225
ALTERNATIVES FOR POWER GENERATION IN THE GREATER MEKONG SUBREGION Volume 1: Power Sector Vision for the Greater Mekong Subregion Final 5 April 2016

ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

ALTERNATIVES FOR POWER GENERATION IN THE GREATER MEKONG SUBREGION

Volume1:PowerSectorVisionfortheGreaterMekongSubregion

Final

5 April 2016

Page 2: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 ii

DisclaimerThis report has been prepared by Intelligent Energy Systems Pty Ltd (IES) and

MekongEconomics (MKE) in relation toprovisionofservices toWorldWideFund

forNature(WWF).Thisreportissuppliedingoodfaithandreflectstheknowledge,

expertiseandexperienceof IESandMKE. Inconducting theresearchandanalysis

forthisreportIESandMKEhaveendeavouredtousewhatitconsidersisthebest

information available at the date of publication. IES and MKE make no

representationsorwarrantiesastotheaccuracyoftheassumptionsorestimateson

whichtheforecastsandcalculationsarebased.

IESandMKEmakenorepresentationorwarrantythatanycalculation,projection,

assumption or estimate contained in this report should or will be achieved. The

reliance that the Recipient places upon the calculations and projections in this

reportisamatterfortheRecipient’sowncommercialjudgementandIESacceptsno

responsibilitywhatsoeverforanylossoccasionedbyanypersonactingorrefraining

fromactionasaresultofrelianceonthisreport.

Page 3: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 iii

ExecutiveSummary

Introduction

Intelligent Energy Systems Pty Ltd (“IES”) and Mekong Economics (“MKE”) have

been retainedbyWorldWildFund forNatureGreaterMekongProgrammeOffice

(“WWF-GMPO”) to undertake a project called “Produce a comprehensive report

outlining alternatives for power generation in the Greater Mekong Sub-region”.

This is to develop scenarios for the countries of the GreaterMekong Sub-region

(GMS)thatareasconsistentaspossiblewiththeWWF’sGlobalEnergyVisiontothe

PowerSectorsofallGreaterMekongSubregioncountries.TheobjectivesofWWF’s

visionare:(i)contributetoreductionofglobalgreenhouseemissions(cutby>80%

of1990levelsby2050);(ii)reducedependencyonunsustainablehydroandnuclear;

(iii)enhanceenergyaccess;(iv)takeadvantageofnewtechnologiesandsolutions;

(v) enhance power sector planning frameworks for the region: multi-stakeholder

participatoryprocess;and(vi)developenhancementsforenergypolicyframeworks.

Thepurposeofthisreportistoprovideasummaryofthe5detailedcountry-level

descriptionsof threescenarios for theGreaterMekongSubregionprovided in the

separatecountryreports,aswellasanoverviewofregional implicationsofsucha

transitiontoasustainablepowersector.Thethreescenarioswere

• BusinessasUsual(BAU)powergenerationdevelopmentpathwhichisbasedon

currentpowerplanningpractices,currentpolicyobjectives;

• Sustainable Energy Sector (SES) scenario, where measures are taken to

maximallydeployrenewableenergy1andenergyefficiencymeasurestoachieve

anear-100%renewableenergypowersector;and

• Advanced Sustainable Energy Sector (ASES) scenario, which assumes a more

rapid advancement and deployment of new and renewable technologies as

comparedtotheSES.

The scenarios were based on public data, independent assessments of resource

potentials, information obtained from published reports and power system

modellingoftheGMSregionfortheperiod2015to2050.

GreaterMekongSubregion

TheGreaterMekong Subregion (GMS) is defined to be a set of countries located

aroundtheMekongRiverbasininSoutheastAsia.In1992,theAsianDevelopment

Bank(ADB)definedthesixstatesofKingofCambodia(“Cambodia”),LaoPeople’s

DemocraticRepublic(“LaoPDR”),UnionoftheRepublicofMyanmar(“Myanmar”),

1Proposedbutnotcommittedfossilfuelbasedprojectsarenotdeveloped.Committedandexistingfossilfuel

basedprojectsareretiredattheendoftheirlifetimeandnotreplacedwithotherfossilfuelprojects.Aleastcost

combinationofrenewableenergygenerationisdevelopedtomeetdemand.

Page 4: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 iv

KingdomofThailand(“Thailand”),SocialistRepublicofVietNam(“VietNam”)and

theYunnanProvince2ofthePeople’sRepublicofChina(PRC)asaneconomiczone.

However,forthepurposeofthisproject,werefertotheGreaterMekongSubregion

(GMS)toconsistoffivecountries:Cambodia,LaoPDR,Myanmar,Thailandand(5)

SocialistRepublicofVietNam(“VietNam”). TheGMScountriesare illustratedas

Figure1.

Figure1 TheGMSanditslocationwithinAsia

GreaterMekongSubregionPowerSectors

Cambodia,LaoPDR,Myanmar,ThailandandVietNam,withacombinedGDPof662

US billion and population of 232million in 2014 formone of the fastest growing

regions in the world. Over the last decade the GMS region has experienced

significant economic growth. This is evidenced in Figure 2which shows historical

2NotethatoftentheGMSissometimesalsodefinedtoincludetheGuangxiZhuangAutonomousregion–seeAsian

DevelopmentBank(ADB),“GreaterMekongSubregionEconomicCooperationProgram”,November2014,available:

http://www.adb.org/sites/default/files/publication/29387/gms-ecp-overview.pdf.However,thescopeofthisstudy

wastoconsiderCambodia,LaoPDR,Myanmar,ThailandandVietNamandtreatmentofthesefivecountriesasa

region.

THAILAND

MYANMAR

CAMBODIA

VIETNAM

LAOPDR

HanoiLuangPrabang

Vientiane

Mandalay

Yangon

HoChiMinhCity

PhnomPenh

Bangkok Angkor

SiemReap

Vientiane

ChiangRaiChiangMai

Page 5: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 v

average Real GDP growth rates of the GMS countries compared to those of the

world. The high growth rates are attributable to the countries within the GMS

taking measures to transform their economies to be more open, diversified and

market-orientedascomparedtothepast.Thishasenabledasteadyflowofforeign

investment. Efforts have also been taken to remove trade barriers in the GMS

member countries and this has stimulated economic activity and enhanced the

region’soverallabilitytobecomeintegratedintotheworldeconomy.

Figure2 AverageRealGDPgrowthrates(2000-14)forGMScountriesand

theworld

Economicgrowthhasbeenaccompaniedwithhighlevelsofelectricitygrowth. As

illustratedinTable1,thefinalelectricityconsumptionandelectricitypeakdemand

haveexperiencedveryhighgrowthratesinmostoftheGMScountries,atrendthat

thegovernmentsoftheGMScountriesexpecttobesustainedforatleastthenext5

yearstoadecade.

Table1 GMSCountryElectricityDemandandGrowthRates(2014)

Country ElectricityConsumption PeakDemand

TWh CAGR3,% MW CAGR4,%

Cambodia 4.2 19.4% 687 16.0%

LaoPDR 3.4 14.5% 748 12.5%

Myanmar 9.6 15.7% 2,235 16.2%

Thailand 168.2 4.4% 26,942 2.9%

VietNam 142.3 12.7% 22,100 10.2%

Source:CompiledbyConsultantfromvarioussources

3TheCompoundAnnualGrowthRate(CAGR)isforthelasttenyearsforCambodia,LaoPDR,andVietNam,lastfive

yearsforMyanmarandtwelveyearsforThailand.4LastfiveyearsforCambodia,Myanmar,andThailand,tenyearsforLaoPDRandVietNam.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Cambodia LaoPDR Myanmar Thailand VietNam World

Page 6: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 vi

Figure3showstheGMSbreakdownofconsumptionbythesectors.Industryalmost

accountsforhalfofelectricityuseintheregionat47%,followedbytheresidential

and commercial sectors at 29% and 23% respectively. The composition of sector

consumption across the region has remained relatively stable with residential

energy increasing 1% displacing the industrial sector between 2005 to 2014 as a

result of increasing electrification rates and per capita consumption levels in the

region. Figure 4 compares the countries’ sectoral composition of power

consumption. It indicates that the industrial sector is the largest aggregate

electricity consumer in Viet Nam (54%), Thailand (43%) and Myanmar (45%);

whereasforCambodiaandLaoPDR,theresidentialsectoraccountsforthelargest

partontotalconsumption(47%and35%).Theproportionofcommercialelectricity

consumptioninVietNamat10%issignificantlylowercomparedtoothercountries.

Table 2 provides information on installed capacity by fuel type for each GMS

countryandFigure5comparesthecapacitymixbetweenthecountries.

Figure3 GMSHistoricalEnergyDemand(TWh)bySector:2005-14

Source:IEA(Demandincludestransmissionanddistributionlosses),2014basedonIESestimates

0

50

100

150

200

250

300

350

2005 2010 2014

Energy(TWh,inclosses)

Agriculture Industry Commercial Residenjal

Page 7: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 vii

Figure4 ElectricityConsumptionBreakdownbySector(2014)

Table2 InstalledCapacity(MW)byFuelType(2014)

GenerationType Cambodi

a

LaoPDR Myanmar Thailand VietNam

Coal 268 - 120 6,538 10,405

Gas - - 1,325 21,888 6,825

LargeHydro 929 3058 3,011 3,444 13,050

FuelOil/Diesel 291 - 87 9 1,738

RESources 23 - 40 2,789* 1034

Solar - - - 464 -Wind - - - 209 52SmallHydro - - 33 14 800*Biomass 23 - 5 1,851 180*Biogas - - 2* 251 2*

Total(MW) 1,511 3,058 4,583 34,668 33,052Source:CompiledbyConsultantfromvarioussources,*=estimated.

3% 1% 3% 1% 0.2%

21%33%

45%54%

43%

29%

31%

20% 10% 33%

47%

35% 32% 35%24%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cambodia LaoPDR Myanmar VietNam Thailand

Agriculture Industry Commercial Residenjal

Page 8: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 viii

Figure5 InstalledCapacityMixbyFuelTechnology(2014)

Hydro power is dominant in all systems except Thailand; Lao PDR’s installed

capacity is entirely based on hydro powerwhile inMyanmar, Cambodia andViet

Namthesharesarearound66%,61%and39%respectively.Powerstationsrunning

onnaturalgasmakeupasignificantshareofinstalledcapacityforThailandatmore

than60%;naturalgasisalsosignificantinMyanmar(29%)andVietNam(21%).Coal

based generation is seen to be a significant part of Viet Nam’ and Thailand’s

installed capacity mix accounting for 31% and 19% respectively. Shares of

generating capacity for renewable energy sources (excluding large hydro) remain

low across the GMS. Thailand is leading in developing renewable energy (RE)

plants,havingaround8%ofthetotalinstalledcapacity.Intheothercountries,the

proportionofrenewablecapacityis3%.

Table 3 summarises the electrification rates overall and also for urban and rural

areas. The table shows thatVietNamandThailandhaveveryhighelectrification

rates compared to the other countries in the GMS - the result of concentrated

investmentsintransmissionanddistributiongridsinthepasttotargethighratesof

electricity access. Theothers countries are laggingwithMyanmar andCambodia

both have very low rural electrification rates. In this study, we explore two

differentwaysofenhancingaccesstoelectricity:oneisconnectiontoacentralgrid,

theotherisdeploymentofminiandmesogrids.

18% 21%

31%29%

61%

21%

61% 100%

66%

10%

39%

19%

5%8%3%

0%

20%

40%

60%

80%

100%

Cambodia LaoPDR Myanmar Thailand Vietnam

Coal Gas Hydro(LargeScale) Oil/Diesel Renewable

Page 9: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 ix

Table3 ElectrificationratesinGMScountries(2014)

Country

Population

without Access

to Electricity

(millions)

Electrification

Rate5(%)

Urban

Electrification

Rate(%)

Rural

Electrification

Rate(%)

Cambodia 9.2 39% 90% 24%

LaoPDR 0.8 89% 98% 83%

Myanmar 38.1 26% 40% 20%

Thailand 0.2 100% 100% 99%

VietNam 1.9 98% 100% 97%

PowerDevelopmentPlansintheGMSCountries

Eachofthepowersectorsisuniqueandeachfacesitsownsetofchallenges.The

keyfeaturesofcurrentpowerdevelopmentplansforeachcountryaresummarised

inTable4.

Table4 ApproachtoPowerPlanningineachGMSCountry

Country FeaturesofCurrentPlans RenewableEnergyPlan EnergyEfficiencyPlan

Cambodia Mostplannedgenerationcapacity

inthenearterm6isbasedoncoal

andhydroprojectswithnaturalgas

developmentinthelongerterm.

RenewableEnergyAction

PlaninPlacetopromote

renewableenergybutno

targets.

NationalEnergyEfficiency

Policyhastargetto

reducedemandby20%in

2035vs.BAUdemand.

LaoPDR Mostplannedgenerationcapacity

isbasedonhydroandonecoal

project.Manyplannedhydro

projectsaregearedtowardsexport

toneighbouringcountries.

RenewableEnergy

DevelopmentStrategy

(2011)whichpromotesthe

deploymentofsmallhydro,

solar,wind,biomass,

biogas,solidwasteand

geothermal.

Energyefficiencyisinan

earlystageinLaoPDR.

Someeffortshavebeen

takeninrural

electrificationprojectsto

considerdemandside

managementmeasures.

Myanmar MOEP’spubliclyavailableplan

suggestshydrobeingdominantin

thegenerationmix,followedby

coal,gasandrenewables.The

NationalElectrificationPlanhasa

targetof100%centralgrid

electrificationby2030.Power

developmentplanscontinueto

evolveinMyanmarwiththe

optimalgenerationmixbeing

stronglydebated.

Myanmardoesnot

currentlyhaveinplacea

comprehensiveand

targetedpolicyfor

renewableenergy.

Apartfrombroad

directivestopromote

energyefficiencyand

conservation,Myanmar

doesnothaveaconcrete

policyframeworkfor

promotingenergy

efficiency.

