134
STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL EQUATION MODELING Giorgio Russolillo CNAM, Paris [email protected]

AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

  • Upload
    lylien

  • View
    221

  • Download
    3

Embed Size (px)

Citation preview

Page 1: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

AN INTRODUCTION TO STRUCTURAL EQUATION

MODELING

Giorgio RussolilloCNAM, Paris

[email protected]

Page 2: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

•  Structural Equation Models (SEM) are complex models allowing us to study real world complexity by taking into account a whole number of causal relationships among latent concepts (i.e. the Latent Variables, LVs), each measured by several observed indicators usually defined as Manifest Variables (MVs).

•  Factor analysis, path analysis and regression are special cases of SEM.•  SEM is a largely confirmatory, rather than exploratory, technique. It is used more to

determine whether a model is valid than to find a suitable model. But some exploratory elements are allowed

Key concepts:Latent variables (unobservable by a direct way): abstract psychological variables like «intelligence», «attitude toward the brand», «satisfaction», «social status», «ability», «trust».

Manifest variables are used to measure latent concepts and they contain sizable measurement errors to be taken into account: multiple measures are allowed to be associated with a single construct.

Measurement is recognized as difficult and error-prone: the measurement error is explicitly modeled seeking to derive unbiased estimates for the relationships between latent constructs.

G. Russolillo – slide 2

Structural Equation Modeling (SEM)

Page 3: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Structural Equation Modeling (SEM)

G. Russolillo – slide 3

Several fields played a role in developing Structural Equation Models :

•  From Psychology, comes the belief that the measurement of a valid construct cannot rely on a single measure.

•  From Economics comes the conviction that strong theoretical specification is necessary for the estimation of parameters.

•  From Sociology comes the notion of ordering theoretical variables and decomposing types of effects.

Page 4: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 4

SEM: historical corner

Page 5: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Sewall Wright and Path Analysis

Path Analysis aims to study cause-effect relations among several variables by looking to the correlation matrix among them.

Sewall Wright (21 December 1889 –3 Mars 1988)

American Geneticist, son of the economist Philip Wright

Path Analysis has been developed in the 20s by S. Wright to investigate genetic problems and to help his father in economic studies.

The main newness is the introduction of a new tool to investigate cause-effect relations: the path diagram

G. Russolillo – slide 5

Page 6: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Factor Analysis and the idea of Latent Variable

Charles Edward Spearman (10 September 1863 – 17 September 1945)

English psychologist

C. Spearman proposed Factor Analysis (FA) at the begin of the ‘900s to measure intelligence in a “objective” way.

The most important input from Factor Analysis is the introduction of the concept of “factor”, in other words of the

concept of Latent Variable

The main idea is that intelligence is a MULTIDIMENSIONAL issue, thus the correlation observed among several variables should be explained by a unique underlying “factor”.

G. Russolillo – slide 6

Page 7: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Thurstone and Multiple Factor Analysis

Spearman approach has been modified in the following 40 years in order to considers more than one factor as “cause” of observed correlation among several set of manifest variables

Louis Thurstone (29 May 1887–30 September 1955)Psychologist, Psychometrician

He is the father of the Multiple Factor Analysis. In the 50’s he meets Herman Wold. They decide to co-organize “the Upspsala Symposium on Psycological Factor Analysis”.

Herman Wold (25 december 1908 – 16 february 1992) Econometrician and Statistician

Since their meeting, H. Wold started working on Latent Variables models.

G. Russolillo – slide 7

Page 8: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Causal models rediscovered

Herbert Simon (June, 15 1916 – February 9, 2001) Economist – Nobel Prize for economic in 1978

In 1954 presents a paper proving that “under certain assumptions correlation is an index of causality”

Hubert M. Blalock (23 Augut 1926 – 8 Febrary 1991) SociologistIn 1964 published the book “Causal Inference in Nonexperimental Research”, in which he defines methods able to make causal inference starting from the observed covariance matrix. He faces the problem of assessing relations among variables by means of the inferential method.

They developed the SIMON-BLALOCK techinque

G. Russolillo – slide 8

Page 9: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path analysis and Causal models

He was one of the leading sociologists in the world. He introduces the Path Analysis of Wright's in Sociology.

In the mid-60's comes to the conclusion that there is no difference between the Path Analysis of Wright and the Simon-Blalock model.

With the economist Arthur Goldberger he comes to the conclusion that there is no difference between what was known in sociology as Path Analysis and simultaneous equations models commonly used in econometrics.

Along with Goldberger he organizes a conference in 1970 in Madison (USA) where he invited Karl Jöreskog.

G. Russolillo – slide 9

Otis D. Duncan (December, 2 1921– November, 16 2004)Sociologist

Page 10: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Covariance Structure Analysis and K. Jöreskog

Karl Jöreskog Statistician, Professor at Uppsala University, Sweden

In the late 50s, he started working with Herman Wold. He discussed a thesis on Factor Analysis.

In the second half of the 60s, he started collaborating with O.D. Duncan and A. Goldberger. This collaboration represents a meeting between Factor Analysis (and the concept of latent variable) and Path Analysis (i.e. the idea behind causal models).

In 1970, at a conference organized by Duncan and Goldberger, Jöreskog presented the Covariance Structure Analysis (CSA) for estimating a linear structural equation system, later known as LISREL

G. Russolillo – slide 10

Page 11: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Soft Modeling and H. Wold

In 1975, H. Wold extended the basic principles of an iterative algorithm aimed to the estimation of the PCs (NIPALS) to a more general procedure (PLS) for the estimation of relations among several blocks of variables linked by a network of relations specified by a path diagram.

He proposed the PLS Approach to estimate Structural Equation Models (SEM) parameters, as a Soft Modeling alternative to Jöreskog's Covariance Structure Analysis

G. Russolillo – slide 11

Herman Wold (December 25, 1908 – February 16, 1992)Econometrician and Statistician

Page 12: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path Analysis with manifest variables

G. Russolillo – slide 12

Page 13: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path analysis: drawing conventions

or

or

or

Manifest Variables (VM)

Unidirectional Path (cause-effect)

Bidirectional Path (correlation)

Feedback relation or reciprocal causation

or or ε εε

x x

Errors

G. Russolillo – slide 13

Page 14: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

“Drawing” a regression model

The multiple regression model (on centred variables) :

y = γ1x1 + γ2x2 + ζ

can be “drawn” by using a Path Diagram:

x1

x2

y

ζ

Example: The Value for a brand in terms of Quality and Cost

The error is an Unobserved / Latent variable

Value, is an Observed / Manifest Variable

Quality and Cost are Observed / Manifest Variables

γ2

γ1

G. Russolillo – slide 14

Page 15: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path analysis: Wright’s Tracing rules

Tracing rules are a way to estimate the covariance between two variables by summing the appropriate connecting paths. They are:1.  Trace all paths between two variables (or a variable back to itself),

multiplying all the coefficients along a given path2.  You can start by going backwards along a single-headed arrow, but

once you start going forward along these arrows you can no longer go backwards

3.  No loops. You cannot go through the same variable more that once for a given path

4.  At maximum, there can be one double-headed arrow included in a path

5.  After tracing all the paths for a given relationship, sum all the paths

G. Russolillo – slide 15

Page 16: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Tracing rule #2: an example

G. Russolillo – slide 16

x1

x2y

ζ1

b

ac

z1

You can add the paths acb, bca, 1z1, but the path aca is not allowed

You want to estimate cov(y,y) from this model, so you have to trace all the paths and add them:

ζ2 z2

Page 17: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Tracing rule #4: an example

G. Russolillo – slide 17

Permissible paths are a, ec, db, but the path adfc is not allowed

x1

x2y

ζ

b

ad

x3

f

ez

c

You want to estimate cov(y,x1) from this model:

Page 18: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Obtaining a numerical solution for model parameters

G. Russolillo – slide 18

The multiple regression model (standardized variables) :y = ax1 + bx2 +cx3+ ζ

can be “drawn” by using a Path Diagram:DATA: correlation matrix

de

f

•  a, b and c are standardized partial correlation coefficients (path coefficients) to estimate

•  z is the residual variance to estimate•  d, e and f are covariances (correlations) between the exogenous variables.

