40
1 An Extension of the Lee-Carter Model for Mortality Projections By Udi Makov ,Shaul Bar-Lev, Yaser Awad ,

An Extension of the Lee-Carter Model for Mortality Projections...3 The Lee-Carter model : , ( , ),, ( , ), 2 1 2, , , w iid t t t t x t x x t x t x t k k w w N o y k F o T V D E H

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    An Extension of the Lee-Carter Model for

    Mortality Projections

    By

    Udi Makov

    ,Shaul Bar-Lev, Yaser Awad ,

    http://maf2008.unive.it/submit.php?id=134

  • 2

    Extensions 1:

    Bayesian Trend choice

  • 3

    The Lee-Carter model :

    ),,(,

    ),,(,

    2

    1

    2

    ,,,

    w

    iid

    tttt

    txtxtxxtx

    oNwwkk

    oFky

    .year in age

    for ratedeath central theof logarithm the:,

    tx

    y tx

    schedule.mortality theof age across shape general:x

    changes. ) (mortality of level

    general when the ageat mortality of force

    theof logarithm theof tendency theindicates:

    t

    x

    k

    x

    . at timemortality of level in thetion varia

    thedescribest index thaan is:

    t

    kt

  • 4 4

    Estimation Methodology

    The methodology is based on the following steps:

    1. Fixing appropriate prior distributions for the unknown

    parameters

    2. Using the Kalman Filter algorithm to estimate the

    predicted values of the time series process, including the

    variance of the prediction

    3. Using the Gibbs sampler to estimate the posterior

    distributions of the unknown parameters, including the

    parameters of the unobserved time series index, whose values

    were estimated by the Kalman Filter algorithm.

  • 5

    The Lee Carter model as a state-space model

    Equations below are describing the state process model and the

    observation model as follow:

    equationt measuremen

    equation state

    ,

    ,1

    ttt

    ttt

    ky

    wkk

    ),0(~ 2IN p

    iid

    t

    ),0(~ 2w

    iid

    t Nw We assumed the process noise is

    and the measurement noise is

  • 6

    General Presentation of time trend

    model

    t

    wwkk

    t

    tttttt

    21

    111

  • 7

    where

    ,,

    1

    1

    ,

    000

    00

    0

    00

    2

    1

    max

    min

    t

    t

    XP

    000

    00

    0

    00

    In vectorial presentation

    wIXkPXk )()()(

    ),,,( max1minmin kkkk ),,,(

    ),,,( max1minmin wwww

  • 8

    where

    ))(,(~ 12 UQXNk kT

    100

    1

    010

    01

    01

    )()(

    2

    2

    2

    2

    PIPIQ

    100

    1

    010

    01

    01

    2

    2

    2

    2

    U

  • 9

    Extensions

    2006) Pedroza, 1992; Carter, & (Lee

    0)ARIMA(0,1,0,0,1 : 211 Model

    ),0(~with , 21 wtttt Nwwkk

    ),(~ 112

    QNk wT

    Then the resulting distribution

    is:

  • 10

    2006) al.,et (Czado trend

    linear with 0)ARIMA(1,0,0,0 :2 Model

    Then the resulting distribution

    is:

    ),(~ 12 QXNk kT

    t

    wkk

    t

    ttttt

    21

    11

  • 11

    growth with smoothing lexponentia Simple

    1)ARIMA(0,1,0,1 : 213 Model

    Then the resulting distribution

    is:

    ),(~ 112

    UQNk wT

    11 tttt wwkk

  • 12

    ndlinear tre without 2 case As

    0)ARIMA(1,0,0,0 : 214 Model

    Then the resulting distribution

    is:

    ),(~ 12 QNk wT

    ttt wkk 1

  • 13

    1)ARIMA(1,0,0 : 215 Model

    Then the resulting distribution

    is:

    ),(~ 12 UQNk wT

    11 tttt wwkk

  • 14

    Model Choice

    ) et al., nd, (Czadolinear tre

    ) with ,,ARIMA(,φθ

    ) ; Pedroza,er, (Lee& Cart

    ),,ARIMA(

    2005

    00100

    20061992

    0100,0,1 21

    :2 Model

    :1 Model

    wth with grosmoothing onential Simple

    ),,ARIMA(γ,γρ

    exp

    11001 21 :3 Model

    dinear tren without lAs case

    ),,ARIMA(,γγ

    2

    0010021 :4 Model

    ) ,,ARIMA(γ γ 101021 :5 Model

  • 15

    Some data consideration We analyze the data for U.S and Ireland male. The

    data obtained from the Human Mortality Database .