Thailand PDP2015suggestsatechnology

capacitymixby2036consistingof

around30-40%naturalgas,20%

renewableenergy,20-25%coal,15-

20%hydro,andupto5%nuclear

power.Thetotalnewrequired

Thailand’sAlternative

EnergyDevelopmentPlan

2015(AEDP2015)targets

some19.6GWof

renewables(waste,

biomass,biogas,hydro,

Thailand’senergy

efficiencydevelopment

plantargetstoreduce

energyintensityby25%

in2030comparedto

2005levels,or

5Electrificationrateisbasedontheproportionofpopulationwithaccesstoelectricity.

6Next10years.

Page 10: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 x

Country FeaturesofCurrentPlans RenewableEnergyPlan EnergyEfficiencyPlan

installedcapacityfrom2015to

2036issome57GW.

wind,solarandenergy

crops)by20367.

equivalently,a20%

reductionagainstaBAU

demandoutlook.

VietNam ThemostupdatedPDP7(2016

version)plans129,500MWoftotal

installedcapacityby2030

(comparedto146,800MWinthe

original,2011versionofPDP7).The

capacitymixisexpectedtoconsist

of42.6%coal,16.9%hydropower,

14.7%naturalgas,21%RE,3.6%

nuclearand1.2%imports.

NewREtargetshavebeen

includedintothelast

updatedPDP7.Renewable

sources(smallhydro,wind,

solarandbiomass)would

accountfora21%sharein

thecapacitymixanda

10.7%shareinthe

generationmixby2030

In2006,thePrime

MinisterapprovedtheEE

nationaltargettosave5%

-8%totalelectricity

consumptionby2015

againstaBAUoutlook.

TheEEtargethasnot

beenupdated,but

generally8%-10%

savingshavebeen

expectedby2020.

SummaryofDevelopmentOptions

Table5summariseskeyfindingsofadetailedreviewofdevelopmentoptionsrelevantto

renewableenergyandfossilfuelforeachoftheGMScountries.Thisformsthebasisofthe

assumptionsthatwereusedinthepowersystemmodellingconductedforeachscenario.It

shouldbenotedthattherenewableenergypotentialnumbersweredrawnfrommultiple

sourcesandinformedbyanalysisofIRENAGlobalAtlasdataaswellasourownanalysesof

potential.

7TheAEDP2015istopromoteusageofalternativeenergyreplacingfossilfuelsuchasoilandnaturalgasandatthe

sametimereducingThailand’sdependencyonenergyimports.

Page 11: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xi

Table5 SummaryofPowerSectorDevelopmentOptionsforeachGMSCountry(MW)

ResourceCommentsonDevelopmentPotentialGMS TotalPotential Cambodia LaoPDR Myanmar VietNam Thailand

LargeHydro Atotalinstalledcapacityof24,105

MW(2014),potentialfor

124,155MWintotal

10,000MWtotal,ofwhich929developed

(2014)

23,000MWtotal,ofwhich3,058

developed(2014)

46,000totalofwhich3,011developed(2014)

Morethan30,000ofwhich13,833developed(2014).Plansforfurtherhydrodevelopment

15,155MWofwhich5,541MWdeveloped(2014).

SmallHydro 27,265 700 2,000 231 24,334 -PumpStorage

18,807 - - - 8,000 10,807

SolarPV VeryGood Significant 8,812 Significant 119,863 SignificantSolarCSP ModeratetoGood Haspotential Haspotential Significant SignificantintheSouth ModerateWindOnshore

Atleast110,000MW

Atleast500 27,104 26,962 26,673 30,000

WindOffshore

Significant(Thailand&Viet

Nam)Haspotential - Haspotential Significant 7,000

Biomass 37,952 2,392 1,271 6,899 10,358 17,032Biogas 14,757 1,591 1,146 4,741 5,771 1,507Geothermal 859 - 59 400 400 -Ocean 13,950 - - 1,150 12,800 -

DomesticCoal

Over2,500milliontons

LowcoalreservesaroundNorthern

Cambodia

Approximately900milliontonsofcoal

Approximately400milliontonsofcoal

Significant,currentlyproducing45mtperyear

Approximately1,200milliontons

ofcoalImportedCoal

RequiredunderBAUgeneration

Possible Unlikely Possible Yes Yes

Page 12: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xii

ResourceCommentsonDevelopmentPotentialGMS TotalPotential Cambodia LaoPDR Myanmar VietNam Thailand

development

DomesticNaturalGas

Over1,000Bcm

Estimatedat140billioncubicmetres,notcurrentlybeing

produced

Noconfirmedreserves

283Bcm,orestimatedtobe10trillioncubic

feet

617Bcm–anumberofoffshoregasandoilfields

couldbedeveloped284Bcm

LNG /Natural GasImports

CurrentlyimportsfromThailand,VietNamand

Singapore

Oilandgasisimported

Possiblebutdependentongasdemandand

economics

PotentialatSonMy,BinhThuanProvincefor3.5mtpaexpandingto6

mtpa.

Alreadyexists,importing11BcmviaLNGorpipelinesfromMyanmar

NuclearPower

DevelopmentinVietNamand

Thailand

Unlikelyinthenearfuture

Unlikelyinthenearfuture

Unlikelyinthenearfuture

Yesaspartofpowerdevelopmentplan

Yesaspartofpower

developmentplanSources:RefertoAppendixF

Page 13: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xiii

PowerSectorVisionScenarios

Thethreedevelopmentscenarios(BAU,SESandASES)areconceptually illustrated

inFigure6.

Figure6 GMSPowerSectorVisionScenarios

TheBAU scenario is characterisedbyelectricity industrydevelopments consistent

withthecurrentstateofplanningwithintheGMScountriesandreflectiveofgrowth

rates in electricity demand consistent with an IES view of base development,

existing renewable energy targets, where relevant, aspirational targets for

electrificationrates,andenergyefficiencygainsthatarelargelyconsistentwiththe

policies seen in the region. In contrast, the SES seeks to transition electricity

demand towards the best practice benchmarks of other developed countries in

termsofenergyefficiency,maximisetherenewableenergydevelopment,ceasethe

development of fossil fuel resources, and make sustainable and prudent use of

undevelopedconventionalhydroresources.Whererelevant,itleveragesadvances

inoff-gridtechnologiestoprovideaccesstoelectricitytoremotecommunities.The

SES takes advantage of existing, technically proven and commercially viable

renewableenergytechnologies.FinallytheASESassumesthatthepowersectoris

able tomore rapidly transition towardsa100%renewableenergy technologymix

under an assumption that renewable energy is deployed more than in the SES

scenariowithrenewableenergytechnologycostsdecliningmorerapidlycompared

toBAUandSESscenarios.

2015-30 2030-50

AdvancedSES

BAUScenario

SESScenario(ExistingTechnologies)

Page 14: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xiv

BusinessasUsual(BAU)Scenario

The BAU demand forecasts were developed to grow in line with historical

consumption trends and projected GDP growth rates in a way similar to what is

oftendone ingovernmentplans.Electricvehicleuptake inregionwasassumedto

reach20%acrossallcarsandmotorcyclesby20508

.OveralltheGMS’stotalon-grid

electricitydemand(includingtransmissionanddistributionlosses9

)wasforecastto

increaseatarateof4.5%paoverthe35-yearperiodto2050withtheregiongoing

throughaperiodofindustrialisationandhighGDPgrowthof7%pastartingin2015

andgenerallyslowingacrosstheregionby2035.Theindustrialsectorisforecastto

grow the fastest at 4.8% followed by the commercial sector at 4.6%, residential

sector at 3.3% and agriculture at 2.8% per annum as the GDP shifts towards

commerce/servicesand industrywith increases in residentialpercapitaelectricity

consumption.Thetransportsectorisforecasttohit70GWhby2050asthenumber

of carsanduptakeofelectric carsandmotorbikes increase to20%uptake. GMS

electricity demand is forecast to reach 1,685 TWh by 2050. This is illustrated in

Figure7.

Figure7 GMSProjectedElectricityDemand(2015-2050,BAU)

TheBAUinstalledcapacity(MW)forGMSischartedinFigure8byinstalledcapacity

and Figure 9 shows the capacity shares for selected years. Installed capacity

8

Theuptakeratesweredifferentforeachcountry–pleaserefertothecountryreportsforthedetails.

9

Notethatunlessotherwisestated,allotherdemandchartsandstatisticsincludetransmissionanddistribution

losses.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Energy(inclosses,TWh)

Agriculture Industry Commercial Residen_al Transport

Page 15: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xv

increasesfrom77GWin2014to352MWin2050withcoalgenerationaccounting

forthelargestshare,or29%oftotalinstalledcapacity.Coal-firedcapacityincreases

from20GW in2015with the recent commissioningof several coalplants to104

GW in2050,especially inVietNam. Large-scalehydrobecomes thesecondmost

dominant generation type growing to 69 GW by 2050 driven by hydro resource

exploitation along the Mekong River and tributaries. Renewable technologies,

mainly solar PV andwind, grow to 29%of capacitywhile gas generationdeclines

from43%in2015to18%by2050.Nuclearalsofeaturesinthecapacitymixwith11

GWbuilt inVietNamandThailand. Figure10plots theBAUscenariogeneration

mix10

over timeandFigure11 shows the correspondingpercentage shares. Coal-

firedgenerationinlinewithcapacityincreasestoaccountfor46%ofgenerationin

theGMSwithgas falling to17%by2050. The large-scalehydrogenerationshare

increases in theearlieryears thenmaintains its sharearound17%andrenewable

energygeneration(excluding large-scalehydro) increasesto16%mainlydrivenby

renewable developments in Thailand. Most of the renewable generation comes

fromsolarPVandwind.

Figure 12 shows the generationmix in each GMS country for the BAU for 2015,

2030and2050withanindicationofpowerflowsacrossthevariousborders.Table

6 summarises the renewable generation share. The BAU assumes generation

development consistent with the current state of planning within the GMS

countriesandischaracterizedbygenerationdevelopmentsonacountrybycountry

basis leading to minimal flows (below 10,000 GWh) traded across borders. The

currentsystemsare largelydominatedby large-hydro inMyanmar,Cambodiaand

Lao PDR and gas and coal in Thailand and Viet Nam. By 2050, other renewable

technologies are developed to meet country-specific BAU renewable energy

generationtargets(between10%and20%)butisstilllargelydominatedbygrowth

infossilfuelgeneration.LaoPDRremainslargelydependentonlargehydrowhereas

theMyanmarandCambodiasystemsshifttowardsfossil fuelsby2050.Flowfrom

LaoPDRtoThailand,andVietNamtoCambodiagrowto374MWand247MWon

averageandby2050,MyanmarandLaoPDRareexporting822MWand655MW

intoThailandwithflowsintoCambodiafromVietNamgrowingto636MW.Flows

intoThailandandCambodiadisplacesomeofthegasgenerationinthosecountries

asmostoftheflowsaredrivenbygenerationcostdifferencesbetweenthegrids.

10

Unlessotherwisestated,allgenerationchartsandstatisticsinthisreportarepresentedonan“asgenerated”

basis,meaningthatgenerationtocovergenerator’sauxiliaryconsumptionaccountedfor.

Page 16: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xvi

Figure8 GMSInstalledCapacity(BAU,MW)

Figure9 GMSInstalledCapacity(BAU,%)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

CapacityM

W

Coal Hydro Gas Wind Diesel/FO Nuclear Bio Solar HydroROR

14%

23% 25%28% 28% 29%

25%

31% 27% 22% 21% 20%

58%

43%

34%

27%

22%18%

2%

6%

8%

9%

8%

12%14% 14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

CapacityM

ix

Coal Hydro Gas Wind Diesel/FO Nuclear Bio Solar HydroROR

Page 17: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xvii

Figure10 GMSGenerationMix(BAU,GWh)

Figure11 GMSGenerationMix(BAU,%)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Genera_on(GWh)

Coal Hydro Gas Wind Diesel/FO Nuclear Bio Solar HydroROR

19%

25%

33%

38%42%

46%

18%

27%

24%

18%

17%

16%

61%

47%37%

31% 24%17%

4%

4%

5%

4% 5%

3%5% 5% 5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

Genera_onM

ix

Coal Hydro Gas Wind Diesel/FO Nuclear Bio Solar HydroROR

Page 18: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xix

Table6 BAURenewableGenerationSharesbyCountry

Year Cambodia LaoPDR Myanmar Thailand VietNam

2015 87% 83% 61% 13% 40%

2020 53% 83% 65% 20% 33%

2030 52% 75% 57% 28% 25%

2040 47% 72% 47% 33% 26%

2050 44% 74% 41% 37% 24%

SustainableEnergySector(SES)Scenario

Demand in the SES scenario assumes a transition towards energy efficiencybenchmarks taken from the industrial sectorofHongKong11andof Singapore forthecommercialsectorbyyear2050.Fortheresidentialsector,itwasassumedthaturbanresidentialdemandperelectrifiedcapitagrowstoapproximately60%ofthelevelintheBAU.Demand-responsemeasureswereassumedtobephasedinfrom2021withsome15%ofdemandbeingflexible12by2050.Centralgrid-electrificationratesinCambodiaandMyanmarintheSESwereslowerbutthescenarioforeseesthedeploymentofoff-gridsolutionsthatachievenearlythesamelevelofelectricityaccess for those countries. Theoff-gridnetworks that aredeveloped, before thecentral grids inMyanmar and Cambodia are built out, become interconnected tothenationalsystemoverthelonger-term.ElectricvehicleuptakeisthesameasintheBAU.

Figure13plotsGMS’sforecastenergyconsumptionfrom2015to2050withtheBAUenergytrajectory charted as a comparison. The significant savings are due to additional energyefficiency assumptions relating to the various sectors achieving energy intensitybenchmarks of comparable developed countries in Asia as described above. The SESdemandgrowsat a slower rateof3.5%paover theperiod to2050with the commercialsector growing at 3.5% pa, industry growing at 3.9% pa and the residential sector andagricultural sectors growing at 1.6% pa. The uptake of electric transport options occursfrom2025onwardsandgrowsto70TWhaccountingfor6%oftotaldemandby2050,or20%ofallcarsandmotorbikes. Theoff-gridcomponent isnotvisibleas itaccountsforalowpercentageoftotalelectricitydemand.