1

1

1

x1

x2y

ζ

b

ad

x3

f

ez

c1

Page 19: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Obtaining a numerical solution for path coefficients (1)

G. Russolillo – slide 19

x1

x2y

ζ

b

ad

x3

f

ez

c

x1

x2y

ζ

b

ad

x3

f

ez

c

x1

x2y

ζ

b

ad

x3

f

ez

c

r1Y = a + ec + db → 0.70 = a + 0.24c + 0.2b

DATA: correlation matrix Writing the set of paths for r(x1,y)

Page 20: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Obtaining a numerical solution for path coefficients (2)

G. Russolillo – slide 20

x1

x2y

ζ

b

ad

x3

f

ez

c

x1

x2y

ζ

b

ad

x3

f

ez

c

x1

x2y

ζ

b

ad

x3

f

ez

c

r2Y = b + da + fc → 0.80 = b + 0.2a + 0.3c

DATA: correlation matrix Writing the set of paths for r(x2,y)

Page 21: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Obtaining a numerical solution for path coefficients (3)

G. Russolillo – slide 21

x1

x2y

ζ

b

ad

x3

f

ez

c

x1

x2y

ζ

b

ad

x3

f

ez

c

x1

x2y

ζ

b

ad

x3

f

ez

c

r3Y = c + fb + ea → 0.30 = c + 0.3b + 0.24a

DATA: correlation matrix Writing the set of paths for r(x3,y)

0.70 = a + 0.24c + 0.2b0.80 = b + 0.2a + 0.3c0.30 = c + 0.3b + 0.24a

⎧⎨⎪

⎩⎪⇒

a = 0.57b = 0.70c = −0.05

⎧⎨⎪

⎩⎪

Page 22: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Obtaining a numerical solution for the variance of the error

G. Russolillo – slide 22

ryy = 1= a2 + b2 + c2 + 2 cea( ) + 2 cfb( ) + 2 bda( ) +1z1

z = ryy − 1a1+1b1+1c1+ 2 cea( ) + 2 cfb( ) + 2 bda( )⎡⎣ ⎤⎦ = 1− a2 + b2 + c2 + 2 cea( ) + 2 cfb( ) + 2 bda( )⎡⎣ ⎤⎦

= 1− 0.572 + 0.702 + −0.05( )2 + 2 −0.05( ) 0.24( ) 0.57( ) + 2 −0.05( ) 0.30( ) 0.70( ) + 2 0.70( ) 0.20( ) 0.57( )⎡⎣ ⎤⎦ =

= 1− 0.946 = 0.054

1

1

x1

x2y

ζ

b

ad

x3

f

ez

c

1

1

Page 23: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Mediation Analysis

G. Russolillo – slide 23

Page 24: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Single mediator model

MEDIATOR

(INTERVENING) M

INDEPENDENT VARIABLE

DEPENDENT VARIABLE

G. Russolillo – slide 24

Page 25: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Mediator model: Total Effect

MEDIATOR

M

INDEPENDENT VARIABLE

X Y

DEPENDENT VARIABLE

a

1.  The independent variable causes the dependent variable:

Y = i1 + aX + e1

G. Russolillo – slide 25

Page 26: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Mediator model: Direct effect of X on M 2. The independent variable causes the potential mediator:

M = i2 + bX + e2

G. Russolillo – slide 26

MEDIATOR

M

INDEPENDENT VARIABLE

X Y

DEPENDENT VARIABLE

b

Page 27: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Mediator model: Direct Effects of M and X on Y 3.  The mediator causes the dependent variable controlling for

the independent variable:

Y = i3+ a’X + cM + e3

G. Russolillo – slide 27

MEDIATOR

M

INDEPENDENT VARIABLE

X Y

DEPENDENT VARIABLE

c

a’

Page 28: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Single mediator model

MEDIATOR

(INTERVENING) M

INDEPENDENT VARIABLE

DEPENDENT VARIABLE

b c

a’ DIRECT EFFECT

INDIRECT EFFECT

INDEPENDENT VARIABLE

X Y

DEPENDENT VARIABLE

a TOTAL EFFECT

•  Mediated (Indirect) effect : bc

•  Direct effect : a’

•  Total effect : a = bc+a’

G. Russolillo – slide 28

Page 29: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Single mediator model: an example

G. Russolillo – slide 29

Cognitive ability (IQ)

Years in school

Salary

ζsalary

c

a

b z1

ζIQ

z2

DATA: covariance matrix

Structural Model

RESULTS: estimates

Page 30: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path Models with Manifest Variables

x1

ζ1

y2 y1

ζ2

γ11 β21

y1 = γ11 x1 + ζ1

y2 = β21 y1 + ζ2

y = Γx +Βy +ζG. Russolillo – slide 30

The multiple regression model can be generalized to paths where endogenous variables are on their turn causative of others endogenous variables.

Γ =γ 110

⎣⎢⎢

⎦⎥⎥

# endo # exo

Β = 0 0β21 0

⎣⎢⎢

⎦⎥⎥

# endo # endo

ζ =ζ1ζ2

⎣⎢⎢

⎦⎥⎥

# endo

y =y1y2

⎣⎢⎢

⎦⎥⎥

# endo

x = x1[ ]# exo

Page 31: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path Models with Manifest Variables

y1 = γ11 x1 + γ12 x2 + ζ1

y2 = β21 y1 + ζ2

y = Γx +Βy +ζ

x1

ζ1

y2 y1

ζ2 γ11

β21

x2 γ12

y = I −B( )−1 Γx +ζ( )G. Russolillo – slide 31

Γ =γ 11 γ 120 0

⎣⎢⎢

⎦⎥⎥

# endo # exo

x =x1x2

⎣⎢

⎦⎥

# exo

y =y1y2

⎣⎢⎢

⎦⎥⎥

# endo

Β = 0 0β21 0

⎣⎢⎢

⎦⎥⎥

# endo # endo

ζ =ζ1ζ2

⎣⎢⎢

⎦⎥⎥

# endo

Page 32: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Analysing covariance structures of Path models

G. Russolillo – slide 32

Σ =Σxx

Σyx Σyy

⎣ ⎢

⎦ ⎥

Population Covariance matrix

C = Σ Ω( ) = Σ Γ,B,Ψ( )Path Coefficients Structural Error Covariance

x1

ζ1

y2 y1

ζ2 γ11

β21

x2 γ12

Assuming that:i)  the MVs are centeredii)  The covariance between structural error and exogenous MVs is equal to zero

We can write the covariance matrix among the MVs in terms of model parameters (implied covariance matrix):

Page 33: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

The sub-matrix ΣYY

G. Russolillo – slide 33

Covariance matrix of the endogenous MVs:

y = I−B( )−1 Γx +ζ( )

Σ yy = E yy '( ) = E I−B( )−1 Γx +ζ( )⎡⎣ ⎤⎦ I−B( )−1 Γx +ζ( )⎡⎣ ⎤⎦′⎛

⎝⎜⎞⎠⎟=

= E I−B( )−1 Γx +ζ( )⎡⎣ ⎤⎦ x ' ′Γ + ′ζ( ) I−B( )−1′⎡⎣⎢

⎤⎦⎥

⎛⎝⎜

⎞⎠⎟ =

= I−B( )−1E Γxx ' ′Γ +ζx ' ′Γ + Γx ′ζ +ζ ′ζ( ) I−B( )−1′ == I−B( )−1 ΓE xx '( ) ′Γ + E ζx '( ) ′Γ + ΓE x ′ζ( ) + E ζ ′ζ( )⎡⎣ ⎤⎦ I−B( )−1′

E ζ ′ ζ ( ) = Ψlet Σ yy Ω( ) = I−B( )−1 ΓΣ xx ′Γ +Ψ( ) I−B( )−1′

Page 34: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

The sub-matrix ΣXY

G. Russolillo – slide 34

Σ xy Ω( ) = Σ xx ′Γ I −B( )−1'

Cross-covariance matrix between endogenous and exogenous MVs expressed as a function of model parameters

y = I−B( )−1 Γx +ζ( )xy ' = x 'Γ '+ζ '( ) I−B( )−1'

xy ' = xx 'Γ '+ xζ '( ) I−B( )−1'

E xy '( ) = Σ xxΓ ' I−B( )−1'

G. Russolillo – slide 34

Page 35: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path model implied covariance matrix

G. Russolillo – slide 35

Population Covariance matrix

“Implied” covariance matrix

Empirical covariance matrix

Σ =Σ xx

Σ yx Σ yy

⎣⎢⎢

⎦⎥⎥

S =sxxsyx syy

⎣ ⎢

⎦ ⎥

C ≈ S ≈ Σ

C = Σ Ω( ) =Σ xx

I−B( )−1ΓΣ xx I−B( )−1 ΓΣ xx ′Γ +Ψ( ) I−B( )−1′⎡

⎢⎢

⎥⎥

Page 36: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

An example

G. Russolillo – slide 36

x1

ζ1

y2 y1

ζ2

γ11 β21

y1 = γ11 x1 + ζ1

y2 = β21 y1 + ζ2

Γ =γ 110

⎣⎢⎢

⎦⎥⎥

# endo # exo

Β = 0 0β21 0

⎣⎢⎢

⎦⎥⎥

# endo # endo

σ x1,x1

σ y1,x1σ y1,y1

σ y2 ,x1σ y2 ,y1

σ y2 ,y2

⎢⎢⎢⎢

⎥⎥⎥⎥

=

σ x1,x1

γ 11σ x1,x1γ 112σ x1,x1

+ψ 11

β21γ 11σ x1,x1β21 γ 11

2σ x1,x1+ψ 11( ) β21

2 γ 112σ x1,x1

+ψ 11( ) +ψ 22

⎢⎢⎢⎢

⎥⎥⎥⎥

Ψ =ψ 11 00 ψ 22

⎣⎢⎢

⎦⎥⎥

# endo # endo

Σ xx = σ x1,x1⎡⎣ ⎤⎦

# exo # exo

Σ =Σ xx

I −B( )−1ΓΣ xx I −B( )−1 ΓΣ xx ′Γ +Ψ( ) I −B( )′−1

⎢⎢⎢

⎥⎥⎥

Page 37: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 37

Model identification

Page 38: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Some consideration on model identification

A model is identifiable if its parameters are uniquely determined.

DF = # equations (knowns) - # parameters to be estimated (unknowns)

Degrees of freedom (DF)

Necessary model identification condition:

degree of freedom (DF) higher or different from zero, i.e. DF≥ 0

This is a necessary (but not sufficient) condition

G. Russolillo – slide 38

Page 39: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 39

Perfect Identification:

A statistical model is perfectly identified if the known information available implies that there is one best value for each parameter in the model whose value is not known.

à ZERO degrees of freedom

A perfectly identified model yields a trivially perfect fit, making the test of fit uninteresting.

Overidentification:A model is overidentified if there are more knowns than unknowns. Overidentified models may not fit well and this is their interesting feature.