    The data consists of annual age-specific death rates for

    years 1959-1999.

    The age group for U.S are 0,1-4,5-9,…,105-109,110+.

    The age group for Ireland are 0,1-4,5-9,…,105-109.

    Therefore; for U.S (P=24, T=6) , for Ireland (P=23,

    T=6), that is 1958-1989 grouped by 5 years.

  • 16

    The distribution of the mortality rates by age groups and time

    U.S Male

    Smrlo'10 an International Symposium on February 8-11, 2010

  • 17

    The distribution of the mortality rates by age groups and time

    Ireland Male

    Smrlo'10 an International Symposium on February 8-11, 2010

  • 18

    Prior distribution

    22

    11

    02

    012

    2

    1

    2

    2

    22

    22

    0

    0,~

    ),(~),,(~

    11int),0(~

    ),(~),,0(~

    ),(~),,(~

    a

    aN

    baGammabaGamma

    ),erval (-to the truncated N

    baGammaIN

    baGammaIaN

    ww

    p

    xxp

    2-w

  • 19

    Bayesian Model Choice For models comparison we estimated the Deviance

    information criterion – DIC for normal likelihood.

    smaller values for “better” models. (Spiegelhalter, et

    al. 2002).

    where

    of valuessimulated theof average sample the

    parameters ofnumber effective the

    ))/(log(2)(

    :

    2)(

    p

    yfD

    pDDDIC

    We used the data of 1958-1989 to estimate the models

    parameters and the DIC index.

  • 20 20

    Bayesian Model Choice

    The DIC indices for all five models using U.S male data are as follows:

    DIC[ model 1:ARIMA(0,1,0)]= -149.25

    DIC[ model 2:ARIMA(1,0,0)]= -154.26

    DIC[ model 3:ARIMA(0,1,1)]= -146.55

    DIC[ model 4:ARIMA(1,0,0)]= -108.96

    DIC[ model 5:ARIMA(1,0,1)]= -104.96

    The DIC indices for all five models using Irish male data are as follows:

    DIC[ model 1:ARIMA(0,1,0)]= -130.07

    DIC[ model 2: ARIMA(1,0,0)]= -141.77

    DIC[ model 3: ARIMA(0,1,1)]= -123.91

    DIC[ model 4: ARIMA(1,0,0)]= -88.78

    DIC[ model 5: ARIMA(1,0,1)]= -87.35

  • 21

    Then we used the data from 1990-1999 to assess the

    predictive quality of the models and we compared

    between them using also graphical presentation

    We used the data of 1958-1989 to estimate the models

    parameters.

  • 22 22

    Comparison between model 1 and model 2

    U.S Male

    0.18

    0.2

    0.22

    0.24

    0.26

    1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

    de

    ath

    ra

    te

    Forecast Year

    AGE group 90-94

    observed model 1 model 2

  • 23 23

    Comparison between model 1 and model 2

    Ireland Male

    0.2

    0.22

    0.24

    0.26

    0.28

    0.3

    0.32

    0.34

    1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

    de

    ath

    ra

    te

    Forecast Year

    AGE group 90-94

    observed model 1 model 2

  • 24

    Extensions 2:

    Mortality Projections Simultaneous for

    Multiple populations

  • 25

  • 26

    Exchangeable sequence of random

    variables

    Formally, an exchangeable sequence of random variables is a finite or infinite sequence

    X1, X2, X3, ... of random variables such that for any finite permutation σ of the indices 1, 2, 3, ..., i.e. any permutation σ that leaves all but finitely many indices fixed, the joint probability distribution of the permuted sequence

    is the same as the joint probability distribution of the original sequence.

  • 27

    iD

    iK i i

    1 2, , i k

    (1) 2

    (1)

    a (1)

    b

    (2) 2

    (2)

    a (2)

    b

  • 28

    Exchangeability between parameters: s

    Suppose we have mortality projection for m countries and we believe the

    time trends parameters belong to a joint distribution

    Suppose are i.i.d variables, with

    ),,,( 21 m

    0,),,(),/( jbNbj

    The joint distribution of is: s

    m

    j

    j bb1

    ),/(),/(

    Suppose and , where assumed

    known (maybe chosen to reflect vague prior information)

    ),(~ 2bbNb ),(~ caIG cabb ,,,2

  • 29 29

    REPLACE: Sampling from

    TT

    kkNkK wnw

    2

    02

    0 ;),,/(

  • 30 30

    By the following posterior distributions, for m=2:

    TTTTb

    T

    kkNb

    wwwwT

    2

    1,

    2

    1,

    2

    1,

    2

    1,1,01,*

    1 ;),,/(

    TTTTb

    T

    kkNb

    wwwwT

    2

    2,

    2

    2,

    2

    2,

    2

    2,2,02,*

    2 ;),,/(

    The rest of the posterior distributions should stay the same as before for

    each country separately.