11BasedonouranalysisofcomparatorsinAsia,HongKonghadthelowestenergytoGDPintensityforindustrialsectorwhileSingaporehadthelowestforthecommercialsector.Thailand,Myanmar,LaoPDRandCambodia’sindustryintensitywastrendedtowardslevelscommensuratewithHongKong.VietNam’sindustrialintensitywastrendedtowardsKorea(2014)by2035andcontinuesthetrajectoryto2050.12Flexibledemandisdemandthatcanberescheduledatshortnoticeandwouldbeimplementedbyavarietyofsmartgridanddemandresponsetechnologies.Fivepercentisallocatedtostoragetechnologiesandtheothertenpercentbasedonchangesindemandconsumptionthroughouttheday.

Page 19: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xx

Figure13 GMSProjectedElectricityDemand(2015-2050,SES)

The SES assumes no new coal and gas entry beyond what is understood to becommittedalready.Amodestamountoflargescalehydro,4,700MWintotal,wasdeployed in Lao PDR andMyanmar above and beyondwhat is understood to becommittedhydrodevelopmentsinthesecountries13.Supplywasdevelopedbasedona leastcostcombinationofrenewablegenerationsources limitedbyestimatesof potential rates of deployment and judgments onwhen technologieswould beavailable for implementation to deliver a power system with the same level ofreliability as the BAU. Technologies used include: solar photovoltaics, biomass,biogas, CSP with storage, onshore and offshore wind, utility scale batteries,geothermal and ocean energy. Transmission limits between regions wereupgraded as required to support power sector development in the GMS as anintegratedwhole, and the transmissionplanallowed tobedifferent compared tothetransmissionplanoftheBAU.

Figure14plotstheinstalledcapacitydevelopmentsundertheSESandFigure15thecorrespondingpercentage shares. Committedandexistingplantsareassumed tocome online as per the BAU but aren’t replaced when retired. Planned andproposed thermal and large-scalehydrodevelopments arenotbuilt andall othergenerationrequirementsareinsteadmetbyrenewabletechnologies14.Coalandgasfired-generation in the earlier years is very similar to the BAU due to committed

13ThisisimportanttoallcountriesbecausetheGMSismodelledasaninterconnectedregion.14MyanmarandLaoPDRhasanadditional4,700MWoflarge-scalehydrotosupportrenewabledevelopments.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Energy(inclosses,TWh)

Agriculture Industry Commercial

Residenaal Transport OffgridDemand

BAU

Page 20: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxi

projects.Overtime,coal,gasand largehydrocapacitysharesdropto3%,4%and8%respectivelyby2050fromacombined97%sharein2015.

Demand intheSES ispredominantlymetbyrenewableswith375GWrequiredtomeet 2050 electricity demand dominated by investment in solar PV (159 GW)supported by 62 GW discharge equivalent of battery storage, onshore wind (62GW), CSP (32GW) and biomass (26GW). Smaller amounts of hydro run of river,oceanenergy,andgeothermalarealsodevelopedintheSES.By2050,thereis444GW of installed capacity which includes 1 GW of off-grid technologies which isintegrated back into the grid as the central grids are built out. The projectedgenerationmixoftheGMSisshowninFigure16andFigure17.Intheearlieryearsto2020 thegenerationmix is similar to theBAUcaseas committednewentry iscommissioned.Coal,gasandlarge-scalehydrogenerationincreasefrom353TWhin2015 to 468 TWh in 2030 before declining to 303 TWh as coal and gas units areretired and not replaced over time. The generation share of these conventionaltechnologiesdecreasefrom99%in2015to25%in2050,or14%iflargehydroisnotincluded. Timingof renewable energydevelopments is basedon thematurity ofthe technologies and judgments of when it could be readily deployed. Solar PVbacked up by battery storage (to provide off-peak generation from solar PV)generates287TWhby2050followedbybioenergygeneration(mainlybiomass)of234TWhwithwindandCSPcontributing172TWhand153TWhrespectively.

Figure 18 shows the evolution of the SES which assumes greater deployment ofrenewabletechnologiesandhigherenergyefficiencymeasuresrelativetotheBAU.Table7summarisestherenewablegenerationshare.TheSEShastheGMSshiftingawayfromfossilfuelsandby203057%thegenerationmixisnon-fossilfuelbasedgrowingto86%in2050.Generationresourcesareoptimisedacrosstheregionwithsignificant renewable generation developed in Myanmar and Lao PDR over andabove their demand requirements to support the regional shift away from fossilfuels. By 2050, solar PV and CSP are generating 36% of the region’s electricityfollowedbybiomassat19%andwindat14%.TheSEShasmuchgreaterflowsgoingbetweeneachof theGMScountriesgivenoptimisedgenerationand transmissiondevelopments at the regional level with significant amounts of power (above 20TWh) exported into Thailand and Viet Nam from Myanmar and Lao PDRrespectively.MyanmarisamajorexporterintheSESwithflowsgoingintoThailandincreasingto3,000MWand5,300MWin2030and2050respectively.ThailandalsoimportspowerfromLaoPDRandexportsaportionofit intoCambodia.TherearesignificantnetflowsfromLaoPDRtoVietNamwith7,400MWonaverageby2050.

Page 21: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxii

Figure14 GMSInstalledCapacitybyType(SES,MW)

Figure15 GMSInstalledCapacitybyType(SES,%)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,0002010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

CapacityM

W

Offgrid Coal Hydro Gas Wind Diesel/FO Bio Solar CSP Baeery HydroROR Geothermal Ocean PumpStorage

14%23% 22%

12%6% 3%

25%

31%26%

18%

11%8%

58%

43%

30%

13%

7%

4%

5%

14%

16%

17%

7%

8%

7%

13%

29%

34%

36%

3%

6%

7%

8%14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

CapacityM

ix

Offgrid Coal Hydro Gas Wind Diesel/FO Bio Solar CSP HydroROR Baeery Geothermal Ocean PumpStorage

Page 22: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxiii

Figure16 GMSGenerationMix(SES,GWh)

Figure17 GMSGenerationMix(SES,%)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Gene

raao

n(GWh)

Offgrid Coal Hydro Gas Wind Diesel/FO

Bio Solar CSP HydroROR Geothermal Ocean

19%25% 29% 25%

16%8%

18%

27%26%

18%

13%

11%

61%

47%32%

17%

8%

6%

3%

8%

12%

14%

12%

19%

19%

6%

14%

19%

24%

3%9%

13%

4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

Gene

raao

nMix

Offgrid Coal Hydro Gas Wind Diesel/FO Bio Solar CSP HydroROR Geothermal Ocean

Page 23: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxiv

Figure18 GMSPowerSectorDevelopmentundertheSESScenario

2015 SES(2030) SES(2050)

Resource FlowsCoal,Diesel,FuelOil,Nuclear Below10,000GWhGas 10,001-20,000GWhLargeHydro Above20,000GWhWindSolar,Battery,CSPBiomassandBiogasOtherRenewables

Page 24: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxv

Table7 SESRenewableGenerationSharesbyCountry

Year Cambodia LaoPDR Myanmar Thailand VietNam

2015 87% 83% 61% 13% 40%

2020 68% 92% 78% 28% 39%

2030 63% 91% 92% 51% 52%

2040 78% 95% 98% 75% 68%

2050 87% 98% 100% 84% 81%

AdvancedSustainableEnergySector(ASES)Scenario

TheASES demand assumptionswere implemented as a sensitivity analysis to theSESdemandwiththekeydifferencesasfollows:anadditional10%energyefficiencyapplied to the SES demands (excluding transport), flexible demand assumed toreach25%15by2050anduptakeofelectricvehiclesdoubledcomparedtoBAUandSESscenariosby2050.Figure19showstheelectricityconsumptionforecastfortheGMS from 2015 to 2050 with the BAU and SES energy trajectory charted usingdashed lines for comparison. The SES energy savings against the BAU are due toallowingGMS’senergydemandtotransitiontowardsenergyintensitybenchmarksofcomparabledevelopedcountriesinAsia.

TheASESdemandgrowsat a slower rateof 3.4%paover theperiod from2015 to2050withthecommercialsectorat3.3%pa,industrygrowingat3.7%paandresidentialsectorgrowingat1.5%pa.DemandfromthetransportsectorintheASESisdoubledandgrowsto140TWh,12%oftotaldemandby2050.Totalelectricitydemandincreasesto1,156TWhby2050. Off-grid demand grows to almost 7 TWh as off-grid technologies are deployed inplaceofbuildingoutthecentralgridsinMyanmarandCambodia.

15Ofthis25%,7.5%isassumedtobeenabledthroughstoragetechnologyandtheremainingportionbasedondemandresponsestopeaksystemconditions.

Page 25: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxvi

Figure19 GMSProjectedElectricityDemand(2015-2050,ASES)

ASESsupplyassumptionswerealsoimplementedasasensitivitytothoseintheSES,with the followingbeing the keydifferences: (1) allow ratesof renewable energydeployment tobemore rapid compared to theBAUand SES, (2) technology costreductionswere accelerated for renewable energy technologies, (3) implement amorerapidprogrammeofretirementsforfossilfuelbasedpowerstations,and(4)electricitypolicy targetsof 70% renewable generationby2030, 90%by2040and100%by2050fortheGMSputinplace.Itwasassumedthattechnical/operationalissueswithpowersystemoperationandcontrolforaveryhighlevelofrenewableenergyareaddressed16.

Figure 20 shows the projected installed capacity mix for the ASES and thecorrespondingpercentageshares. TheASEShascoalplant retiringearlier than intheSESundera100%renewablegenerationtargetacrosstheregion.Totalinstalledcapacity increases to 530 GW which is considerably higher than the installedcapacity in the SES (444 GW) due to the retirement of coal and gas units andreplacementwithlowercapacityfactortechnologies.SolarPVaccountsfor36%oftotal installed capacity, or 190 GW, supported by 108 GW equivalent of battery16Inparticular:(1)sufficientreal-timemonitoringforbothsupplyanddemandsideoftheindustry,(2)appropriateforecastingforsolarandwindandcentralisedreal-timecontrolsystemsinplacetomanageamoredistributedsupplyside,storagesandflexibledemandresources,and(3)powersystemsdesignedtobeabletomanagevoltage,frequencyandstabilityissuesthatmayarisefromhavingapowersystemthatisdominatedbyasynchronoustechnologies.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Energy(inclosses,TWh)

Agriculture Industry CommercialResiden_al Transport OffgridDemandBAU SES

Page 26: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxvii

storageforgenerationdeferral.Onshorewindaccountsfor79GWwith15GWofoffshorewinddevelopedinVietNamandMyanmar.BiomassandCSPcontributes35 GW each. The ASES has 6 GW of biogas and allows for up to 4 GW ofocean/marineenergytechnologiesaspartofdiversifyingtherenewableenergymix.Off-grid technologies are alsodeployed inMyanmar andCambodiawith5GWofinstalledsolarPVandbatterystorage.ASESgridgenerationisplottedinFigure22.TheGMSgenerationmix intheearlieryearsto2020 issimilartotheBAUcaseascommitted new generation projects are commissioned and this has largely beenkept the same. Of the renewable technologies,by2050, solarPVcombinedwithbattery storage contributes the highest generation share of 343 TWh or 29%,significantlyhigherthanonshorewindandbiomassgenerationwithashareof16%and17%respectively.AsgasplantsareretiredinThailand(andnotreplaced)from2020andcoalunitsacrosstheregionareretiredstartingfrom2030,bioenergy,CSPandsolarPVwithbatterytechnologiesfillthebaseloadroleinthepowersystem.By2030more than 70% of the generation is from renewables (including large-scalehydro),andby2040thisshareincreasespast90%reaching100%by2050.

Figure24showsthegenerationdevelopmentintheASESwhichhasinplacea90%and100%renewablegenerationtargetby2040and2050respectivelywithhigherenergy efficiency measures than the SES. Table 8 summarises the renewablegenerationshare.TheASESfollowsasimilarpathastheSESwithretirementofallfossilfuelpowerplantstomeetthe100%renewablegenerationtarget.SignificantamountsofsolarPVandCSParedevelopedoverthisperiodaccountingfor43%oftotal generation in the region by 2050. Wind and bio generation also play asignificantroleaccountingfor20%ofthegenerationmixeach.Myanmarisamajorexporter in the ASESwith flows going into Thailand doubling from 3,700MW to7,500MWfrom2030to2050asMyanmar’srenewableresourcesaredevelopedtosupport the region’s 100% renewable generation target. Thailand also imports asignificantamountofpower fromLaoPDRas it retiresallof itsgasandcoal-firedgenerators,whichprovideda lotof thebase loadpower in theBAUandSES.TheothermajorimporterisVietNamwithalmost8,000MWofpowerflowingintothenorthfromLaoPDR;VietNam’ssignificantdemandgrowthrelativetoitsrenewableresourcesavailablerequiresittoimportupto15%ofitspowerneedsby2050.

Page 27: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxviii

Figure20 GMSInstalledCapacitybyType(ASES,MW)

Figure21 GMSInstalledCapacitybyType(ASES,%)

0

100,000

200,000

300,000

400,000

500,000

600,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

CapacityM

W

Offgrid Coal Hydro Gas Wind

Bio Solar CSP Baeery HydroROR

Geothermal Ocean PumpStorage

14%23% 21%

11%

25%

31%28%

16%

9%7%

58%

43%

23%

6%

6%

15%

18%18%

3%

8%

8%8%

17%

35%

36%36%

3%

5%7%

17% 20%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

CapacityM

ix

Offgrid Coal Hydro Gas Wind

Bio Solar CSP HydroROR Baeery

PumpStorage Geothermal Ocean

Page 28: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxix

Figure22 GMSGenerationMix(ASES,GWh)

Figure23 GMSGenerationMix(ASES,%)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Gen

era_

on(G

Wh)

Offgrid Coal Hydro Gas Wind Bio Solar CSP HydroROR Geothermal Ocean

19%25% 28%

21%

4%

18%

27% 26%

19%

14%

12%

61%

47%

31%

6%

4%

11%

18%

19%

4%

17%

20%

20%

8%

19%

28%

29%

4%10%

14%

3% 4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

Gen

era_

onM

ix

Offgrid Coal Hydro Gas Wind Bio Solar CSP HydroROR Geothermal Ocean

Page 29: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxx

Figure24 GMSPowerSectorDevelopmentundertheASESScenario

2015 ASES(2030) ASES(2050)

Resource FlowsCoal,Diesel,FuelOil,Nuclear Below10,000GWhGas 10,001-20,000GWhLargeHydro Above20,000GWhWindSolar,Battery,CSPBiomassandBiogasOtherRenewables

Page 30: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxxi

Table8 ASESRenewableElectricitygenerationSharesbyCountry

Year Cambodia LaoPDR Myanmar Thailand VietNam

2015 87% 83% 61% 13% 40%

2020 72% 86% 80% 33% 40%

2030 77% 92% 89% 76% 64%

2040 90% 97% 100% 92% 95%

2050 100% 100% 100% 100% 100%

InvestmentRequirements

Figure 25 shows the cumulative investment in generation CAPEX and energyefficiencyinmillionsofReal2014USD.TheearlierobservationoftheSESandASEShavinglowerdemandowingtoenergyefficiencygainsisalsovalidhere.ThefigureshowstheBAUrequiringthe leastcapital investmentbytheendof themodellinghorizonprimarilydrivenbythelowerCAPEXcostsoftraditionalcoaltechnologies,which provide base-load support i.e. the CAPEX cost taking into account capacityfactorsisfarlowerforcoalthansolarPVwithbatteryasanexample.TheSESandASESincludeinvestment inenergyefficiencymeasuresandgreater investments inCSP, biogas and battery storage to defer generation post-2035 with the ASESrequiringmoreinvestmentbecauseofhigherreplacementrequirementsforretiredcoalandgasplants.