à degrees of freedom > 0

Some consideration on model identification

Page 40: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path Model identification

Necessary (but not sufficient) condition

T-rule: A Path Model (and more generally a SEM) is identified if the covariance matrix may be uniquely decomposed in function of the model parameters à if its DF ≥ 0, that is if the number of covariances is larger than the number of parameters to be estimated

G. Russolillo – slide 40

DF = 12P +Q( ) P +Q +1( ) − t⎡

⎣⎢⎤⎦⎥

# of parameters to be estimated

# of MVs in the model:P = # of exogenous MVs

Q = # of endogenous MVs

12P +Q( ) P +Q +1( ) Number of unique elements in the Σ matrix

Page 41: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 41

Model identification in Path Analysis 1.  t-rule (necessary condition): the number of redundant elements in the

covariance matrix of the observed variables must be greater of equal to the number of the unknown parameters

2.  B=0 rule (sufficient condition) no endogenous variable affects any other endogenous variable

3.  Recursive rule (sufficient condition), that is B is triangular and Ψ is diagonal

4.  Order Condition (necessary condition): The number of variables excluded from each equation must be at least M – 1 (M is the number of the endogenous variables), all elements in Ψ are free (no constraints).

5.  Rank condition:1. Let’s consider the matrix obtained by joining the matrixes (I-B) and -Γ. 2. Delete the non-zero columns of the ith row of this matrix. A necessary and sufficient condition for the identification of the ith equation is that the rank of the resulting matrix equals (M – 1) (no constraints in Ψ)

Page 42: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 42

Confirmatory Factor Analysis

Page 43: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Factor Analysis: drawing conventions

or

or

or

Latent Variables (LV)

Manifest Variables (VM)

Bidirectional Path (correlation)

or or δ δδ

ξ

x x

Errors

G. Russolillo – slide 43

ξ

Page 44: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Confirmatory Single Factor Model

x1 = λ11 ξ1 + δ1

x2 = λ21 ξ1 + δ2

x3 = λ31 ξ1 + δ3

x =x1x2x3

⎢⎢⎢

⎥⎥⎥

Λ x =λ11λ21λ31

⎢⎢⎢

⎥⎥⎥

δ =δ1δ2δ3

⎢⎢⎢

⎥⎥⎥

ξ = ξ1[ ]x = Λ xξ +δ

x3 x2 x1

ξ1

δ2 δ1 δ3

λ11 λ21 λ31

G. Russolillo – slide 44

Factor Loading

Unique Factor

Common Factor

x = manifest variable ξ = latent variableδ = measurement errors

Page 45: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Multiple Factor Model x1 = λ11 ξ1 + δ1 ,x2 = λ21 ξ1 + λ22 ξ2 + δ2 x3 = λ31 ξ1 + δ3 x4 = λ42 ξ2 + δ4

x5 = λ52 ξ2 + δ5 x6 = λ62 ξ2 + δ6

x =

x1x6

"

#

$ $ $

%

&

' ' '

Λ x =

λ11 0

λ21 λ22λ31 0

0 λ420 λ520 λ62

"

#

$$$$$$$$$

%

&

'''''''''

δ =

δ1δ6

#

$

% % %

&

'

( ( (

ξ =ξ1ξ2

#

$ % &

' (

x = Λxξ + δ

x4 x3 x5 x6 x2 x1

ξ1 ξ2

δ1 δ2 δ3 δ4 δ5 δ6

λ11 λ21 λ31

λ22

λ42 λ52

λ62

G. Russolillo – slide 45

Page 46: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Analysing covariance structures in CF models

G. Russolillo – slide 46

C = Σ Ω( ) = Σ Λ,Φ,Θ( )Loadings LV Covariance Measurement Error Covariance

Assuming that:

i)  the MVs, the LV and the errors are centered

ii)  Measurement errors and LVs do not covariate

We can write the covariance matrix among the MVs in terms of model parameters (implied covariance matrix):

x4 x3 x5 x6 x2 x1

ξ1 ξ2

δ1 δ2 δ3 δ4 δ5 δ6

λ11 λ21 λ31

λ42 λ52

λ62

ϕ12

θ 12

Page 47: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Analysing covariance structures in CF models

Σ Ω( ) = E(x ′x ) = E Λξ +δ( ) Λξ +δ( )′⎡⎣⎢

⎤⎦⎥=

= E Λξ +δ( ) ′ξ ′Λ + ′δ( )⎡⎣ ⎤⎦ =

= ΛE(ξ ′ξ ) ′Λ + Λ E(ξ ′δ )+ E(δ ′ξ ) ′Λ + E(δ ′δ )

The covariance matrix of the MVs can be rewritten in terms of model parameters:

Σ Ω( ) = ΛΦΛ ' +Θ

x = Λxξ + δ

E ξξ '( ) = Φ

E δδ '( ) =Θlet

Confirmatory factor model :

G. Russolillo – slide 47

Page 48: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Latent or Emergent Constructs?

Latent Construct

Emergent Construct

Reflective (or Effects) Indicators Formative (or Causal) Indicators

e.g. Consumer’s attitudes, feelings

•  Constructs give rise to observed variables (unique causeè unidimensional)

•  Aim at accounting for observed variances or covariances

•  These indicators should covary: changes in one indicator imply changes in the others.

•  Internal consistency is measured (es. Cronbach’s alpha)

e.g. Social Status, Perceptions

•  Constructs are combinations of observed variables(multidimensional)

•  Not designed to account for observed variables

•  These indicators need not covary: changes in one indicator do not imply changes in the others.

•  Measures of internal consistency do not apply.

x1j x2j x3j x4j x1j x2j x3j x4j

G. Russolillo – slide 48

Page 49: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

An Example of CFA in Psychology

G. Russolillo – slide 49

A dataset by Long (J. Scott Long : Confirmatory Factor Analysis, SAGE Publications, 1986)

- 603 heads of families from the region of Hennepin, Illinois - Observed (manifest) variables: PSY67 = Psychological disorders 1967 PHY67 = Psychophysiological disorders 1967 PSY71 = Psychological disorders 1971 PHY71 = Psychophysiological disorders 1971

Page 50: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

An Example of CFA in Psychology

G. Russolillo – slide 50

Data PSY67 PHY67 PSY71 PHY71 n 603 603 603 603 corr PSY67 1 . . . corr PHY67 0.454 1 . . corr PSY71 0.526 0.247 1 . corr PHY71 0.377 0.309 0.549 1 stddev 1.45 0.555 1.38 0.503

Data are covariances between manifest variables :

Cov(X p ,X p ' ) =Cor(X p ,X p ' )× Var(X p ) × Var(X p ' )

Page 51: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

An Example of CFA in Psychology

G. Russolillo – slide 51

XS1

PSY67

D1

L11

1

PHY67

D2

L21

1

XSI2

PSY71

D3

L32

1

PHY71

D4

L42

1

phi12

theta13 theta24

Common Factors

Unique factors

The 1st model specified by Long

Page 52: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Long’s model identification

The 1st model specified by Long: Study of the specified model

XS1

PSY67

D1

L11

1

PHY67

D2

L21

1

XSI2

PSY71

D3

L32

1

PHY71

D4

L42

1

phi12

theta13 theta24

Model parameters λ11, λ21, λ12, λ22 ϕ11 = Var(ξ1) , ϕ22 = Var(ξ2) ,

ϕ12 = Cov(ξ1, ξ2)

θ11 = Var(δ1) , θ22 = Var(δ2) ,

θ33 = Var(δ3) , θ44 = Var(δ4)

θ13 = Cov(δ1, δ3) , θ24 = Cov(δ2, δ4)

Factor equations PSY67 = λ11 ξ1 + δ1

PHY67 = λ21 ξ1 + δ2 PSY71 = λ12 ξ2 + δ3 PHY71 = λ22 ξ2 + δ4

Model equations and model parameters

G. Russolillo – slide 52

Page 53: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Long’s model identification (2)

Model parameters λ11, λ21, λ12, λ22 ϕ11 = Var(ξ1) , ϕ22 = Var(ξ2) , ϕ12 = Cov(ξ1, ξ2) θ11 = Var(δ1) , θ22 = Var(δ2) ,

θ33 = Var(δ3) , θ44 = Var(δ4) θ13 = Cov(δ1, δ3) , θ24 = Cov(δ2, δ4)

Factor Equations

x =

x1x2x3x4

!

"

######

$

%

&&&&&&

=

λ11 0

λ21 0

0 λ120 λ22

!

"

######

$

%

&&&&&&

Λ

ξ1ξ2

!

"

##

$

%

&&

ξ

+

δ1δ2δ3δ4

!

"

######

$

%

&&&&&&

δ

= Λξ +δ

Φ = E(ξξ ') =φ11 φ12φ21 φ22

"

#

$$

%

&

''

Θ = E(δδ ') =

θ11 0 θ13 0

0 θ22 0 θ24θ13 0 θ33 0

0 θ24 0 θ44

"

#

$$$$$$

%

&

''''''

Σ = E(xx ') = E (Λξ +δ)(Λξ +δ) '#$ %&

= ΛE(ξξ ')

ΦΛ '+ E(δδ ')

Θ

= ΛΦΛ '+Θ

Covariance Decomposition

The 1st model specified by Long: Study of the specified model

G. Russolillo – slide 53

Page 54: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Model identification in CFA: Scaling a LV

G. Russolillo – slide 54

ξ1

x1

x2

x3

λx21

λx31

δ1

δ2

δ3

λx11 = 1

ξ1

x1

x2

x3

λx21

λx31

δ1

δ2

δ3

λx11 var(ξ1) = 1

Unstandardized Estimates

Standardized Estimates

•  In CFA, the scale of a LV is not determined. So we need give a scale to the LV imposing a contraint either on the LV variance or on one loading.

