

2fy-Fb 2fy+Fb

3fy

3fy-Fb fy+Fb

4fy-Fb

Page 44: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 44

07/03/2016 - 44 ATLCE - B5 - © 2016 DDC

Mixer vs. amplifiers

• Input signal: – Two sine signal, frequency f1 and f2

• Amplifier output:– Same frequency

• Mixer output:– Difference/

sum frequency

• From both:– Harmonics:

2f1, 2f2, 3f1, ...– III ord. beats

(intermodulation): 2f1-f2, 2f2-f1, ...

Page 45: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 45

07/03/2016 - 45 ATLCE - B5 - © 2016 DDC

Mixer vs. amplifiers

Good for an amplifier

Good for a mixer

Page 46: Analog and Telecommunication Electronics

ATLCE - B5 07/03/2016

© 2016 DDC 46

07/03/2016 - 46 ATLCE - B5 - © 2016 DDC

Lesson B5: final test

• Which are the techniques usable to build units with predefined nonlinearity?

• Which is the difference among 1/2/4 quadrant multipliers?

• Define feedthrough in a multiplier

• How can the Vx feedthrough error be compensated?

• Which is the main limit of transconductance multipliers?

• Draw the output spectrum for linear and nonlinear mixers with input signals: Vx: 2,3 + 2,5 MHz (2 components), Vy: 10 MHz

• An analog multiplier mixer receives on Vx a 100-120 MHz signal, and a pulse sequence (δ) a 25 MHz rate on Vy. Draw the complete output spectrum from 0 to 400 MHz at the output Vz (assume a fully linear multiplier).