Figure26showscumulativeinvestmentbytechnologytypeat2030and2050forallthreescenarios.TheBAUdirectsmostinvestment(65%)tocoalandhydroprojects,while in the SES and ASES investments are spread over a wider range oftechnologies:50%isdirectedtosolar17andbatterysystemtechnologiesacrosstheSESandASES,withothersignificantinvestmentsinenergyefficiencymeasures(17%SESand18%ASES),wind(12%inSESandASES)andlessthan1%inoff-gridsupplyin both the SES and ASES. Clearly, compared to the BAU, the SES and ASESwillrequire investments across a more diverse range of technologies and alsotechnologiesthatareofasmallerscaleandmoredistributedratherthanasmallernumberoflargescaledevelopmentsaspertheBAU.ThishighlightstheimportancetotheSESandASESofhavinginvestmentframeworksforenergyinfrastructurethatcanaccommodatealargernumberofsmallerinvestments.

17PVandCSPtechnologies.

Page 31: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxxii

Figure25 GMSCumulativeInvestment(Real2014USD)

Figure26 GMSCumulativeInvestmentat2030and2050(Real2014USD)

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Cumula[

veInvestmen

t($m

's)

BAU SES ASES

0

100

200

300

400

500

600

700

800

900

1,000

BAU(2030) SES(2030) ASES(2030) BAU(2050) SES(2050) ASES(2050)

Cumula[

veInvestmen

t($b

n's)

Hydro Wind Coal GasDiesel/FO Nuclear Bio SolarCSP Badery Geothermal OceanGridElectrifica[on Offgrid EnergyEfficiency

Page 32: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxxiii

Figure27andTable9presentthenetpresentvalueof thepowersystemcosts intheGMSbycomponentusingan8%and15%discount rateover theperiod from2015 to 2050 grouped according to fuel costs, capital costs, fixed operation andmaintenance costs, variable operation costs, grid electrification costs, energyefficiency costs and deployment of off-grid generation solutions. The BAU iscomprisedofahigherpercentageof fuelcosts,whereas theASEShas thehighestpercentagerelatingtocapitalcosts.ThetotalNPVdifferencebetweentheBAUandASESisapproximately$192billionunderan8%discountrate.

Figure27 NPVofSystemCosts(Real2014USD)forperiod2015to2050

Table9 NPVofSystemCosts(Real2014USD)forperiod2015to2050

NPVBAU@8%

SES@8%

ASES@8%

BAU@15%

SES@15%

ASES@15%

FuelCost 462,919 288,682 219,927 208,384 150,668 126,589CapitalCost 322,100 321,220 347,175 142,637 143,706 149,783FOM 31,035 32,394 35,582 14,222 14,552 15,153VOM 34,841 30,264 29,199 15,414 13,902 13,371GridElectrification 4,601 3,386 1,825 1,902 1,341 807EnergyEfficiency 0 22,111 28,028 0 6,587 8,715Off-Grid 0 856 2,071 0 355 648Total 855,495 698,913 663,807 382,560 331,111 315,066

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

BAU@8% SES@8% ASES@8% BAU@15%SES@15% ASES@15%

NPV

($m's)

FuelCost CapitalCost FOM VOM GridElectrifica[on EnergyEfficiency Offgrid

Page 33: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxxiv

CostofElectricity

Based on the outcomes of modelling the BAU, SES and ASES scenarios, we alsoexamined the following issues in relation to electricity costs: (1) levelised cost ofelectricity, (2) investment requirements, (3) sensitivity of electricity prices to fuelpriceshocks,and(4)theimplicationsofapriceoncarbonequivalentemissionsforelectricityprices.Basedonthisanalysiswedrawthefollowingconclusions:

• TheBAUrequireslowerlevelsofcapitalinvestmentthantheSESandASES,andin relation to generation costs, the SES andASES across themodelling perioddeliveraloweroverallgenerationcost;

• ThecomparisonoftheLCOE(onlyincludesgenerationcosts)isshowninFigure28,notingthatThailandandVietNamdrivemostofthefluctuations.TheLCOEfortheBAUstartstoincreaseasfuelcostsincreasebacktolong-termaveragesbefore declining to $92/MWh as a result of the deployment of lower capitalcosts associatedwith its slow transition to renewable energy generation. TheLCOE of the ASES and SES increase initially as renewable developments aredeployed earlier but declines towards to $88/MWh in 2035 as renewabletechnologiesdecreaseincostsbeforeedgingupto$91/MWhduetohighercostrenewable technologies. This LCOE analysis only compares central gridconnected electricity production and it does not include the cost ofexternalities18.Under the SES and ASES significant benefits are gained in theform of avoided fuel costs and this contributes to achieving a lower overalldollarcostfortheGMS.TheobservationismadethatthecompositionofLCOEundertheSESandASESislargelydrivenbyinvestmentcosts,henceexposuretofuelshocksissignificantlyreduced;and

• TheLCOEundertheSESandASESisalsolargelyinsensitivetoacarbonprice,ascouldbereasonablyanticipatedforapowersystemthat isentirelydominatedbyrenewableenergy.

18Adetailedstudyonthecostofexternalitiesispresentedinthefollowingreference:Buonocore,J.,Luckow,P.,Norris,G.,Spengler,J.,Biewald,B.,Fisher,J.,andLevy,J.(2016)‘Healthandclimatebenefitsofdifferentenergy-efficiencyandrenewableenergychoices’,NatureClimateChange,6,pp.100–105.

Page 34: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxxv

Figure28 GMSLCOEforGeneration

CarbonEmissions

Figure29andFigure30showthecarbonintensityofGMS’spowersystemandthetotalperannumcarbonemissionsrespectively.Theintensitytrajectorymovesupinthe BAU as more coal enters the system thenmaintains its level around 0.45 t-CO2e/MWhasrenewabletechnologiesarealsodeveloped.TheintensityintheSESdropsto0.10t-CO2e/MWhby2050andtheASESis100%carbonemissionsfree.Intermsoftotalcarbonemissions,theshifttowardstheSESandASESsavesupto659and771mt-CO2e, respectively,or theequivalent toa85%and100%saving fromtheBAU.

60

65

70

75

80

85

90

95

100

105

110

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

LCOE($/M

Wh)

BAU SES ASES

Page 35: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxxvi

Figure29 GMSCarbonIntensityComparison

Figure30 GMSCarbonEmissionsComparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Carbon

Intensity

(t-CO2e/M

Wh)

BAU SES ASES

0

100

200

300

400

500

600

700

800

900

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Emissions(m

t-CO

2eperann

um)

BAU SES

ASES AvoidedEmissions(SES)

AvoidedEmissions(ASES)

Page 36: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxxvii

ImplicationsforJobsCreation

The SES and ASES scenarios both result in quite different technology mixescomparedtotheBAU.Eachhasquitedifferentimplicationsfortheworkforcethatwouldberequiredtosupporteachscenario.Basedonanalysisoftherequiredjobsweestimatethat19:

• TheBAUfrom2015to2050wouldbeaccompaniedbythecreationofsome13million jobyears20(20%manufacturing,46%construction,22%operationsandmaintenance,and12%fuelsupply);

• The SES would involve the creation of some 21 million job years (25% inmanufacturing, 56% in construction, 18% in operations andmaintenance and0.8%infuelsupply);and

• The ASES would involve the creation of 28 million job years (24% inmanufacturing, 53% in construction, 23% in operations andmaintenance andlessthan0.1%infuelsupply).

BarriersfortheSESandASESScenarios

TheGMShasabundantrenewableenergyresources.However,thereareanumberof social, economic, financial, technical and institutional barriers for the SES andASES which potentially deter new investment in renewable energy and theimplementationofenergyefficiencymeasures.

Socialbarriers

• Alackofpublicawarenessandunderstandingontheimportanceofrenewableenergyandenergyefficiencyinaddressingenvironmentalconcerns.Thisisdueto insufficient information fromrelevantgovernmentagencieson thebenefitsandpotentialsofrenewableenergyandenergysavings.ThismayalsorelatetothebroadereducationlevelsandprogramsinsomeoftheGMScountries.

• A lack of effective and considered measures relating to adverse social andenvironmentalimpactsoflargescalerenewableprojectssuchashydropower.

Economicandfinancialbarriers

• The main economic barrier in the GMS is the high investment costs ofrenewable technologies, which are significantly higher than conventionalgenerationtechnologiesatpresent.

• Inallof theGMScountries,projectdevelopershaveexperienceddifficulties insecuringfinancetoinvestinrenewableenergyprojects.

19BasedontheemploymentfactorspresentedinAppendixC.20Ajobyearisonejobforonepersonforoneyear.Weusethismeasuretomakecomparisonseasieracrosseachscenarioasthenumberofjobscreatedfluctuatesfromyeartoyear.

Page 37: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxxviii

• Fossil fuel price subsidies, particularly in Myanmar, Viet Nam and Thailand,represent another significant barrier in new investment in renewable energy.Subsidiesalsodiscourageenergyconservationandenergyefficiencymeasures.

Technicalbarriers

• Limited knowledge on renewable energy technology. There is a shortage oftechnical, operational andmaintenance expertise within the government andthelocalprivatesectorwhichlimitsdevelopmentopportunities.Thisisduetoalackoftrainingorganisationsandfacilitiesleadingtoalackofqualifiedexpertsandskilledtechnicians.

• Inadequate transmission and distribution networks to support an increase inrenewableenergyprojects,particularlyinremoteareas.

• InsufficientresearchanddevelopmenteffortintherenewableenergysectorintheGMScountries.Thisincludesalackofdetailedstudiesontheimpactofhighrenewablepenetrationontheoperationofpowergridsandconventionalpowerplants.

• Alackofmeasurements,reportingandverificationsystemtofollowupontheoutcomes of energy saving programs. This makes it difficult to assess theeffectivenessoftheprograms.

Policyandinstitutionalbarriers

• A lack of sufficient supporting schemes, strategies and plans to promoterenewableenergyandenergyefficiency,particularlyinCambodia,LaoPDRandMyanmar.

• AlthoughThailandand,tosomeextent,VietNamhaveputinplacepoliciesandsupporting schemes to promote renewable energy, there is still a lack ofcoordination between different governmental agencies which are responsibleforpolicydecision-makingresultinginuncoordinatedandincoherentpolicies.

• There are also significant uncertainties over future policies and regulatoryframeworkswhichrepresentriskstopotentialinvestors.

• Difficulties and long waiting times in obtaining licences and connectingrenewable plants to the grid due to a lack of well-defined operational andtechnicalstandards.

Recommendations

ThefollowingarekeyrecommendationsthatpotentiallyreducethebarrierstotheSESandASESintheGMS.

Overcomingsocialbarriers

• Disseminate information on the benefits of renewable energy and energyefficiencythrougheffectivecommunicationmethodsandeducationalprograms.

Page 38: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xxxix

• Conductdetailedassessmentsoftheimpactsofrenewableenergyprojectsandmeasures to alleviate social and environmental impacts andmake the resultspubliclyavailable.

Overcomingeconomicandfinancialbarriers

• Develop energy policies and schemes to increase the cost competitiveness ofrenewabletechnologies.Theaimistocreateanenvironmentthatisconduciveforinvestmentinrenewableenergytechnologies.

• Conduct detailed assessments of renewable energy potential to enableprospective investors to understand the potential, identify the bestopportunities and subsequently take steps to explore investment anddeployment.

• Consider removing or replacing fossil fuel subsidies with other supportingschemes.

Overcomingtechnicalbarriers

• Knowledgetransferandcapacitybuildingintherenewableenergytechnologiesandenergyefficiencyforpolicymakersandstaffworkingintheenergyindustrytoensure thehumancapacity isbeingdevelopedtosupportanationalpowersystemthathasahighshareofgenerationfromrenewableenergy.Aswehaveshown the SES and ASES will require a large number of skilled workers tosupportatechnologymixwithasignificantshareofrenewableenergy.

• Investments in ICT systems to allow for greater real-timemonitoring, controlandforecastingofthenationalpowersystem,includingSCADA/EMS,andsmart-gridtechnologyandrenewableenergyforecastingsystemsandtools. Thiswillenable efficient real-time dispatch and control of all resources in the systemwhich will facilitate high levels of renewable energy as well as cross-borderpowertrading.

• Encourage cross-border power trade in the region, as this works to theadvantage of exploiting scattered renewable energy resource potentials anddiversityinelectricitydemand.

• Takemeasurestoimprovepowerplanningintheregiontoexplicitlyaccountforproject externalities and risks and consider scenarioswithhighpenetrationofrenewable energy and energy efficiency, as well as plans for tighter powersystemintegrationwithintheregion.