•  By consequence, in a LV Path Model we need to scale each exogenous LV

Page 55: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Model identification in CFA: the t-rule

G. Russolillo – slide 55

The t-rule requires that:

This is a necessary condition (but not sufficient): the number of free parameters (parameters to be estimates) must be less than or equal to the number of unique elements in the covariance matrix of X

t ≤ 12P P +1( )

# of parameters to be estimated

# of MVs in a CFA model

Page 56: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Model identification: the Three-Indicator Rule

G. Russolillo – slide 56

The Three-Indicator Rule is a sufficient condition

a CFA model is identified if

1.  every latent construct is associated with at least 3 manifest variables;

2.  each manifest variable is associated with only one latent construct, i.e. each row of Λ has only one nonzero element

3.  the unique factors are uncorrelated, i.e. Θ is a diagonal matrix

Page 57: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Model identification in CFA: the Two-Indicator Rule

G. Russolillo – slide 57

The Two-Indicator Rule is a sufficient condition

a CFA model is identified if

1.  every latent construct is associated with at least 2 manifest variables;

2.  each manifest variable is associated with only one latent construct, i.e. each row of Λ has only one nonzero element

3.  the unique factors are uncorrelated, i.e. Θ is a diagonal matrix

4.  There are at least two LVs with non-zero covariance

Page 58: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 58

(Assuming that all LVs are given a scale)

Identification rule Necessary Condition Sufficient Condition

T-rule Yes No

Three-Indicator Rule No Yes

Two-Indicator Rule No Yes

Summing up identification rules in CFA

Page 59: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Long’s model identification (3)

Model parameters λ11, λ21, λ12, λ22 ϕ11 = Var(ξ1) , ϕ22 = Var(ξ2) , ϕ12 = Cov(ξ1, ξ2) θ11 = Var(δ1) , θ22 = Var(δ2) ,

θ33 = Var(δ3) , θ44 = Var(δ4) θ13 = Cov(δ1, δ3) , θ24 = Cov(δ2, δ4)

Factor Equations

x =

x1x2x3x4

!

"

######

$

%

&&&&&&

=

λ11 0

λ21 0

0 λ120 λ22

!

"

######

$

%

&&&&&&

Λ

ξ1ξ2

!

"

##

$

%

&&

ξ

+

δ1δ2δ3δ4

!

"

######

$

%

&&&&&&

δ

= Λξ +δ

Φ = E(ξξ ') =φ11 φ12φ21 φ22

"

#

$$

%

&

''

Θ = E(δδ ') =

θ11 0 θ13 0

0 θ22 0 θ24θ13 0 θ33 0

0 θ24 0 θ44

"

#

$$$$$$

%

&

''''''

Σ = E(xx ') = E (Λξ +δ)(Λξ +δ) '#$ %&

= ΛE(ξξ ')

ΦΛ '+ E(δδ ')

Θ

= ΛΦΛ '+Θ

Covariance Decomposition

The 1st model specified by Long: Study of the specified model

G. Russolillo – slide 59

Page 60: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Long’s model identification (4)

This model is not identifiable The parameters of the model may not be uniquely expressed as a function of the covariances between the manifest variables. N° of parameters > N° of covariances Some constraints are needed.

The 1st model specified by Long: Study of the specified model

XS1

PSY67

D1

L11

1

PHY67

D2

L21

1

XSI2

PSY71

D3

L32

1

PHY71

D4

L42

1

phi12

theta13 theta24

Covariances

PSY67 PHY67 PSY71 PSY71PSY67PHY67PSY71PHY71

σ11 σ12σ22

σ13σ23σ33

σ14σ24σ34σ44

P(P+1)/2=10

Model parameters λ11, λ21, λ12, λ22 ϕ11 = Var(ξ1) , ϕ22 = Var(ξ2) ,

ϕ12 = Cov(ξ1, ξ2)

θ11 = Var(δ1) , θ22 = Var(δ2) ,

θ33 = Var(δ3) , θ44 = Var(δ4)

θ13 = Cov(δ1, δ3) , θ24 = Cov(δ2, δ4)

13

Matrix Σ

G. Russolillo – slide 60

Page 61: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Long’s model identification (5)

The 1st model specified by Long is not identifiable…we need to add some constraints:

XS1

PSY67

D1

L11

1

PHY67

D2

L21

1

XSI2

PSY71

D3

L32

1

PHY71

D4

L42

1

phi12

theta13 theta24

à Normalisation of the common factors

Var(ξ1) = ϕ11 = 1 , Var(ξ2) = ϕ22 = 1

à Stability of the loadings along time:

λPSY67,1 = λPSY71,2

λPHY67,1 = λPHY71,2 à Independence between unique factors:

θ13 = Cov(δ1, δ3) = 0

θ24 = Cov(δ2, δ4) = 0

1

XSI1

PSY67

theta11

D1

L11

1

PHY67

theta22

D2

L21

1

1

XSI2

PSY71

theta33

D3

L11

1

PHY71

theta44

D4

L21

1

phi12

New model

G. Russolillo – slide 61

Page 62: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Long’s model identification (6) The 2nd model (identifiable) specified by Long: Study of the specified model

1

XSI1

PSY67

theta11 D1

L11

1

PHY67

theta22 D2

L21

1

1

XSI2

PSY71

theta33 D3

L11

1 PHY71

theta44 D4

L21

1

phi12 G. Russolillo – slide 62

Page 63: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Long’s model identification (7)

x =

x1x2x3x4

!

"

######

$

%

&&&&&&

=

λ11 0

λ21 0

0 λ110 λ21

!

"

######

$

%

&&&&&&

Λ

ξ1ξ2

!

"

##

$

%

&&

ξ

+

δ1δ2δ3δ4

!

"

######

$

%

&&&&&&

δ

= Λξ +δ

Factor Equations

The 2nd model specified by Long: Study of the specified model

Model parameters λ11, λ21

ϕ12 = Cov(ξ1, ξ2) θ11 = Var(δ1) , θ22 = Var(δ2) , θ33 = Var(δ3) , θ44 = Var(δ4)

Φ = E(ξξ ') =1 φ12φ12 1

"

#

$$

%

&

''

11

22

33

44

0 0 00 0 0

( ')0 0 00 0 0

E

θθ

δδθ

θ

⎡ ⎤⎢ ⎥⎢ ⎥Θ = =⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

Σ = E(xx ') = E (Λξ +δ)(Λξ +δ) '#$ %&

= ΛE(ξξ ')

ΦΛ '+ E(δδ ')

Θ

= ΛΦΛ '+Θ

Covariance Decomposition

G. Russolillo – slide 63

Page 64: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Long’s model identification (8)

Model parameters λ11, λ21 ϕ12 = Cov(ξ1, ξ2) θ11 = Var(δ1) , θ22 = Var(δ2) ,

θ33 = Var(δ3) , θ44 = Var(δ4)

The 2nd model specified by Long Study of the specified model

Covariances

PSY67 PHY67 PSY71 PSY71PSY67PHY67PSY71PHY71

σ11 σ12σ22

σ13σ23σ33

σ14σ24σ34σ44

P(P+1)/2=10

7

Matrix Σ 1

XSI1

PSY67

theta11

D1

L11

1

PHY67

theta22

D2

L21

1

1

XSI2

PSY71

theta33

D3

L11

1

PHY71

theta44

D4

L21

1

phi12

This model is identifiable The number of parameters (7) is finally less than the number of covariances (10) Degrees of freedom (DF) = 10 - 7 = 3

G. Russolillo – slide 64

Page 65: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Applying CFA to Long’s second model (1)

The 2nd model specified by Long Study of the specified model

1

XSI1

PSY67

theta11

D1

L11

1

PHY67

theta22

D2

L21

1

1

XSI2

PSY71

theta33

D3

L11

1

PHY71

theta44

D4

L21

1

phi12

σ11 σ12 σ13 σ14σ 22 σ 23 σ 24

σ 33 σ 34σ 44

!

"

######

$

%

&&&&&&

=

λ12 λ1λ2 φ12λ1

2 φ12λ1λ2λ22 φ12λ1λ2 φ12λ2

2

λ12 λ1λ2

λ22

!

"

######

$

%

&&&&&&

+

θ1 0 0 0

θ2 0 0

θ3 0

θ4

!