    Where *2,

    2

    1,,01,0

    1 },,,,,,,,{ mwwmm kkKK

    Similarly; we assumed Exchangeability on other parameters

    of the model: Alpha and Beta

  • 31

    Validation

    • We used the data from U.S and Ireland male of

    1958-1989 to estimate the models parameters

    • Then we used the data from 1990-1999 to

    assess the predictive quality of the models and

    we compared between them using also

    graphical presentation

  • 32

    Exchangeability w.r.t Ө

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

    theta

    0

    1

    2

    3

    theta_Ex

    theta_Usa_Ex

    theta_Ir_Ex

    theta_Usa

    theta_Ir

    Figure 1: Posterior dis. of theta : USA and Ireland

  • 33

    Exchangeability w.r.t α

    -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

    alpha

    0

    2

    4

    6

    8 alpha.Ex

    alpha.Ir

    alpha.Ir.Ex

    alpha.Usa.Ex

    alpha.Usa

    Figure 3: Posterior dis. of alpha, age-group 105-109: Usa and Ireland

  • 34

    Exchangeability w.r.t β

    -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

    beta

    0

    4

    8

    12

    beta.ex

    beta.Usa

    beta.Usa.ex

    beta.Ir.Ex

    beta.Ir

    Figure 5: Posterior dis. of beta, age-group 105-109: Usa and Ireland

  • 35

    Impact on α & β

    age alpha_Ir alpha_Ir_Ex beta_ir beta_ir_Ex alpha_Usa alpha_Usa_Ex beta_Usa beta_Usa_Ex

    0 -4.032 -4.034 0.313 0.314 -3.991 -3.995 0.145 0.151

    1-4 -7.141 -7.140 0.200 0.199 -7.121 -7.124 0.102 0.103

    5-9 -7.822 -7.816 0.152 0.152 -7.807 -7.801 0.108 0.109

    10-14 -7.969 -7.961 0.079 0.079 -7.730 -7.736 0.076 0.078

    70-74 -2.778 -2.787 0.011 0.007 -2.917 -2.911 0.047 0.045

    75-79 -2.352 -2.357 0.007 0.005 -2.544 -2.533 0.043 0.039

    80-84 -1.922 -1.930 0.009 0.012 -2.128 -2.121 0.032 0.031

    85-89 -1.492 -1.507 0.022 0.022 -1.730 -1.721 0.028 0.028

    90-94 -1.156 -1.163 0.010 0.014 -1.371 -1.361 0.021 0.023

    95-99 -0.735 -0.748 0.008 0.006 -1.063 -1.041 0.008 0.007

    100-104 -0.644 -0.661 -0.063 -0.062 -0.937 -0.931 -0.029 -0.030

    105-109 -0.740 -0.749 -0.168 -0.173 -1.032 -1.019 -0.063 -0.064

    110+ -0.683 -0.704 -0.112 -0.114 -1.258 -1.231 -0.060 -0.062

  • 36

    Impact on α & β

    age beta_ir beta_ir_Ex alpha_Usa alpha_Usa_Ex

    105-109 -0.168 -0.173 -1.032 -1.019

  • 37

    Impact on k(t)

    year=t k(t)-Usa k(t)-Usa-Ex k(t)-Ir k(t)-Ir-Ex

    60-64 0.698 0.683 1.259 1.277

    65-69 1.315 1.303 0.979 0.973

    70-74 1.173 1.161 0.432 0.425

    75-79 0.119 0.116 -0.067 -0.074

    80-84 -1.145 -1.134 -0.835 -0.833

    85-89 -2.160 -2.130 -1.768 -1.768

    theta -0.204 -0.187 -0.189 -0.194

  • 38

    Impact on Ө

    k(t)-Usa k(t)-Usa-Ex k(t)-Ir k(t)-Ir-Ex

    theta -0.204 -0.187 -0.189 -0.194

  • 39

    Impact on RMSE

    Mortality at age 105

    0.2755 USA

    0.2705 USA Ex

    1.2750 Ireland

    1.0401 Ireland Ex

    Improvement

    1.8%

    Improvement

    18.4%

  • 40

    Thank you