Overcomingpolicyandinstitutionalbarriers

• Formation of more comprehensive energy policies to create an environmentthat is appropriate for investment in renewable energy technologies andencourage energy efficiency. Investor confidence in renewable energyinvestmentwillbeenhancedbyhavingatransparentregulatoryframeworkthatprovidescertaintytoinvestorsandappropriatelyconsiderstheramificationsofhighlevelsofrenewableenergyinthegenerationmix.

Page 39: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xl

• Implement regulatory frameworks and well-defined technical codes tostreamline procedures for providing licenses and avoiding delay in gridconnection.

Page 40: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xli

AcronymsAD AnaerobicDigestion

ADB AsianDevelopmentBank

AEDP AlternativeEnergyDevelopmentPlan(Thailand)

AGL AboveGroundLevel

ASEAN AssociationofSoutheastAsianNations

ASES AdvancedSustainableEnergySector

BAU BusinessAsUsual

BCM/Bcm BillionCubicMetres

BNEF BloombergNewEnergyFinance

BOT Build–Operate–Transfer

BP BritishPetroleum

BTU/Btu BritishThermalUnit

CAGR CompoundAnnualGrowthRate

CAPEX CapitalExpenditure

CCGT CombinedCycleGasTurbine

CCS CarbonCaptureandStorage

CENER NationalRenewableEnergyCentre

CIEMOT Centro de Investigaciones Energeticas Medioambientales yTecnológicas

COD CommercialOperationsDate

CSP ConcentratedSolarPanel

DEDE Department of Alternative Energy Development and Efficiency(Thailand)

DNI DirectNormalIrradiation

DTU TechnicalUniversityofDenmark

EAC ElectricityAuthorityofCambodia

EDC ElectricitéduCambodge

EDL ElectricitéduLaos

Page 41: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xlii

EE EnergyEfficiency

EEZ ExclusiveEconomicZones

EGAT ElectricityGenerationAuthorityofThailand

EIA EnergyInformationAdministration

EPPO EnergyPolicyandPlanningOffice(Thailand)

ERAV ElectricityRegulatoryAuthorityofVietNam

ERC EnergyRegulatoryCommission(Thailand)

EVN ElectricityofVietNam

FOB FreeonBoard

FOM FixedOperatingandMaintenance

GDP GrossDomesticProduct

GHI GlobalHorizontalIrradiance

GIS GeographicalInformationSystem

GMS GreaterMekongSubregion

GSP GasSubcooledProcess

GT GasTurbine

HV HighVoltage

IAEA InternationalAtomicEnergyAgency

ICT InformationandCommunicationTechnology

IDAE InstitutoparalaDiversificaciónyAhorrodelaEnergía

IEA InternationalEnergyAgency

IES IntelligentEnergySystemsPtyLtd

IMF InternationalMonetaryFund

INIR IntergradedNuclearInfrastructureReview

IPP IndependentPowerProducer

IRENA InternationalRenewableEnergyAgency

JICA JapanInternationalCooperationAgency

JV JointVenture

LCOE OverallLevelisedCostofElectricity

LNG LiquefiedNaturalGas

Page 42: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xliii

LPG LiquefiedPetroleumGas

MEPE MyanmarElectricPowerEnterprise

MKE MekongEconomics

MMcf MillionCubicFeet

MMcfd MillionCubicFeetperDay

MOEP MinistryofElectricPower(Myanmar)

MOGE MyanmarOilandGasEnterprise

MOIT MinistryofIndustryandTrade(VietNam)

MOM MinistryofMines(Myanmar)

MOST MinistryofScienceandTechnology

MOU MemorandumofUnderstanding

MTPA MillionTonnesPerAnnum

MV MediumVoltage

NASA NationalAeronauticsandSpaceAdministration(theUnitedStates)

NEDO NewEnergy and Industrial TechnologyDevelopmentOrganisation(Japan)

NOAA National Oceanic and Atmospheric Administration (the UnitedStates)

NGV NaturalGasVehicle

NPP NuclearPowerPlant

NPV NetPresentValue

NREL NationalRenewableEnergyLaboratory(theUnitedStates)

OECD OrganisationforEconomicCo-operationandDevelopment

OPEC OrganisationofthePetroleumExportingCountries

OPEX OperationalExpenditure

PDP PowerDevelopmentPlan

PDR People’sDemocraticRepublic(ofLaos)

PEA ProvincialElectricityAuthority(Thailand)

PRC People’sRepublicofChina

PTT PetroleumGroupofThailand

PTTEP PTTExplorationandProduction

Page 43: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xliv

PV Photovoltaic

PVN PetroleumofVietnam/PetroVietnam

RE RenewableEnergy

REVN RenewableEnergyofVietNamJointStockCompany

ROR RunofRiver

RPR ReservestoProductionRatio

SCADA/EMS Supervisory Control and Data Acquisition/Energy ManagementSystem

SES SustainableEnergySector

SWERA SolarandWindEnergyResourceAssessment

SWH SolarWaterHeating

TCF/Tcf TrillionCubicFeet

UN UnitedNations

USD UnitedStatesDollar

VOM VariableOperatingandMaintenance

WEO WorldEnergyOutlook

WWF WorldWideFundforNature

WWF-GMPO

WWF–GreaterMekongProgrammeOffice

Page 44: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xlv

TableofContentsExecutiveSummary iii

Introduction iiiGreaterMekongSubregion iiiGreaterMekongSubregionPowerSectors ivPowerDevelopmentPlansintheGMSCountries ixSummaryofDevelopmentOptions xPowerSectorVisionScenarios xiiiBusinessasUsual(BAU)Scenario xivSustainableEnergySector(SES)Scenario xixAdvancedSustainableEnergySector(ASES)Scenario xxvInvestmentRequirements xxxiCostofElectricity xxxivCarbonEmissions xxxvImplicationsforJobsCreation xxxviiBarriersfortheSESandASESScenarios xxxviiRecommendations xxxviii

1 Introduction 481.1 GreaterMekongSubregion 481.2 StructureofthisReport 49

2 GreaterMekongSubregionCountries:EconomicConditionsandPowerSectors 512.1 EconomicGrowth 512.2 Population 552.3 SupplyandDemandTrends 552.4 Cambodia’sPowerSector 612.5 LaoPDR’sPowerSector 642.6 Myanmar’sPowerSector 662.7 Thailand’sPowerSector 682.8 VietNam’sPowerSector 712.9 Summary 75

3 ElectricitySupplyOptions 773.1 SolarPower 773.2 OnshoreandOffshoreWindPower 803.3 PowerGenerationPotentialfromBiomass 853.4 PowerGenerationPotentialfromBiogas 873.5 HydroPower 873.6 GeothermalEnergy 933.7 OceanEnergy 943.8 CoalResources 943.9 ImportedCoal 963.10OffshoreNaturalGasResources 963.11LiquefiedNaturalGas 1013.12NuclearPower 1023.13PowerPlanningintheGMS 1033.14SummaryofDevelopmentsforGMSPowerSectors 106

Page 45: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xlvi

4 PowerSectorVisionScenarios 1104.1 Scenarios 1104.2 TechnologyCostAssumptions 1134.3 FuelPricingOutlook 1154.4 RealGDPGrowthOutlook 1174.5 PopulationGrowth 1184.6 CommittedGenerationProjectsinBAU,SESandASESScenarios 1184.7 TransmissionSystem,ImportsandExports 1184.8 PowerImportsandExports 1204.9 Technical-EconomicPowerSystemModelling 123

5 BusinessasUsualScenario 1255.1 BusinessasUsualScenario 1255.2 ProjectedDemandGrowth 1255.3 ProjectedInstalledCapacity 1275.4 ProjectedGenerationMix 1305.5 EvolutionofGMSPowerSystemsunderBAUScenario 1335.6 ProjectedGenerationFleetStructure 1355.7 ReserveMarginandGenerationTrends 1375.8 ElectrificationandOff-GridSupply 139

6 SustainableEnergySectorScenario 1406.1 SustainableEnergySectorScenario 1406.2 ProjectedDemandGrowth 1406.3 ProjectedInstalledCapacity 1426.4 ProjectedGenerationMix 1456.5 EvolutionofGMSPowerSystemsunderSESScenario 1486.6 ProjectedGenerationFleetStructure 1506.7 ReserveMarginandGenerationTrends 1526.8 ElectrificationandOff-Grid 154

7 AdvancedSustainableEnergySectorScenario 1557.1 AdvancedSustainableEnergySectorScenario 1557.2 ProjectedDemandGrowth 1557.3 ProjectedInstalledCapacity 1577.4 ProjectedGenerationMix 1607.5 EvolutionofGMSPowerSystemsunderASESScenario 1637.6 ProjectedGenerationFleetStructure 1657.7 ReserveMarginandGenerationTrends 1667.8 ElectrificationandOff-Grid 168

8 AnalysisofScenarios 1698.1 EnergyandPeakDemand 1698.2 Energyintensity 1728.3 GenerationMixComparison 1728.4 RenewableEnergyIntegration 1748.5 CarbonEmissions 1758.6 CoalPowerDevelopments 1778.7 HydroPowerDevelopments 1788.8 AnalysisofBioenergy 179

9 EconomicImplications 1819.1 OverallLevelisedCostofElectricity(LCOE) 181

Page 46: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 xlvii

9.2 AnnualSystemCost 1829.3 CumulativeCapitalInvestment 1859.4 OperatingCosts,AmortisedCapitalCostsandEnergyEfficiencyCosts 1889.5 Off-gridCostComparison 1889.6 FuelPriceSensitivity 1899.7 ImpactofaCarbonPrice 1909.8 RenewableTechnologyCostSensitivity 1919.9 JobsCreation 192

10 Conclusions 19510.1ComparisonofScenarios 19510.2EconomicImplications 19610.3BarriersfortheSESandASESinGMS 19710.4Recommendations 199

AppendixA TechnologyCosts 201AppendixB FuelPrices 205AppendixC MethodologyforJobsCreation 206AppendixD CommittedPowerProjects 208AppendixE HydroPowerDevelopment 213AppendixF SourcesofInformationforRenewableEnergyPotential 218AppendixG EconomicIndicators 221AppendixH GMSTransitionStatistics 225

Page 47: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 48

1 IntroductionIntelligent Energy Systems Pty Ltd (“IES”) and Mekong Economics (“MKE”) havebeen retained byWWF – GreaterMekong ProgrammeOffice (“WWF-GMPO”) toundertakeaprojectcalled“Produceacomprehensivereportoutliningalternativesfor power generation in the Greater Mekong Sub-region”. This is to developscenarios for the countries of the GreaterMekong Sub-region (GMS) that are asconsistentaspossiblewiththeWWF’sGlobalEnergyVisiontothePowerSectorsofall GreaterMekong Subregion countries. The objectives ofWWF’s vision are: (i)contributetoreductionofglobalgreenhouseemissions(cutby>80%of1990levelsby2050);(ii)reducedependencyonunsustainablehydroandnuclear;(iii)enhanceenergyaccess; (iv) takeadvantageofnewtechnologiesandsolutions; (v)enhancepower sector planning frameworks for the region:multi-stakeholder participatoryprocess;and(vi)developenhancementsforenergypolicyframeworks.

Thepurposeofthisreportistoprovideasummaryofthe5detailedcountry-leveldescriptionsof threescenarios for theGreaterMekongSubregionprovided in theseparatecountryreports,aswellasanoverviewofregional implicationsofsuchatransitiontoasustainablepowersector:

• BusinessasUsual(BAU)powergenerationdevelopmentpathwhichisbasedoncurrentpowerplanningpractices,currentpolicyobjectives;

• Sustainable Energy Sector (SES) scenario, where measures are taken tomaximally deploy renewable energy 21 and energy efficiency measures toachieveanear-100%renewableenergypowersector;and

• Advanced Sustainable Energy Sector (ASES) scenario, which assumes a morerapid advancement and deployment of new and renewable technologies ascomparedtotheSES.

The scenarios were based on public data, independent assessments of resourcepotentials, information obtained from published reports and power systemmodellingoftheGMSregionfortheperiod2015to2050.

Thepurposeofthisreportistoprovideadetailedoverviewofthemainfeaturesofthese scenarios at the regional level and to set out the implications of thesescenariosforeachGMScountry.

1.1 GreaterMekongSubregion

For thepurposeof this project, theGreaterMekong Subregion (GMS) consists ofthe following five countries surrounding the Mekong River22basin: Kingdom of

21Proposedbutnotcommittedfossilfuelbasedprojectsarenotdeveloped.Committedandexistingfossilfuelbasedprojectsareretiredattheendoftheirlifetimeandnotreplacedwithotherfossilfuelprojects.Aleastcostcombinationofrenewableenergygenerationisdevelopedtomeetdemand.

Page 48: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 49

Cambodia (“Cambodia”); Lao People’sDemocratic Republic (“Lao PDR”);UnionofMyanmar(“Myanmar”);KingdomofThailand(“Thailand”);andSocialistRepublicofVietNam(“VietNam”).AnillustrationoftheGMSwithinthiscontextandasitwillbeanalysedinthisprojectisprovidedinFigure31.AllreferencestotheGMSwillhenceforthcorrespondtothefivecountrieslistedabove.

Figure31 GMSCountriesandtheirLocationinAsia

1.2 StructureofthisReport

Thisreport ispartofasetofreportsthatcollectivelyprovidedetailsofthepowersectorvisionscenariosforeachGMScountry.Thefullsetofreportsisasfollows:

• Volume1:GreaterMekongSubregionPowerSectorVision;• Volume2:KingdomofCambodia;

22NotethatoftentheGMSisdefinedtoincludeYunnanProvinceand/ortheGuangxiZhuangAutonomousregion–seeAsianDevelopmentBank(ADB),“GreaterMekongSubregionEconomicCooperationProgram”,November2014,available:http://www.adb.org/sites/default/files/publication/29387/gms-ecp-overview.pdf.However,thescopeofthisstudywasonthepowersectorsof:Cambodia,LaoPDR,Myanmar,ThailandandVietNamandtreatmentofthesefivecountriesasaregionthatwehenceforthrefertoastheGMSinthisreport.