"

######

$

%

&&&&&&

ΘΛΦΛΣ xx +′=

G. Russolillo – slide 65

Page 66: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Applying CFA to Long’s second model (2) Visualising the estimates for model 2 by Long

2 2

2 2

2

2

.52 0 0 01.24 1.24*.30 .67*1.24 .67*1.24*.30.22 0 0.30 .67*1.24*.30 .67*.30

.40 01.24 1.24*.30.16.30

C

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

C =

λ̂12 λ̂1λ̂2 φ̂12λ̂1

2 φ̂12λ̂1λ̂2

λ̂22 φ̂12λ̂1λ̂2 φ̂12λ̂2

2

λ̂12 λ̂1λ̂2

λ̂22

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

+

θ̂1 0 0 0

θ̂2 0 0

θ̂3 0

θ̂4

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

1.00

XSI1

PSY67

.52

D1

1.24

1

PHY67

.22

D2

.30

1

1.00

XSI2

PSY71

.40

D3

1.24

1

PHY71

.16

D4

.30

1

.67

G. Russolillo – slide 66

Page 67: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Applying CFA to Long’s second model (3)

Observed (sample) and Implied Covariances and Correlations from model 2 by Long

Example: Var(PHY71) = Var(.30*XSI2 + DPHI71) = .302Var(XSI2) + Var(DPHI71) = .302 + .16 = .25

var PHY 71( ) = var λPHY 71φXSI 2 +δPHY 71( ) = λPHY 712 var φXSI 2( )+ var δPHY 71( )

G. Russolillo – slide 67

Page 68: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 68

Path modeling with Latent Variables

Page 69: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Two families of methods

The aim is to reproduce the sample covariance matrix of the manifest variables by means of the model parameters: •  the implied covariance matrix of the manifest variables is a function of the model parameters•  it is a confirmatory approach aimed at validating a model (theory building)

The aim is to provide an estimate of the latent variable scores in such a way that they are the most correlated with one another (according to path diagram structure) and the most representative of each corresponding block of manifest variables.•  latent variable score estimation plays a main role•  it is more an exploratory approach, than a confirmatory one (operational model strategy)

SEM

Covariance-basedMethods

Component-basedMethods

G. Russolillo – slide 69

Page 70: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path model with LVs: drawing conventions

or

or

or

or

Latent Variables (LV)

Manifest Variables (VM)

Unidirectional Path (cause-effect)

Bidirectional Path (correlation)

Feedback relation or reciprocal causation

or or ε εε

η η

x x

Errors

G. Russolillo – slide 70

Page 71: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Path model with latent variables

Structural Model or inner model

Measurement Model or outer model

ξ1

η2

η1

x1

x2

x3

y1

y3

y2

y4

y5

y6

y7

Path Coefficients

γ21

β21

λx21

λx31

Loadings

δ1

ε3ζ2

γ11

ζ1

λy11

λy21

ε4

ε5

ε6

ε7

δ2

δ3

ε1

ε2

λx11

λy32 λy42

λy52 λy62 λy72

Loadings

G. Russolillo – slide 71

x = manifest variable associated to exogenous latent variablesy = manifest variable associated to endogenous latent variablesξ = exogenous latent variableη = endogenous latent variableδ = measurement error associated to exogenous latent variablesε = measurement error associated to endogenous latent variablesζ = structural error

Page 72: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

x1 = λx11 ξ1 + δ1

x2 = λx21 ξ1 + δ2

x3 = λx31 ξ1 + δ3

x =x1x2x3

⎢⎢⎢

⎥⎥⎥Λx =

λ11

x

λ21

x

λ31

x

⎢⎢⎢⎢

⎥⎥⎥⎥

δ =δ1δ 2δ 3

⎢⎢⎢

⎥⎥⎥

ξ = ξ1[ ]

x = Λxξ + δ

For the exogenous MVsξ1

x1

x2

x3

λx21

λx31

δ1

δ2

δ3

λx11

The measurement (outer) model

G. Russolillo – slide 72

Page 73: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

The measurement (outer) model

x = Λ xξ +δ

For the exogenous MVs (A reflective scheme must hold)

Vector of the exogenous MVs

RECTANGULAR matrix with the loadings linking each exogenous MV to the corresponding exogenous LV

Vector of the exogenous LVs

Vector of the measurement errors associated to the exogenous MVs

G. Russolillo – slide 73

Page 74: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

y3

η2

η1

y1

y2

y4

y5

y6

y7

ε3

λy 11

λy 21

ε4

ε5

ε6

ε7

ε1

ε2

λy32 λy42

λy62 λy72

λy52

y =

y1y2y3y4y5y6y7

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

ε =

ε1ε2ε3ε4ε5ε6ε7

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

η =η1η2

⎣⎢

⎦⎥Λy =

λ11 0λ21

00000

0λ32

λ42

λ52

λ62

λ72

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⎟

y = Λ yη +ε

For the endogenous MVs y3

y1 = λ y11η1 + ε1y2 = λ y21η1 + ε2y3 = λ y32η2 + ε3y4 = λ y42η2 + ε4y5 = λ y52η2 + ε5y6 = λ y62η2 + ε6y7 = λ y72η2 + ε7

The measurement (outer) model

G. Russolillo – slide 74

Page 75: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

ξ1

η2

η1

γ21

β21

ζ2

γ11

ζ1

η1 = γ11 ξ1 + ζ1 η2 = γ21 ξ1 + β21η 1 + ζ2

Γ =γ 11γ 21

⎣⎢⎢

⎦⎥⎥Β =

0 0β21 0

⎣⎢⎢

⎦⎥⎥

η = Γξ +Βη +ζ

ζ =ζ1ζ 2

⎣⎢⎢

⎦⎥⎥

η =η1η2

⎣⎢⎢

⎦⎥⎥

ξ = ξ1[ ]

The structural (inner) model

G. Russolillo – slide 75

Page 76: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

The structural (inner) model

Vector of the endogenous LVs

Vector of the errors associated to the endogenous LVs

Vector of the exogenous LVs

η = Γξ + Βη + ζ

Path-coefficients Matrix: it is a SQUARED matrix with the path coefficients of the endogenous LVs. On the diagonal there are only zeros

Path-coefficients Matrix: it is a RECTANGULAR matrix with the path coefficients of the exogenous LVs.

G. Russolillo – slide 76

Page 77: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

The Structural Equation Model

η = Γξ + Βη + ζ

ξ1

η2

η1

x1

x2

x3

y1

y3

y2

y4

y5

y6

y7

ε1

ε2

δ2

δ1

ε3 ζ2 ε4

ε5

ε6

ε7

δ3

ζ1

y = Λyη + ε

x = Λxξ + δ

η = I−B( )−1 Γξ + ζ( )

Measurement Models

Structural Model

G. Russolillo – slide 77

Page 78: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

To summarize

G. Russolillo – slide 78

ξ1

η2

η1

x1

x2

x3

y1

y3

y2

y4

y5

y6

y7

ε1

ε2

δ2

δ1

ε3 ζ2 ε4

ε5

ε6

ε7

δ3

ζ1

x4 x3 x5 x6 x2 x1

ξ1 ξ2

δ1 δ2 δ3 δ4 δ5 δ6

x1

x2

y

ζ

Path Analysis with Manifest Variables Confirmatory Factor Model

Path Analysis with Latent Variables (Structural Equation Model)

Page 79: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Model assumptions

ξ1

η2

η1

x1

x2

x3

y1

y3

y2

y4

y5

y6

y7

ε1

ε2

δ2

δ1

ε3 ζ2 ε4

ε5

ε6

ε7

δ3

ζ1

y = Λyη + ε

x = Λxξ + δ

η = I−B( )−1 Γξ + ζ( )

Assuming that:

i) the MVs, the LV and the errors (both in structural and measurement models) are centered

ii) Two errors of different type (structural, exogenous measurement and endogenous measurement) do not covariate

iii) Measurement errors and LVs do not covariate

iv) The covariance between structural error and exogenous LVs is equal to zero

G. Russolillo – slide 79

Page 80: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

y = Λyη + ε

x = Λxξ + δ

η = I−B( )−1 Γξ + ζ( )

E x( ) = 0, E y( ) = 0, E ξ( ) = 0, E η( ) = 0, E δ( ) = 0, E ε( ) = 0, E ζ( ) = 0

E δ ′ ε ( ) = 0, E ζ ′ δ ( )( ) = 0, E ζ ′ ε ( ) = 0

E δ ′ ξ ( ) = 0, E δ ′ η ( ) = 0, E ε ′ ξ ( ) = 0, E ε ′ η ( ) = 0

E ζ ′ ξ ( ) = 0

ξ1

η2

η1

x1

x2

x3

y1

y3

y2

y4

y5

y6

y7

ε1

ε2

δ2

δ1

ε3 ζ2 ε4

ε5

ε6

ε7

δ3

ζ1

Hypotheses on Expectations

Hypotheses on Correlations

G. Russolillo – slide 80

Model assumptions

Page 81: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

We can write the covariance matrix among the MVs in terms of model parameters (implied covariance matrix)

G. Russolillo – slide 81

Analysing the covariance in SEMs

Σ =Σxx

Σyx Σyy

⎣ ⎢

⎦ ⎥

ξ1

η2

η1

x1

x2

x3

y1

y3

y2

y4

y5

y6

y7

ε1

ε2

δ2

δ1

ε3 ζ2 ε4

ε5

ε6

ε7

δ3

ζ1

Population Covariance matrix

C = Σ Ω( ) = Σ Γ,B,Λx ,Λy ,Φ,Ψ,Θδ ,Θε( )Path Coefficients Loadings Exog. LV

CovarianceMeasurement Error Covariance

Structural Error Covariance

Page 82: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Σ Ω( ) =ΛxΦΛ 'x+Θδ

Λy I−B( )−1Γ ′Φ Λ 'x Λy I−B( )−1 ΓΦ ′Γ +Ψ( ) I−B( )−1′⎡⎣⎢

⎤⎦⎥Λ 'y+Θε

⎢⎢⎢

⎥⎥⎥

Implied Covariance matrix Σ(Ω)

Σ =Σxx

Σyx Σyy

⎣ ⎢

⎦ ⎥

It can be rewritten as a function of model parameters

Covariance matrix of the population

Covariance matrix of the population implied by the model

G. Russolillo – slide 82

Page 83: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

The sub-matrix ΣXX

ΣXX Ω( ) = E(x ′x ) = E Λxξ +δ( ) Λxξ +δ( )′⎡⎣⎢

⎤⎦⎥=

= E Λxξ +δ( ) ′ξ ′Λx + ′δ( )⎡⎣ ⎤⎦ =

= ΛxE(ξ ′ξ ) ′Λx + ΛxE(ξ ′δ )+ E(δ ′ξ ) ′Λx + E(δ ′δ )

The covariance matrix of the exogenous MVs can be rewritten in terms of model parameters:

ΣXX Ω( ) = ΛxΦΛ'x +Θδ

x = Λxξ + δ

E ξξ '( ) = Φ

E δδ'( ) = Θδ

let

Outer model for exogenous blocks :

G. Russolillo – slide 83

Page 84: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling �

ΣXX Ω( ) = ΛxΦΛ'x +Θδ

Covariance matrix of the exogenous MVs expressed as a function of model parameters

G. Russolillo – slide 84

The sub-matrix ΣXX

Page 85: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling �

ΣYY Ω( ) = E(y ′ y ) = E Λyη + ε( ) Λyη + ε( )′⎡ ⎣ ⎢

⎤ ⎦ ⎥ =

= E Λyη + ε( ) ′ η ′ Λ y + ′ ε ( )[ ] =

= E Λyη ′ η ′ Λ y + ε ′ η ′ Λ y + Λyη ′ ε + ε ′ ε [ ] =

= ΛyE(η ′ η ) ′ Λ y + ΛyE(ε ′ η ) + E(η ′ ε ) ′ Λ y + E(ε ′ ε )

The covariance matrix of the exogenous MVs can be rewritten in terms of model parameters:

ΣYY Ω( ) = ΛyE η ′ η ( )Λ'y +Θε

E ε ′ ε ( ) = Θεlet

Outer model for the endogenous blocks :

y = Λyη + ε

This matrix is a function of other parameters

G. Russolillo – slide 85

The sub-matrix ΣYY

Page 86: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Covariance matrix of the endogenous LVs:

η = I−B( )−1 Γξ + ζ( )

Σηη = E(η ′ η ) = E I−B( )−1 Γξ + ζ( )[ ] I−B( )−1 Γξ + ζ( )[ ]′⎛

⎝ ⎜

⎠ ⎟ =

= E I−B( )−1 Γξ + ζ( )[ ] ′ ξ ′ Γ + ′ ζ ( ) I−B( )−1′⎡

⎣ ⎢

⎦ ⎥

⎝ ⎜

⎠ ⎟ =

= I−B( )−1E Γξ ′ ξ ′ Γ + ζ ′ ξ ′ Γ + Γξ ′ ζ + ζ ′ ζ ( ) I−B( )−1′ =

= I−B( )−1 ΓE ξ ′ ξ ( ) ′ Γ + E ζ ′ ξ ( ) ′ Γ + ΓE ξ ′ ζ ( ) + E ζ ′ ζ ( )[ ] I−B( )−1′

E ζ ′ ζ ( ) = Ψlet

Σηη Ω( ) = I−B( )−1 ΓΦ ′ Γ + Ψ( ) I−B( )−1′

G. Russolillo – slide 86

The sub-matrix ΣYY

Page 87: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

The covariance matrix of the endogenous MVs can now be obtained as a function of model parameters:

ΣYY Ω( ) = ΛyE η ′ η ( )Λ'y +Θε

ΣYY Ω( ) = Λy I−B( )−1 ΓΦ ′Γ +Ψ( ) I−B( )−1′⎡⎣⎢

⎤⎦⎥Λ 'y+Θε

G. Russolillo – slide 87

The sub-matrix ΣYY

Page 88: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

The cross-covariance matrix between exogenous and endogenous MVs can be written as

Measurement model:

ΣXY Ω( ) = E XY '( ) = E Λxξ +δ( ) Λyη +ε( )′⎡⎣⎢

⎤⎦⎥=

= E Λxξ +δ( ) ′η ′Λy + ′ε( )⎡⎣ ⎤⎦=

= Λ xE(ξ ′η ) ′Λ y +Λ xE(ξ ′ε )+E(δ ′η ) ′Λ y +E(δ ′ε )

x = Λxξ + δ

y = Λyη + εand

The measurement errors are

uncorrelated among them and with the

exogenous LVs

ΣXY Ω( ) = ΛxE ξ ′η( ) ′Λy

G. Russolillo – slide 88

The sub-matrix ΣXY

Page 89: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

ΣXY Ω( ) = ΛxΦ ′Γ I−B( )−1'Λ 'yCross-covariance matrix between endogenous and exogenous

LVs expressed as a function of model parameters

η = I −B( )−1 Γξ +ζ( )ξη ' = ξ 'Γ '+ζ '( ) I −B( )−1'

ξη ' = ξξ 'Γ '+ξζ '( ) I −B( )−1'

E ξη '( ) = ΦΓ ' I −B( )−1'

G. Russolillo – slide 89

The sub-matrix ΣXY

Page 90: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 90

Analysing the covariance in SEMs

Population Covariance matrix

“Implied” covariance matrix

Empirical covariance matrix �

Σ =Σxx

Σyx Σyy

⎣ ⎢

⎦ ⎥

S =sxxsyx syy

⎣ ⎢

⎦ ⎥

C ≈ S ≈ Σ

C = Σ Ω( ) =Λ xΦΛ 'x+Θδ

Λ y I−B( )−1Γ (ΦΛ 'x Λ y I−B( )−1 ΓΦ (Γ +Ψ( ) I−B( )−1(*+,

-./Λ 'y+Θε

*

+

,,,

-

.

///

Page 91: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Model identification in SEM

Necessary (but not sufficient) condition

T-rule: A SEM is identified if the covariance matrix may be uniquely decomposed in function of the model parameters à if its DF ≥ 0, that is if the number of covariances is larger than the number of parameters to be estimated

G. Russolillo – slide 91

DF = 12P +Q( ) P +Q +1( ) − t⎡

⎣⎢⎤⎦⎥

# of parameters to be estimated

# of MVs in the model:P = # of exogenous MVs

Q = # of endogenous MVs

12P +Q( ) P +Q +1( ) Number of unique elements in the Σ matrix

Page 92: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Model Identification in SEM

Two-Step rule:

à In the first step the analyst treats the model as a confirmatory factor analysis (both x and y variables are viewed as exogenous, relations between the LVs are expressed in terms of covariance)

à The second step examines the latent variable equation of the original model and treat it as though it were a structural equation of observed variables

N.B. Those are sufficient (but not necessary) conditions

G. Russolillo – slide 92

Page 93: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 93

Model estimation

Page 94: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

F = f S −Σ Ω̂( )( )

Estimation minimizes some discrepancy function between the implied covariance matrix and the observed one.

Estimated covariance matrixΣ Ω̂( ) =C =

Λ̂ xΦ̂Λ̂ 'x+ Θ̂δ

Λ̂ y I − B̂( )−1 Γ̂ ′Φ̂ Λ̂ 'x Λ̂ y I − B̂( )−1 Γ̂Φ̂ ′Γ̂ + Ψ̂( ) I − B̂( )−1'⎡⎣⎢

⎤⎦⎥Λ̂ 'y+ Θ̂ε

⎢⎢⎢

⎥⎥⎥

G. Russolillo – slide 94

Discrepancy function

Page 95: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Main discrepancy function for estimation

G. Russolillo – slide 95

FML = log C + tr SC−1( )− log S − P +Q( )Maximum Likelihood

Assumptions: à  data are multinormal à  S follows a Wishart distribution à Both S and C are positive-definite

Properties of the ML estimators: -  Asymptotically unbiased -  Consistent -  Asymptotically efficient -  The distribution of the ML estimators approximates a normal

distribution as sample size increases

Page 96: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Alternative discrepancy functions

G. Russolillo – slide 96

FGLS =

12

tr W−1 S - C( )2⎡⎣⎢

⎤⎦⎥

Generalised Least Squares

( )212ULSF tr ⎡ ⎤= ⎣ ⎦S -C

Unweighted Least Squares

( ) ( )T 1/ADF WLSF −= − −s c W s c

Asymptotically Distribution Free

Page 97: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Unweighted Least Squares - SEM

( )212ULSF tr ⎡ ⎤= ⎣ ⎦S -C

Discrepancy function

à  When sample size is large, ULS and ML estimates are very similar.à  However, ULS estimators are not the asymptotically most efficient estimatorsà  Consistent estimatorsà  Estimates differ when correlation instead of covariance matrices are analyzedà  No assumption on the observed variables distribution

However:•  ULS estimators implicitly weight all the residuals as if they had the same variance.•  A weight matrix is considered in the discrepancy in order to overcome the problem

G. Russolillo – slide 97

Page 98: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Generalised Least Squares - SEM Discrepancy function

à  Consistent estimatorsà  Asymptotic normality (Depending on the choice of W)à  Common choice W=S (Scale-free least squares) or W=diag(S)

(Asymptotically-free least squares), if W = I -> GLS = ULS

In order to assure this property two assumptions must be done:à  S elements are unbiased estimators of population covariances à  S elements asymptotically follow a multinormal distribution with expectations equal to the population covariances and the generic covariance of spp’ and spp’’ are equal to

G. Russolillo – slide 98

FGLS = 12tr W −1 S −C( )2( )

N −1 σ igσ ih +σ ihσ jg( )

Page 99: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Estimation procedure

Fitting functions are generally solved by using iterative numerical procedures. When the values for the parameters to be estimated in two consecutive steps differ by less than some present criterion the iterative process stops.

Non convergence may happen

Convergence is affected by:- the convergence criterion- the number of iteration allowed- the starting values- model specification Estimates from nonconvergent runs should

not be used or given substantive interpretations.