THAILAND

MYANMAR

CAMBODIA

VIETNAM

LAOPDR

HanoiLuangPrabang

Vientiane

Mandalay

Yangon

HoChiMinhCity

PhnomPenh

Bangkok Angkor

SiemReap

Vientiane

ChiangRaiChiangMai

Page 49: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 50

• Volume3:LaoPeople’sDemocraticRepublic;• Volume4:RepublicoftheUnionofMyanmar;• Volume5:KingdomofThailand;and• Volume6:SocialistRepublicofVietNam;and• Volume7:AssumptionsBook.Thisreporthasbeenorganisedinthefollowingway:

• Section2providesasummaryofthestatusofeachcountry’spowersector;• Section3coversthevariousresourcesupplyoptionsavailabletoeachcountry;• Section4setsoutthescenariosandunderlyingassumptions;• Section5setsoutthekeyresultsfortheBusinessasUsualScenario;• Section6setsoutthekeyresultsfortheSustainableEnergyScenario;• Section7setsoutthekeyresultsfortheAdvancedSustainableEnergyScenario;• Section 8 provides comparative analysis of the two scenarios based on the

computationofanumberofsimplemetricsthatfacilitatecomparison;• Section9providesanalysis intothecostofelectricityunderthetwoscenarios;

and• Section10providesthemainconclusionsfromthemodelling.Thefollowingappendicesareincluded:• AppendixAsummarisesthetechnologycostassumptions;• AppendixBsummarisesthefuelpriceassumptions;• AppendixCsetsoutinformationusedtoestimatejobscreationpotential;• Appendix D provides a summary of the generation projects assumed to be

committedinthemodelling;• AppendixElistshydropowerdevelopments;• AppendixFlistssourcesofinformationthatwereusedtodevelopassumptions

forrenewableenergypotentialintheregion;• AppendixGprovides some tablesofeconomic indicators for the countries for

reference;and• AppendixHsetsoutsomeadditionalstatisticsandcharts.Note that unless otherwise stated, all currency in the report is Real 2014UnitedStatesDollars(USD)andallprojectionspresentedinthisreportstartfromtheyear2015.

Page 50: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 51

2 GreaterMekongSubregionCountries:EconomicConditionsandPowerSectorsCambodia, Lao PDR, Myanmar, Thailand and Viet Nam, with a combined grossdomestic product (GDP) of 662 US billion and population of 232million in 2014,collectively formoneof the fastest growing regions in theworld. Each country’spowersectorstatusisuniqueandeachfacesitsownsetofchallenges.ThissectionprovidesabriefsummaryofeachGMScountry’ssituationandthecurrentstatusoftheirpowersectordevelopmentplans23.

2.1 EconomicGrowth

TheAssociationofSouthEastAsianNations(ASEAN)isthesecond-fastestgrowingeconomyinAsia,secondtoPRC24.Figure32showstheGDPsofmajoreconomiesintheAsia-Pacificregion,withabreakdownofASEAN’sGDP(in2013),toillustratethecontributionofeachmembercountry. In2013,theGMSmadeuparound27%ofASEAN’s total GDP, with the other major contributors being Indonesia (36%),Malaysia(13%),Singapore(12%),andthePhilippines(11%).

Over the past decade, the GMS region has experienced significant economicgrowth. This is evidenced by Figure 33 and Figure 34. The former shows thatThailand and Viet Nam aremajor contributors to the GMS GDP, while the lattershowsthattheaverageratesofGDPgrowthoftheGMScountrieshasexceededormatched25theannualaverageGDPgrowthrateoftheworld. Figure35 illustratesthe historical Real GDP growth rates of the GMS countries to illustrate the long-termtrendforthelast15years.

The high growth rates are attributable to the countries within the GMS takingmeasures to transformtheireconomies tobemoreopen,diversifiedandmarket-oriented as compared to the past. This has enabled a steady flow of foreigninvestment. Efforts have also been taken to remove trade barriers in the GMSmembercountrieswhichhavestimulatedeconomicactivityonalocalisedlevelandenhancedtheregion’soverallabilitytobecomeintegratedintotheworldeconomy.

Unsurprisingly, the economic growth experienced in the region has resulted inincreasesintheGDPpercapita,asillustratedinFigure36.Inallinstancesincreasesareobserved.However,Figure36alsoshowsthattheGMScountries,onaGDPper

23Moredetailedinformationoneachcountryisprovidedinthecountryreportsthataccompanythisregionalsummaryreport.24East-WestCenter,“ASEANMattersforAmerica”,available:http://www.asiamattersforamerica.org/asean/data/gdppercapita.25NotethataveragegrowthinRealGDPinThailandisthelowestofthecountriesintheregionwhichhasintherecentpastexperiencedalowgrowthrateowingtothecountrybeingaffectedbypoliticalinstabilitythathasinturnseenareductionininvestment,tourismandlowereconomicactivityacrossthecountrygenerally.

Page 51: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 52

capita basis, are lower than the overall world average, suggesting that there issubstantialpotentialforgrowth.

Figure32 GDPComparison–ASEANandASEANGDPbreakdown(2013)

Source:East-WestCenter

Page 52: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 53

Figure33 RealGDP(inRealUSD2014)fortheGMS

DataSource:IMFWEOOctober2014

Figure34 AverageRealGDPgrowthrates(2000-14)forGMScountriesandtheworld

DataSource:IMFWEOOctober2014

$-

$100

$200

$300

$400

$500

$600

$700

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

RealGDP

(Real2014USD

Billions)

Cambodia LaoPDR Myanmar Thailand VietNam

0%

2%

4%

6%

8%

10%

12%

Cambodia LaoPDR Myanmar Thailand VietNam World

Page 53: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 54

Figure35 RealGDPgrowthratesfortheGMScountries

DataSource:IMFWEOOctober2014

Figure36 RealGDPpercapita(inReal2014USD)ofGMScountriesforselectedyears

DataSource:IMFWEOOctober2014

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

Annu

alGrowthRate(%

)

Cambodia LaoPDR Myanmar Thailand VietNam

$-

$2,000

$4,000

$6,000

$8,000

$10,000

$12,000

Cambodia LaoPDR Myanmar Thailand VietNam World

2000 2010 2014

Page 54: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 55

2.2 Population

ThepopulationoftheGMSisaround233millionpeopleandhasbeengrowingatanaveragerateof0.9%forthelast5years.Figure37showsthepopulationtrendforthe period 2000-14 and Table 10 provides population statistics for the GMScountriesforselectedyears.

Table10 Populationstatistics(numberofpeopleinmillions)forselectedyears

Country 2000 2005 2010 2011 2012 2013 2014Cambodia 12.2 13.4 14.4 14.6 14.9 15.1 15.3LaoPDR 5.4 5.8 6.4 6.5 6.6 6.8 6.9Myanmar 46.4 48.0 49.7 50.1 50.5 51.0 51.4Thailand 61.9 65.1 67.3 67.6 67.9 68.2 68.6VietNam 77.6 82.4 86.9 87.8 88.8 89.7 90.6GMSTotal 203.5 214.7 224.7 226.6 228.7 230.8 232.8

DataSource:IMFWEOOctober2014

Figure37 GMSpopulationbyGMScountry(2000-14)

DataSource:IMFWEOOctober2014

2.3 SupplyandDemandTrends

Electricitydemandacrosstheentireregionhasgrownfrom189TWhin2005to337TWh by 2014, at an annual average rate of 6.6%. The significant growth can beattributed to the high growth in Viet Nam, accounting for only 27% of the GMSelectricity consumption in 2005 increasing to 40% by 2014. Thailand’s share ofelectricityconsumptionintheregiondecreasesfrom69%to54%overthisperiod.

0

50

100

150

200

250

Peop

leinM

illions

Cambodia LaoPDR Myanmar Thailand VietNam

Page 55: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 56

Viet Nam and Thailandmake upmost of the demand in the region due to theirrelativelydevelopedeconomiesandhighelectrificationrates.Thechangeincountrycomposition of total electricity demand in the region is charted in Figure 38 andFigure39.

Figure38 GMSElectricityDemandbyCountry(GWh,2005)

Source:IEA(Demandincludestransmissionanddistributionlosses)

Figure39 GMSElectricityDemandbyCountry(GWh,2014)

Source:IEA(Demandincludestransmissionanddistributionlosses)

136,161;40%

181,221;54%

4,211;1% 4,364;1% 11,746;4%

Vietnam Thailand Cambodia LaoPDR Myanmar

Page 56: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 57

Table11showsfinalelectricityconsumptionandelectricitypeakdemandfor2014with corresponding rates of growth for each GMS country. Most of the GMScountrieshaveexperiencedsubstantialgrowth,andthisisexpectedtocontinueinthenextdecades.

Table11 GMSCountryElectricityDemandandGrowthRates(2014)

Country ElectricityConsumption PeakDemandTWh CAGR26,% MW CAGR27,%

Cambodia 4.15 19.4% 687 16.0%LaoPDR 3.38 14.5% 748 12.5%Myanmar 9.57 15.7% 2,235 16.2%Thailand 168.20 4.4% 26,942 2.9%VietNam 142.25 12.7% 22,100 10.2%Source:CompiledbyConsultantfromvarioussources

Figure 40 presents the GMS breakdown of consumption by the sectors. Industryalmost accounts for half of electricity use in the region at 47%, followed by theresidentialandcommercial sectorsat29%and23%respectively.Thecompositionof sector consumption across the region has remained relatively stable withresidential energy increasing 1% displacing the industrial sector as a result ofincreasing electrification rates and per capita consumption levels in the region.Figure 41 compares the countries’ sectoral composition of power energyconsumption (for 2014 data). It indicates that the industrial sector is the largestaggregate electricity consumer in Viet Nam (54%), Thailand (43%) andMyanmar(45%);whereasforCambodiaandLaoPDR,theresidentialsectoraccountsforthelargest part on total consumption (47% and 35%). The proportion of commercialelectricity consumption in Viet Nam at 10% is significantly less than that of theothercountries(at20%andabove).

26TheCompoundAnnualGrowthRate(CAGR)isforthelasttenyearsforCambodia,LaoPDR,andVietNam,lastfiveyearsforMyanmarandtwelveyearsforThailand.27LastfiveyearsforCambodia,Myanmar,andThailand,tenyearsforLaoPDRandVietNam.

Page 57: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 58

Figure40 GMSHistoricalEnergyDemand(TWh)bySector:2005-14

Source:IEA(Demandincludestransmissionanddistributionlosses),2014basedonIESestimates

Figure41 ElectricityConsumptionBreakdownbySector(2014)

Table 12 provides information on installed capacity by fuel type for each GMScountry and Figure 42 compares the capacity mix between the countries. Hydro

0

50

100

150

200

250

300

350

2005 2010 2014

Energy(T

Wh,inclosses)

Agriculture Industry Commercial Residen[al

3% 1% 3% 1% 0.2%

21%33%

45% 54%43%

29%

31%20% 10% 33%

47%35% 32% 35%

24%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cambodia LaoPDR Myanmar VietNam Thailand

Agriculture Industry Commercial Residen[al

Page 58: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 59

power is dominant in all systems except Thailand; Lao PDR’s installed capacity isentirely based on hydro power while in Myanmar, Cambodia and Viet Nam theshares are around 66%, 61% and 39% respectively. Power stations running onnatural gasmakeup a significant shareof installed capacity for Thailand atmorethan60%ofthetotal;naturalgasisalsosignificantinMyanmar(29%)andVietNam(21%). Coal based generation is seen to be a significant part of Viet Nam andThailand’s installedcapacitymixaccountingfor32%and19%respectively. Sharesofgeneratingcapacityforrenewableenergysources(excludinglargehydro)remainlowacrosstheGMS.ThailandisleadingindevelopingREplants,havingaround8%ofthetotalinstalledcapacityfromrenewabletechnologies.Intheothercountries,theproportionofREcapacityis3%.

Table12 InstalledCapacitybyFuelType(2014)

GenerationType Cambodia LaoPDR Myanmar Thailand VietNamCoal 268 - 120 6,538 10,405Gas - - 1,325 21,888 6,825LargeHydro 929 3,058 3,011 3,444 13,050FuelOil/Diesel 291 - 87 9 1,738RESources 23 - 40 2,789* 1034Solar - - - 464 -Wind - - - 209 52SmallHydro - - 33 14 800*Biomass 23 - 5 1,851 180*Biogas - - 2* 251 2*

Total(MW) 1,511 3,058 4,583 34,668 33,052Source:CompiledbyConsultantfromvarioussources

Page 59: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 60

Figure42 InstalledCapacityMixbyFuelTechnology(2014)

Table13summarisestheelectrificationratesfortheoverallandalsoforurbanandruralareas.VietNamandThailandhaveveryhighelectrificationratescomparedtotheothercountriesintheGMSasaresultoffocusedplanstoextendtransmissionand distribution systems to remote areas to increase electricity access rates.Myanmar and Cambodia’s electrification rates are lagging with very lowelectrificationratesparticularlyinruralareas.

Table13 ElectrificationratesinGMScountries(2014)

Country Populationwithout Accessto Electricity(millions)

ElectrificationRate28(%)

UrbanElectrificationRate(%)

RuralElectrificationRate(%)

Cambodia 9.2 39% 90% 24%LaoPDR 0.8 89% 98% 83%Myanmar 38.1 26% 40% 20%Thailand 0.2 100% 100% 99%VietNam 1.9 98% 100% 97%

28Electrificationrateisbasedontheproportionofpopulationwithaccesstoelectricity.

18% 21%31%29%

61%

21%61% 100%

66%

10%

39%

19%5%8% 3%

0%

20%

40%

60%

80%

100%

Cambodia LaoPDR Myanmar Thailand Vietnam

Coal Gas Hydro(LargeScale) Oil/Diesel Renewable

Page 60: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 61

2.4 Cambodia’sPowerSector

Figure43graphstheelectricitysuppliedtoCambodia(thatisgeneratedwithinthecountry aswell as imported fromneighbouring countries) and theelectricity thathasbeensoldtoendusersinCambodia.Annualaveragegrowthratesfrom2004to2014 are also plotted on the chart. Over the period shown, national electricitydemand inCambodiahas increasednearly six-fold, fromsome704GWh to4,144GWh,withacompoundannualgrowthrate(CAGR)of19.4%,whichisquitehighfora power system. Such rapidly growing demand has been attributed to: (1)Cambodia’seconomicgrowthasmeasuredbyannualGDPgrowthrateswhichhavebeen in range from 7% to 8%, (2) urban population growth, and (3) increasedelectrificationrates.Some70%ofCambodia’snationaldemandisconcentratedinPhnomPenh.Demand isexpectedtocontinuetorise in linewithageneralpolicydirectionofincreasingaccesstoelectricitywithaccessbeingprovidedtoruralareasand also the expansion of the transmission system in order to reduce deliveredelectricitycosts.