G. Russolillo – slide 99

Page 100: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Model fit and validation

G. Russolillo – slide 100

Page 101: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Reliability

The reliability rel(xi) of a measure xi of a true score ξ modeled asxp= λpξj + δp is defined as:

rel xp( ) =λp2 var ξ j( )var xp( )

= cor2 xp ,ξ j( )

rel(xp) can be interpreted as the variance of xp that is explained by ξj

G. Russolillo – slide 101

Page 102: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Measuring the Reliability

Question:How to measure the overall reliability of the measurement tool ?In other words, how to measure the homogeneity level of a block Xj of positively correlated variables?

Answer:The composite reliability (internal consistency) of manifest variables can be checked using:à  the Cronbach’s Alpha à  the Dillon Goldstein rho

G. Russolillo – slide 102

Page 103: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Composite reliability

G. Russolillo – slide 103

The measurement model assumes that each group of manifest variables is homogeneous and unidimensional (related to a single variable). The composite reliability (internal consistency or homogeneity of a block) of manifest variables is measured by either of the following indices:

à the Cronbach’s Alpha

à the Dillon Goldstein rho

α j =

cor x pj ,x p ' j( )p≠ "p∑

Pj + cor x pj ,x p ' j( )p≠ "p∑

×PjPj −1

ρ j =

λpjp=1

Pj

∑"

#$$

%

&''

2

λpjp=1

Pj

∑"

#$$

%

&''

2

+ 1−λpj2( )

p=1

Pj

The manifest variables are reliable if these indices are at

least 0.7

Page 104: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Cronbach’s α rationale : the model

G. Russolillo – slide 104

x1q ,…,xpq ,…,xPqq are supposed to be tau− equivalent (or parallel) measures of a true score ξq :

Hp : xi = ξ +δ i , i = 1,..., P

E xi( ) = 0

cov ξ ,δ i( ) = 0

cov δ i ,δ i '( ) = 0 ∀i ≠ i '

λi = 1 (Tau-equivalency condition)

var(δ i ) = var(δ i ' ) ∀i,i ' (Parallelity condition)

Cronbach’s a measures the reliability of a simple sum of tau-equivalent or parallel measures

H = xii

P

Cronbach's α = rel H( ) = cor 2 H ,ξ( ) = cor 2 xii∑ ,ξ( )

Page 105: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Derivation of Cronbach’s a formula

cor2 xii∑ ,ξ( ) = cov2 ξ +δ i( )i∑ ,ξ( )

var xii∑( )var ξ( ) =cov2 Pξ + δ ii∑( ),ξ( )var xii∑( )var ξ( ) =

P2 var2 ξ( )var xii∑( )var ξ( ) =

P2 var ξ( )var xii∑( )

=P P −1( )P var ξ( )P −1( )var xii∑( ) =

PP −1( )

P2 var ξ( )− P var ξ( )⎡⎣ ⎤⎦var xii∑( )

= PP −1( )

P2 var ξ( )+ var δ i( )i∑⎡⎣ ⎤⎦ − var δ i( )i∑ + P var ξ( )⎡⎣ ⎤⎦var xii∑( )

= PP −1( )

var xii∑( )− var xi( )i∑var xii∑( ) = P

P −1( )cov xi ,x j( )i≠i '∑

var xi( )+i∑ cov xi ,x j( )i≠i '∑

= PP −1( ) 1−

var xi( )i∑var xii∑( )

⎣⎢⎢

⎦⎥⎥

1. var xii∑( ) = var ξ +δi( )i∑( ) = var Pξ + δii∑( ) = P2 var ξ( ) + var δii∑( ) = P2 var ξ( ) + var δi( )i∑2. var xi( ) =i∑ var ξ +δi( ) =i∑ var ξ( ) + var δi( ) =i∑i∑ P var ξ( ) + var δi( )i∑

1 2

3. var xii∑( ) = var xi( )+i∑ cov xi ,xi '( )i≠i '∑

3

G. Russolillo – slide 105

α ≤ 1, and α = 1 when all correlations between xi are equal to 1 and all variances of xi are equal to each other.

Page 106: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Cronbach’s α for standardized MVs

G. Russolillo – slide 106

If variables are standardised, var(H ) = var xii∑( ) = P + cor(xi ,xi ' )i≠i '∑

α = PP −1

⎛⎝⎜

⎞⎠⎟

cor(xi ,xi ' )i≠i '∑P + cor(xi ,xi ' )

i≠i '∑

=

PP −1

⎛⎝⎜

⎞⎠⎟P

cor xi ,xi '( )i≠i '∑

P

⎢⎢⎢

⎥⎥⎥

P 1+cor xi ,xi '( )∑P

⎣⎢⎢

⎦⎥⎥

=

Pcor xi ,xi '( )

i≠i '∑P P −1( )

⎢⎢⎢

⎥⎥⎥

1+cor xi ,xi '( )∑P

⎣⎢⎢

⎦⎥⎥

Hence, we can write

α= Pr

1+ P −1( )r , where r =cor(xi ,xi ' )

i≠i '∑

P(P −1)⇒

if r = 1⇒α = 1if r = 0⇒α = 0

⎧⎨⎩

A block of positively correlated variables, is essentially uni-dimensional if they show a high mean correlation

Page 107: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 107

Dillon Goldstein’s ρ : the rationale

var x pqp∑( ) = var λpqξq +ε pq( )p∑"#

$%= var λpqξqp∑( )+ var ε pq( ) = λpq∑( )

2var ξq( )"

#&$%'+ var ε pq( )

If the MVs and the LV are standardised, ρDG can be estimated as

ρ̂q =λ̂pqp∑( )

2

λ̂pqp∑( )2+ 1− λ̂pq

2

p∑( )

x pq = λpqξq +ε pq ,Given the model

ρq =λpqp∑( )

2× var ξq( )

λpqp∑( )2× var ξq( )+ var ε pq( )p∑

Dillon Goldstein’s ρ is defined as

NB: must be estimated! λpq

Page 108: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Assessing the fit of a SEM

Overall model fit measures

These tests help to evaluate if the model fit is good or not and if not it help to measure the departure of observed covariance matrix from the implied covariance matrix

à They can not be applied if the model is exactly identified (because in this situation S always equals C)

à Overall fit may be good but parameters estimates may not be statistically significant!

G. Russolillo – slide 108

Page 109: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Overall model fit measures

G. Russolillo – slide 109

The overall model fit measures are « functions » of the fitting function:

We can show that:

N −1( )F ≈ χDF2

f S,C( ) = F

DF = 12P +Q( ) P +Q +1( ) − t⎡

⎣⎢⎤⎦⎥

with

N : number of observationsF: Discrepancy functionDF: Degrees of freedom of the model

Page 110: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Overall model fit measures Chi-square Test - Global Validation TestsH0 : Σ = C è Good fitH1 : Σ ≠ C

Decision Rule: The model is accepted if p-value ≥ 0.05 (We cannot reject the hypothesis H0) or if Chi-square/DF ≤ 2 (or other thresholds such as 3 or 5)

N.B.: For a fixed level of differences in covariance matrices, the estimate of the Chi-square increases with N

The power (i.e. the probability of rejecting a false H0) depends on the sample size. If the sample size is important, this test may lead to reject the model even if the data fit well the model!We cannot use this test to compare model estimated on different sample size

N −1( )F ∼ χDF2

Test Statistic

G. Russolillo – slide 110

Page 111: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Overall model fit measures: Test of Close-Fit

G. Russolillo – slide 111

RMSEA (Root mean square error of approximation) (Steiger and Lind)

RMSEA =

F0

DF

The introduction of degrees of freedom in the index allows for parsimonious models.

where F0 = log C + tr ΣC−1( )− log Σ − P +Q( )

Page 112: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Overall model fit measures: Test of Close-Fit

G. Russolillo – slide 112

à  The model is accepted if RMSEA ≤ 0.05 or, at least, less than 0.08

à  A confidence interval is usually provided

à  It depends very little on N

RMSEA is estimated as:

where

RMSEAestimated =

FDF

− 1N −1

F = log C + tr SC−1( )− log S − P +Q( )

Use of RMSEA in practice

Page 113: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

An Example of CFA in Psychology

G. Russolillo – slide 113

The 2nd model specified by Long

1.00

XSI1

PSY67

.52

D1

1.24

1

PHY67

.22

D2

.30

1

1.00

XSI2

PSY71

.40

D3

1.24

1

PHY71

.16

D4

.30

1

.67

Model 2 by LONG Chi-square = 22.317

DF = 3 P-Value = 0.000

Chi-square/DF = 7.439

P-Value = 0.011 RMSEA = 0.103

RMSEA LO 90 HI 90 PVALUE ---------- ---------- ---------- ---------- 0.103 0.066 0.145 0.011

à Model 2 is not accepted.

RMSEA is higher than 0.05

P-value smaller than α=0.05, H0: S = C

REJECTED

P-value smaller than α=0.1, H0: RMSEA < 0.05 REJECTED

Page 114: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Indices based on a baseline model

The SATURATED Model: This model contains as many parameter estimates as there are available degrees of freedom or inputs into the analysis. Therefore, this model shows 0 degrees of freedom. [This is the least restricted model possible] The INDEPENDENCE Model: This model contains estimates of the variance of the observed variables only. In other words, it assumes all relationships between the observed variables are zero (uncorrelated), no theoretical relationships. Therefore, this model shows the maximum number of degrees of freedom. [This is the most restrictive model possible and ANY TEST SHALL ALWAYS LEAD TO ITS REJECTION]

G. Russolillo – slide 114

Model Comparison

Page 115: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Independence vs Saturated model

G. Russolillo – slide 115

INDEPENDENCE Model:

SATURATED Model:

FIT = max DF = 0 N_PAR = max N_CONSTR = min CHI2 = 0 P-value = max

FIT = min DF = max N_PAR = min N_CONSTR = max CHI2 = max P-value = min

Page 116: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Indices based on a baseline model

This index was initially devised by Joreskog and Sorbom (1984) for ML and ULS estimation. It has then been generalised to other estimation criteria.

1IND

FGFIF

= −

Fit function that would results if all parameters were zero (fit function of the INDEPENDENCE Model)

If a model is able to explain any true covariance between the observed variables, then F/FIND would be 0 à GFI=1

The model is accepted if GFI is at least 0.9

Goodness-of-Fit Index (GFI)

G. Russolillo – slide 116

Page 117: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

( )1 1 INDDFAGFI GFIDF

= − −

Adjusted Goodness-of-Fit Index (AGFI)

Degree of freedom of the INDEPENDENCE Model

If AGFI equals the unity, the model shows a perfect fit.N.B.: It is not bounded below by zero.

This index take into account the df of the models by adjusting the GFI by a ratio of the DF used in the model and the max DF available

G. Russolillo – slide 117

Indices based on a baseline model

The model is accepted if AGFI is at least 0.9

Page 118: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Bentler Comparative Fit Index (CFI)

It is bounded between 0 and 1, with higher value indicating better fit

Degree of freedom of the INDEPENDENCE Model

Fit function of the INDEPENDENCE Model

CFI =N −1( )FIND − DFIND

⎡⎣ ⎤⎦− N −1( )F − DF⎡⎣ ⎤⎦N −1( )FIND − DFIND

⎡⎣ ⎤⎦

G. Russolillo – slide 118

Indices based on a baseline model

The model is accepted if CFI is at least 0.9

Page 119: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

11

IND

IND

IND

IND

F FDF DFNNFI FDF n

−=

−−

It is usually (not necessarely) between 0 and 1, with higher value indicating better fit

Bentler-Bonnet Non-Normed Fit Index (NNFI)(Also known as Tucker-Lewis index (TLI or rho2)

G. Russolillo – slide 119

The model is accepted if TLI is at least 0.9

Indices based on a baseline model

Page 120: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Root Mean Square Residual

RMR = 2P(P +1)

(spp ' − σ̂ pp ' )2

p '=1

p '≤p

∑p=1

P

Standardized RMR =2

P(P +1)(rpp ' − r̂pp ' )

2

p '=1

p '≤p

∑p=1

P

Good fit if RMR < 0.05

G. Russolillo – slide 120

Good fit if SRMR < 0.1

Page 121: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Comparing model fit measures

G. Russolillo – slide 121

Information-theory based indexes

AIC = χ 2 + 2t

CAIC = χ 2 + 1+ ln n( )!"

#$ t( )

ECVI = χ2

n + 2 tn( )

These indexes are used to compare the fit of nested models

Among two nested model we choose the one with the smallest index

# of parameters to be estimated

Page 122: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Model revision

G. Russolillo – slide 122

Page 123: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Testing path coefficients and loadings

Path links may be removed if the associated regression coefficients are not statistically significant at a given significance level.

SEM output traditionally consist of -  the unstandardised estimate for each regression coefficient, -  its standard error (S.E.), -  the estimate divided by the standard error (C.R. for Critical Ratio) -  the probability value (p-value) associated with the null hypothesis that the

coefficient is 0.

Decision Rule:•  Coeffficients with a absolute value for C.R. above 2 are considered as significantly different from 0 and the related link is kept.•  Coeffficients with a absolute value for C.R. below 2 are considered as not significantly different from 0 and the related link is not validated.

G. Russolillo – slide 123

Page 124: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Modification indices Adding a new link to the model…..

The Modification Index (MI) represents we the expected drop in overall Chi-square value when a fixed parameter specified is freely estimated in a subsequent run.It is the difference between the Chi-square of the model in which the parameter under investigation is a fixed parameter and the Chi-square of the model in which this parameter is included in the set of parameter to be estimated (free parameters). •  The MI follows a Chi-square distribution with 1 df.•  A fixed parameter is included in the model (and so estimated) if the value of

the MI is higher than 4.Associated with each MI is an Expected Parameter Change (EPC) value that represents the predicted estimated change, in either a positive or negative direction

G. Russolillo – slide 124

Page 125: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Pay attention..

Any change in the model based on the decrease of chi-square measured by a modification index shall be carefully undertaken by evaluating the impact of the following consequences:

•  Respecification of the Model (getting surprising results is always nice as long as they are not illogical...);

•  Corresponding changes in the parameters (evaluation by means of EPC - Expected Parameter Change);

•  Eventual impossible replication of empirically-based decision (capitalization on chance).

G. Russolillo – slide 125

Page 126: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Sentimental Engagement

G. Russolillo – slide 126

6 blocks of manifest variables observed on 240 individuals: - Commitment - Satisfaction - Rewards - Costs - Size of investment - Alternative Value

Developing a causality model with latent variables by means of the Maximum Likelihood Approach to Structural Equation Modeling (SEM-ML) - C. E. Rusbult : Commitment and satisfaction in romantic associations: A test of the investment model. Journal of Experimental Social Psychology, 1980 - L. Hatcher : A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. SAS Institute, 2013

Page 127: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Sentimental Engagement

G. Russolillo – slide 127

Exemple of the investiment block indicators

Please rate each of the following items to indicate the extent to whichyou agree or disagree with each statement. Use a response scale inwhich 1 = Strongly Disagree and 7 = Strongly Agree.

1.  I have invested a great deal of time in my current relationship.

2.  I have invested a great deal of energy in my current relationship.

3.  I have invested a lot of my personal resources (e.g., money) in developing my current relationship.

4.  My partner and I have developed a lot of mutual friends which I might lose if we were to break up.

Page 128: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Sentimental Engagement

G. Russolillo – slide 128

Exemple of the satisfaction block indicators

1.  I am satisfied with my current relationship.

2.  My current relationship comes close to my ideal relationship.

3.  I am more satisfied with my relationship than is the average person.

4.  I feel good about my current relationship.

Page 129: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Sentimental Engagement

G. Russolillo – slide 129

Exemple of the alternarive value block indicators

1.  There are plenty of other attractive people around for me to date if I

were to break up with my current partner.

2.  It would be attractive for me to break up with my current partner

and date someone else.

3.  It would be attractive for me to break up with my partner and “play

the field” for a while.

Page 130: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Sentimental Engagement

G. Russolillo – slide 130

Commitment

v1 e1 1

v2

e2 1

v3 e3 1

Rewards

v8

e8 1

v9

e9

v10

e10

1

Satisfaction

v5

e5 1

v6

e6

v7

e7

Costs v11

e11 v12

e12 v13

e13 1

Investments

v14 e14

1 v15 e15

v16 e16

1

Alternatives

v17

e17

v18

e18

1 v19

e19 1

1

1

d1

d2 1

1

1 1

1

1

1 1 1

1

1 1

1

F1

F3

F2 F4

F5

F6

v4 e4

Sentimental Engagement SEM model

Page 131: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Steps in SEM Analysis

G. Russolillo – slide 131

Step 1: Model specification •  usually done by drawing pictures using SEM software or by “coding”

SEM equations in R Step 2: Model identification

•  Model identification rules Step 3: Parameter estimation

•  Minimize a discrepancy function iterative process Step 3: Model fit and validation

•  Fit indexes •  Model Testing

Step 4: Model revision •  Modification indexes

Page 132: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Topics NOT addressed in this introduction to SEM

•  Analysis of residuals

•  Missing data

•  Multiple group analysis

•  Higher order Latent Variables

•  Formative measurements

•  Non-normality

•  Non-linearity

•  Moderation analysis

•  Equivalent models

G. Russolillo – slide 132

Page 133: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling

Main References and further lectures •  K.A. Bollen: Structural Equations with Latent Variables, John Wiley & Sons., 1989

•  A. Beaujean: Latent Variable Modeling Using R A Step-by-Step Guide, Routledge, 2014

•  R. Cudeck, S. Du Toit, D. Sörbom (Editors): Structural Equation Modeling: Present and Future - A Festschrift in honor of Karl G. Jöreskog, Scientific Software International Chicago, 2001

•  R. Hoyle: Structural equation modeling: concepts, issues and applications, SAGE Publications, 1995

•  K.G. Jöreskog & D. Sörbom Advances in Factor Analysis and Structural Equation Models, Abt Books, 1979

•  Rex B. Kline : Principles and Practice of Structural Equation Modeling, The Guilford Press, New York, 2005

•  J.S. Long : Confirmatory Factor Analysis: A Preface to LISREL, SAGE Publications, 1983

•  N. O’Rourke, L. Hatcher : A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. Cary, NC: SAS Institute, Inc 2013

•  D. Kaplan : Structural Equation Modeling: Foundations and Extensions, SAGE Publications, 2000

•  Meredith, W. (1993). "Measurement invariance, factor analysis and factorial invariance." Psychometrika 58(4): 525-543.

•  T. Raykov and G. A. Marcoulides: First Course in Structural Equation Modeling, Taylor and Francis, 2006

•  Y. Rosseel: lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software ,48(2), 2012

G. Russolillo – slide 133

Page 134: AN INTRODUCTION TO STRUCTURAL EQUATION …maths.cnam.fr/IMG/pdf/sem_sta201_cle02e742.pdf · STA201 - An Introduction to Structural Equation Modeling AN INTRODUCTION TO STRUCTURAL

STA201 - An Introduction to Structural Equation Modeling G. Russolillo – slide 134

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at

http://creativecommons.org/licenses/by-nc/4.0/

© 2018 G. Russolillo Title: An introduction to Structural Equation Modeling

Attribution: Giorgio Russolillo and Laura Trinchera