The residential sector has traditionally consumed the highest proportion of totalelectricityconsumptioninthecountry.ThisisillustratedinFigure44,whereitcanbe seen that for 2012 the residential share of electricity consumptionwas some50% of the total,while consumption attributable to the commercial and servicessectorsmadeupsome28%withtheindustrialsectormakinguptheremaining18%.

Figure43 ElectricityDemandTrends(2004-14)

Source:EACStatistics(2015)

0%

5%

10%

15%

20%

25%

30%

0

1,000

2,000

3,000

4,000

5,000

6,000

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

GWh

ElectricitySupplied ElectricitySold AnnualGrowth,%

Page 61: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 62

Figure44 ElectricityDemandSharesbyCategory(2012)

Source:IEA(2014)

Figure45showsCambodia’sannualelectricitygenerationwhichhasincreasedfromaround700GWh in2004 to3,000GWh in2014. The shareof generationby fueltypeisplottedfor2014inFigure46.Aswasearlierobservedforthecapacitymix,the generation mix reflects the dominance of hydropower in Cambodia’s powersystem,accountingfor61%ofthetotalgenerationmix.Thiswasfollowedbycoal-basedgenerationat28%,dieselandheavyfueloilat11%andbiomassmakinguptheremainderat0.5%. Itshouldbenotedthattotaldomesticgeneration is lowerthan the total electricity supplied due to reliance on power imports fromneighbouringcountries.

Industrial18%

Commercial&Services

28%

Residen[al50%

Others4%

Page 62: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 63

Figure45 TotalElectricityGeneration(2000-2014)

Figure46 GenerationMixProportionbyFuelType(2014)

Source:EACStatistics(2015)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

GWh

Hydro60.5%

Diesel/HFO10.7%

Coal28.2%

Biomass0.5%

Page 63: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 64

2.5 LaoPDR’sPowerSector

Figure47showsLaoPDR’stotalfinalelectricityconsumptionandtheannualgrowthratesfrom1996to2014.Itindicatesdomesticdemandhasbeengrowingrapidly;inparticular,annualelectricityconsumptionincreasedatanaveragerateof15%perannumfrom1011GWhin2005to3,791GWhin2014.Electricityconsumptionhastraditionally been dominated by residential consumption,whichmade up 42% in2010 dropping to 38% in 2014 (Figure 48). Industry consumption as at 2014accounted for 41% of total electricity consumption. This trend is expected tocontinuewithadditional industrial loadtocomeonlineoverthenextfewyearsaspartoftheGovernment’sindustrialdevelopmentplans.By2014,thepowersystemhadapeakdemandof743MW,whichhasbeengrowing12%perannumovera10-year period, and nearly doubled since 2008. Lao PDR’s main load centre is theVientiane capital city, with other locations of significant demand in Vientianeprovince,Savannakhet,KhammouaneandChampasakprovinces.Thegovernmentof Lao PDR has been promoting the creation of industrial zones throughout thecountry.

Figure47 ElectricityDemandGrowth(1996-2014)

Source:ElectricityStatistics2013,ElectriciteDuLaos,2014

0%

5%

10%

15%

20%

25%

30%

35%

40%

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

Rate(%

pa)

Energy(G

Wh)

ElectricityConsump[on GrowthRate(pa)

Page 64: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 65

Figure48 ElectricityDemandSharesbyCategory(2014)

Figure49showsannualstatisticsgeneration, importandexportofelectricityfrom1991to2012.Itindicatesthatwhileithadsignificantlyincreaseditsowngenerationsupply (whichwas entirely from hydropower), Lao PDR also had to importmoreelectricitytomeetthedomesticdemand.

Figure49 Generation,ImportsandExports(1991-2014)

Residen[al37.6%

Commercial14.0%

Entertainment0.3%

GovtOffice5.4%

Irriga[on0.9%

Int.Organisa[on0.3%

Industry41.3%

Edu.AndSportBusiness0.2%

0

500

1,000

1,500

2,000

2,500

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

Energy(G

Wh)

Genera[on Import Export

Page 65: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 66

2.6 Myanmar’sPowerSector

Figure50 showsMyanmar’s final electricity consumptionby sectoruntil 2013/14.Electricityconsumptionhasincreasedsignificantlyinthelastfiveyearsatanannualaverage growth rate of 15.7%. Figure 51 shows that residential (domestic),industrial, and commercial sectors were the major end users of electricity, withtheir shares in the 2013/14 total final consumption being 31%, 22% and 13%respectively.Industrialdemandhasbeenobservedtohaveannualaveragegrowthrateinexcessof15%overthelast5years,withcommercialandresidentialsectorsexperiencingannualgrowthratesinexcessof10%.

Figure50 ElectricityDemandbyCategory(2000-14)

Sources:MinistryofElectricPower(MOEP)

Page 66: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 67

Figure51 ElectricityDemandSharesbyCategory(2014)

Sources:MinistryofElectricPower(MOEP)

Figure 52 shows generation by technology type for the period 2000 to 2014,illustratinghowthe industryhasbecomemoreheavilydependentonhydropowerwithitscontributionbeingaround72%oftotalelectricitysupplied.Figure53plotsthe shares by generation fuel types for 2013/14: a total of 12,202 GWh wasgenerated,ofwhich8,778GWh(71.9%)wasfromhydropower,2,794GWh(22.9%)fromgas-firedturbinesand433GWh(3.6%)fromsteamassociatedwithheatfromthegas-firedgenerators.

Figure52 GenerationbyTechnology(2000-2014)

Page 67: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 68

Sources:MinistryofElectricPower(MOEP)

Figure53 GenerationShares(2013)

Sources:MinistryofElectricPower(MOEP)

2.7 Thailand’sPowerSector

Figure54showsThailand’sfinalelectricityconsumptionbytheendusecategoriesfrom2002to2014.Overthisperiod,electricityconsumptionincreasedfrom100.1TWh to 168.2 TWh, with a CAGR of 4.44%. The industrial sector makes up thelargestportion, consuming some73.8TWh,or43.8%of the total consumption in2014.Thisisfollowedbytheresidentialsector(23.1%),commercialsector(18.6%)andsmallgeneralservices(11.2%).Thechangesinelectricitydemandcompositionshown in Figure 55 indicate that the industry share in the total consumptionhasbeen slightly decreasing as opposed to gradual increases in percentage forconsumptionbytheothersectors.

Page 68: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 69

Figure54 ElectricityDemandbyCategory(2002-14)

Source:EPPOStatistics(2015)

Page 69: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 70

Figure55 ElectricityDemandSharesbyCategoryforSelectedYears

Source:EPPOStatistics(2015)

Figure 56 shows generation by fuel type over the last 15 years, illustrating hownaturalgasincreasinglydominatesThailand’sfuelmix.In2014,thetotalproductionof electricitywas 180,945 GWh, of which 120,315 GWh or 66.5%was generatedfromnaturalgas.Thenextmajortypeoffueliscoal,whichaccountedfor120,314GWhor20.8%ofthe2014generationmix.Thecontributionof importsandotherfuel sources has become more significant, increasing from 3,461 GWh (3.5%) in2010to16,252GWh(9.0%)in2014.Generationproportionsofallfueltypesin2014areshowninFigure57.

Page 70: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 71

Figure56 GenerationbyFuelType(2000-2014)

Figure57 GenerationMixProportionbyFuelType(2014)

Source:EPPOStatistics(2015)

2.8 VietNam’sPowerSector

Figure 58 shows peak demand on a national level and total electricity demand.Over the past 10 years, national energy demand has had a compound annual

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

200020012002200320042005200620072008200920102011201220132014

GWh

Gas Coal Oil Hydro Imports&Others

Gas66.5%

Coal20.8%

Oil0.9%

Hydro2.9%

Imports&Others9.0%

Page 71: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 72

growth rate (CAGR) of 12.7% and for peak demand CAGR of 10.2%. Recently,demandhasgrownmost rapidly in the southofVietNam,althoughwhenCAGRsareconsideredfortheperiod2004to2013,the“long-term”regionalgrowthratesare: North region at 14.0%, south region at 13.5%, and central region at 12.0%.These are very high rates of demand growth. Peak demand in each region hasexhibitedasimilartrend.

Figure58 PeakDemandandEnergyProduction(2000-14)

Source:ERAV

ThecompositionofelectricityconsumptionisillustratedforselectedyearsinFigure59tofacilitatecomparisonandfortheperiod2010-13inFigure60.Theseshowthatindustrial and residential customers in aggregate make up the most dominantconsumers of electricity in Viet Nam and that in the last 3 years the breakdownbetween industrial, residential, and the other categories has remained almostunchanged.

Page 72: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 73

Figure59 ElectricityConsumptionCompositionforSelectedYears(1995,2000,2005and2010-13)

Source:ERAV

Figure60 ElectricityConsumptionBreakdownbyCustomerCategory(2000-13)

Source:ERAV

Page 73: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 74

Figure 61 shows generation by fuel type over the last 14 years in Viet Namillustrating the significant contribution of gas, hydro and coal in satisfying theelectricitydemand.AsshowninFigure62,atotalof142.25TWhwasgeneratedbythese three main fuels in 2014, with the shares of 38.0%, 30.9% and 25.6%respectively.

Figure61 GenerationbyFuelType(2001-2014)

Source:ERAV/EVN

Figure62 GenerationbyFuelType(2014)

Source:ERAV/EVN

Page 74: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 75

2.9 Summary

TheGMS,whichasdefinedinthisreportconsistsofCambodia,LaoPDR,Myanmar,ThailandandVietNam,hasoneofthefastestgrowingeconomiesintheworld.Witha combined population of 232 million, the region has experienced significanteconomicgrowthover thepastdecade. Inparticular, for the last five-yearperiodfrom2009to2014, theGMSregion’s totalGDP increased from527billion to662billioninReal2014US$,resultinginanaverageannualgrowthrateof4.7%.Atthecountry level, Thailand and Viet Nam are the GMS two major economies,contributing nearly 86% the total regional GDP (2014 data). On the other hand,Cambodia,LaoPDRandMyanmarhaveachievedrelativelyhighereconomicgrowthrates,averagingat7.0%,7.9%and7.1%perannumrespectively,comparedto3.6%and5.8%ofThailandandVietNamoverthe2009–2014period.

In accompanying the economic growth, there has been substantial growth inelectricitydemand,whichincreasedfrom189TWhin2005to320TWhin2013,atanannual average rateof 6.75%across theentire region.VietNamandThailandmakeupmostofthedemandintheregiondueto itsmoredevelopedeconomiesand high electrification rates. By 2014, end-use electricity consumption and itscompoundannualgrowratewas4.15TWhand19.4%forCambodia,3.38TWhand14.5% for LaoPDR,9.57TWhand15.7% forMyanmar,168.20TWhand4.4% forThailand,and142.25TWhand12.7%forVietNam.

By2014 theGMScountrieshad in total76GWof installedcapacity,ofwhich1.5GW is for Cambodia, 3.1 GW for Lao PDR, 4.6 GW for Myanmar, 33.9 GW forThailand and 33.1 for Viet Nam. The region’s overall capacity mix was 23.5% bycoal-fired,37.7%fromnaturalgas,30.9%from largehydropower,2.8%fromfueloil and diesel, and 5.1% from renewable energy sources (with biomass and smallhydrobeingthetwomainREtypes).Countrywide,hydropowerisdominantinallsystems except Thailand: Lao PDR’s installed capacity is nearly entirely based onhydro power while inMyanmar, Cambodia and Viet Nam the shares are around66%,59%and40%respectively.Naturalgaspower stationsmakeupa significantshareofinstalledcapacityforThailandatmorethan60%,Myanmar(29%)andVietNam(21%).CoalbasedgenerationisseentobeasignificantpartofVietNam’andThailand’sinstalledcapacitymixaccountingfor32%and21%respectively.Sharesofrenewable energy generating capacity remain low across theGMS,with Thailandhavingaround8%ofthetotalinstalledcapacityfromrenewabletechnologieswhiletheshareisonly3%orlessintheothercountries.

Electrification rates differ quite significantly across the GMS, with Viet Nam andThailand (seeTable 13)havingmuchhigherelectrification rates compared to theother countries in the GMS (39% for Cambodia, 89% for Lao PDR and 26% forMyanmar in 2014). Myanmar and Cambodia’s lowest electrifications rates arefeaturedbythecountries’ruralelectrificationrates(20%and24%)beingverylowandfarlowerthanurbanrates.

Page 75: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 76

Thesummarisedcountryeconomicandelectricitystatisticshave formedthebasisforourbaselineyearof2014, fromwhichtheprojectionspresented inthisreportweredeveloped.

Furtherdetailisprovidedinthecountryreports,pleaserefertoVolumes2to6.

Page 76: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 77

3 ElectricitySupplyOptionsThis chapter summarises themaindevelopmentoptions coveringboth renewableenergy and fossil fuels for each GMS country. It provides general findings andquantitativeindicatorsaboutpotentialofeachfuel.FormoredetailedassessmentsofdevelopmentoptionsforeachGMScountry,pleaserefertothecountryreports.ThemainsourcesofinformationthatwereusedtoformulatetheoverallrenewableenergypotentialsineachcountryarelistedinAppendixF.Itshouldbenotedthatin a number of cases we undertook supplementary analysis to make inferencesaboutrenewableenergypotentialforsituationswheretheinformationwasnotascompleteaswewouldlike.

3.1 SolarPower

InFigure63 “3TIER’sGlobal SolarDatasetprovidesaverageannualGHIata3kmspatial resolution.Averagevaluesarebasedonmore than10yearsofhourlyGHIdata andderived fromactual, half-hourly, high-resolution visible satellite imageryobservations via the broadband visible wavelength channel at a 2 arc minuteresolution. 3TIER processed this information using on a combination of in-houseresearch and algorithms published in peer-reviewed scientific literature”. Thisshows that across the GMS solar potential is generally quite good and this issupportedbyestimatesofthesolarpotentialmadebymanysources.

Page 77: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 78

Figure63 GlobalHorizontalIrradiance(GHI)W/m2/day

3TIER’sGlobalSolarDataset3kmwithunitsinW/m²

ThemainobservationsforeachGMSCountryinrelationtosolarpotentialare:

• Cambodia:Cambodia is considered tohavehigh solarenergypotential,whichhas been estimated to be at least 8,074 MW29according to the latest ADBstudy30entitled“RenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion” (2015). Anearlier studyonrenewableenergyoptions forCambodia’s rural electrificationhadalso indicated that significantpartsof thecountryhaveaveragedirectnormal irradiation (DNI) levels inexcessof5kWhpersquaremeterperday.Despitethesefavourableconditionsforsolarenergydevelopment both for DNI and GHI (Global Horizontal Irradiance) basedtechnologies,thecurrentinstalledcapacityinCambodiaforsolarphotovoltaicsremainsatavery low levelof less than2MW. TheSWERAdatacollectedbyNASA Atmosphere Science Data Centre has indicated that the period fromNovember through to April exhibits excellent solar conditions and that thesewould be suitable for photovoltaics and likely would be able to support

29Representsthetechnicalpotentialtakingintoaccountwaterbodies,protectedareas,orareasunsuitableforPVdevelopmentbecauseofslopeandelevation.IESestimatestheactualpotentialtobesignificantlyhigher.30Source:http://www.adb.org/publications/renewable-energy-developments-and-potential-gms,accessed:10February2016.

Page 78: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 79

ConcentratedSolarPower(CSP)technology.Areawiththegreatestpotentialforsolararelocatedinthenorth-easternregionofthecountry.

• LaoPDR:AccordingtothesameADBstudyin2015,LaoPDRhasapotentialof8,812 MW of combined peak solar capacity, which far exceeds the earlierestimates31.LaoPDRhasGHIlevelsrangingbetween1,200and1,800kWh/m2pa and average DNI levels around 1,350 kWh/m2 per annum32, however, thehotterregionsinLaoPDRhaveDNIlevelsbetween1,600to1,800kWh/m2pawhich canaccommodateCSP technology. According toSWERAdata collectedbyNASAAtmosphereScienceDataCentre,themonthsfromNovemberthroughtoMarch exhibit excellent solar conditions. This data also indicates that thegreatestpotentialforsolarliesinthecentralregionofthecountry,coveringthemainloadcentreofVientiane.

• Myanmar:MyanmarhashighsolarradiationlevelsespeciallyintheCentralDryZone Area. Potential available solar energy of Myanmar is estimated to bearound52,000TWhperyear35.However,similartowindenergy,solarenergyinMyanmar is in the research and development stage. Solar energy is beingintroduced ina limitedmanner insomeruralareas, throughphotovoltaiccellstogenerateelectricity forchargingbatteriesand topumpwater for irrigation.As an initial step to demonstrate photovoltaic power systems for remotevillages, some equipment has been installed under a technical cooperationprogram with other developing countries. Stand-alone PV systems are beingusedforruralelectrification inareasthatcannotbeconnectedtothenationalgrid, with notable initiatives in schools and universities. The SWERA datacollectedbyNASAAtmosphereScienceDataCentreshowsthattheperiodfromOctober through toMayexhibitexcellent solar conditions. Thisalso indicatesthat the greatest potential for solar lies in the central region of the country,wherelargescaleintegrationofsolarresourcesispossible.

• Thailand: Located in the tropics, Thailand has high potential for solar energy.TheannualaverageoftotaldailysolarradiationinThailandis5.06kWh/m2or18.2MJ/m2.MostofthecountryreceivesthemaximumsolarradiationduringApril/May,rangingfrom5.56to6.67kWh/m2perday.TheNorth-easternandcentral regions are among those locations that have greater solar powerpotential. SWERA data for Thailand has indicated that the period fromNovember through to April exhibits the best solar conditions. The greatestpotential forsolar lies in thecentralandeasternregionof thecountry,wherelargescale integration of solar resources is possible. According to the 2015AlternativeEnergyDevelopmentPlan (AEDP),Thailandhad1,299MWofsolarpowerproductioncapacityinstalledattheendof2014.Theplanhassetatargetof6,000MWforsolarphotovoltaicsby2036.

31IESestimatestheactualpotentialtobesignificantlyhigher.32Source:ADB,“RenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion”,2015.

Page 79: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 80

• VietNam:VietNamisconsideredtohaveveryhighsolarpotential.Anumberofstudies have been conducted to assess the potential, the most recent anddetailedofwhichwasastudyentitled:“MapsofSolarResourceandPotentialinVietnam”,published in January2015.Thiswasundertakenby theMOITandaSpanish Consortium consisting of Centro de Investigaciones EnergeticasMedioambientalesyTecnológicas(CIEMOT),NationalRenewableEnergyCentre(CENER)andInstitutoparalaDiversificaciónyAhorrodelaEnergía(IDAE).Thisbroadly shows that based onGHI andDNImeasurements there is substantialpotential for solar photovoltaic deployment throughout the country,with thegreatestpotential identified in the southeast, centralhighlands,MekongRiverDelta,allcoastalareasandthenortheast.ThestudyalsoconcludesthatbasedonDNImeasurements,thereissubstantialpotentialforCSPbasedtechnologies,withthegreatestpotentialinthecentralregions,highlandsandsoutheastofthecountry.

SWERA data for Viet Nam show that themonths fromNovember through toApril provide excellent solar conditions. Main solar locations lie in the southcentral and southern regions of the country. According to the latest PrimeMinister’sDecisionNo.2068/QD-TTgdated25November2015,approving thedevelopmentstrategyofrenewableenergyofVietNamby2030withavisionto2050, total electricity production from solar power would increase from 10millionkWhin2015to1.4billionkWhin2020(0.5%share),about35.4billionkWhin2030(6%)andabout210billionkWhin2050(20%).

3.2 OnshoreandOffshoreWindPower

TheGMSisregardedtohavemoderatetogoodwindpotential. ThegeographicaldispersionofwindresourcesintheGMSissummarisedbythefollowing:

• Figure64is“3TIER’sGlobalWindDatasetwhichprovidesaverageannualwindspeedat80metersaboveground.Averagevaluesarebasedonover10yearsofhourly data created through advanced computer model simulations. 3TIERcreated this dataset using a combination of statistical methods and physics-basednumericalweatherpredictionmodels,which create realisticwind fieldsthroughout the world by simulating the interaction between the entireatmosphereandtheEarth’ssurface.”; and

• Figure 65 isNREL’s offshorewind speedmeasurements for 2006, 2008, 2009.Thiswasbasedon“GISdataforoffshorewindspeed(meters/second).SpecifiedtoExclusiveEconomicZones(EEZ).WindresourcebasedonNOAAblendedseawindsandmonthlywindspeedat30kmresolution,usinga0.11windsheertoextrapolate10m-90m.Annualaverage>=10monthsofdata,nonulls.”Units:m/sat90mabovegroundlevel(AGL).

Page 80: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 81

Figure64 OnshoreWindSpeeds(m/s)

Source:3TIER’sGlobalWindDataset5kmonshorewindspeedat80mheightunitsinm/s.

Page 81: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 82

Figure65 OffshoreWindSpeedsAGL(m/s)

Source:NationalRenewableEnergyLaboratory(NREL)

Thefollowingsummarisesthewindpotentialineachofthecountries:

Cambodia:Cambodiadoesnothavevastwindresources.Onaveragethewindspeedsacrossthecountryareunder3m/s.Thetechnicalpotentialrepresentsanupper limitandshows1,380MWcategorisedatorabovegoodwindspeeds33.Nevertheless, some parts of Cambodia may present opportunities for winddevelopments34.Thesewindresourceareasaregenerallyinthesouthernpartofthe great lake Tonle Sap, themountainous districts in the southwest and thecoastalregions(Sihanoukville,Kampot,KepandKohKongregions)andhaveanannual average wind speed of 5m/s or greater. Although the potential inCambodiaissmallrelativetotheotherGMScountrieswindmaybeviablegivenCambodia’s relatively low energy levels and technical maturity of windtechnology.Windpilotprojects,inpartfinancedbythegovernmentofBelgiumand the European Commission, are currently in place in the country. AsreportedbyNASAAtmosphereScienceDataCentreforthelocationsthathavethehighestaveragewindspeedsthroughouttheyear,anumberoflocationsin

33Studywasbasedonglobalwindsandwerenotsupportedbygroundmeasurements34BlueCircle,winddeveloper,hasidentified500MWofwinddevelopmentsthataretechnicallyfeasibleby2020.

Page 82: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 83

CambodiarecordhighwindspeedsduringtheperiodofNovembertoFebruary.The locations with the best wind potential are along the country’s easternregion and south-west coastal area. 3TIER’s Global Wind Dataset has alsoprovidedaverageannualwind speed largely consistentwith theNASA’s lowerresolution information, with greatest potential found in the northeast of thecountry and a belt of wind potential from the south coast towards the westborder of Thailand. This also shows that there does not appear to be highoffshorewindpotential.

• Lao PDR: Lao PDR has a wind potential estimated at approximately 26,000squarekilometreswithwindspeedsbetween7-9m/s.TheresourcemappinginWindEnergyResourceAtlasofSoutheastAsiashowsapproximately2,800MWat ‘very good’ and ‘excellent’ wind speeds. According to the 2015 ADB study“Renewable Energy Developments and Potential in the Greater MekongSubregion”,LaoPDRhasa theoreticalwindenergypotentialof455GWandapotential production capacity of about 1,112 TWh/yr. To get these estimates,the land area suitable for wind power result was multiplied by the averageamountofwindpowercapacitythatcanbeinstalledinagivenarea(assumedtobe10MW/km2).However,thetechnicalwindenergypotentialwouldbemuchlessduetothelimitationsoftheoverallpowergenerationandtransmissiongridsystems. 3TIER’s GlobalWind Dataset has also provided average annualwindspeed at 80 meters above ground level. This has located regions of highpotential along theborderwithVietNamand in the southof the country, aswellaslocalisedareasof6to7m/spotentialinthenorth.

• Myanmar: Myanmar has significant potential for wind energy, with reportssuggestingsome365TWhperyear35couldbeproduced.However,theindustryis currently underdeveloped. Due to the initial high cost of wind energy, itsdevelopmentismostlyattheexperimentalandresearchphase.Theevaluationof wind energy resources using modern systems has been conducted since1998, led by theMyanmar Scientific and Technological Research DepartmentandtheDepartmentofMeteorologyandHydrology.Judgingfromexistingdata,the western part of the country appears to have the best potential forharnessingwindpower.As reported by NASA Atmosphere Science Data Centre for the locations thathavethehighestaveragewindspeedsthroughouttheyear.MaytoSeptemberandNovembertoDecemberaretheperiodswithhighestwindspeedsrecorded.Regionswiththegreatestsolarpowerpotentialarelocatedalongthecoastlineof the country. Thereare also some locationswith goodpotentialwithin thecentral region and in the north. In general, an issue for wind generation in

35MOEP;http://www.asiatradehub.com/burma/energy6.asp

Page 83: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 84

Myanmar is the distance of the locations with the greatest potential fromdemandcentres.Atpresent,therearethreewindturbinesoperationalinMyanmar,includingthe1.2 kW turbine installed at the Technological University in ShwetharlyougMountain (Kyaukse) Township, another 1.2 kW turbine at the GovernmentTechnicalHighSchool(Ahmar)inAyeyarwaddyregion,anda3kWwindprojectatDattawMountaininKyaukseTownship.Othersareappearingandhavebeenreported.

• Thailand:Thailandhasanannualaveragewindspeedof4-5metersper-secondatanelevationof90metersabovesealevel.Higherwindspeedsof6-7metersper second can be found inmountain ranges in the south and the northeastduring the period of themonsoons. There is potential for utilisation of windturbines for power generation throughout the country, particularly along theseashoresandonislandseither intheGulfofThailandorAndamanSea.Low-speedwindturbinescanstartrotatingatwindspeedsof2.5metersper-secondand generate a full load of electricity at 9meters per-second.Wind speed inThailand is mainly influenced by the northeast monsoon, the southwestmonsoonandlocaltopography.ThetotalonshorewindpotentialinThailandisestimatedatupto30,000MWand7,000MWforoffshorewindaroundtheGulfofThailand36.As reported by NASA Atmosphere Science Data Centre for the locations thathavethehighestaveragewindspeedsthroughouttheyear,theperiodsofJunetoAugustandNovember toDecemberhavebeen recordedwithhighestwindspeeds.Themainwind locationsare locatedalongthecountry’ssouthernandcentralregionswhichareclosetothemetropolitanloadcentre.Therearealsosome locationswith significantwindpotential further to thenorth. TheDTUGlobalWindAtlasdatasethasalsoprovidedquiteconsistentassessments,withwind potential existing to both the east andwest coastlines of the Thailand’speninsularinthesouth.TheThaigovernmentsupportsinvestorswithspecialincentivesforinvestinginwind energy. In addition, the Department of Alternative Energy DevelopmentandEfficiency(DEDE)has initiatedtheDemonstrationProjecton(Micro)WindPower Generation at a Community Level, since 2007, by supporting theinstallationofmicrowind turbinesets foronekilowattpowergeneration.Thetargeted areas are 60 communities nationwide. This effort is intended topromoteproductionofwindturbinesand increaseduseofwindenergy in thefuture. Wind Energy Holding Co., Ltd, a wind project developer, has alreadyfinishedinstallingwindfarmprojectscalled“WestHuayBong3”and“WestHuay

36WindEnergyResourceAtlasofSoutheastAsia(TrueWindSolutions,2001),RenewableEnergyDevelopmentsintheGreaterMekongSubregion(ADB,2015),OffshorewindpowerpotentialoftheGulfofThailand(Waewsak,Landry,Gagnon,2015)

Page 84: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 85

Bong2”.Bothwindfarmprojects,locatedinNakhonRatchasima,havecapacityof103.5MWeachandstartedcommercialoperationsinceNovember2012andFebruary 2013, respectively. Additionally, the company has a long-terminvestmentplanforwindfarmswithatotal installedcapacityof1,000MWby2017.Underthe2015AEDP,Thailandtargetssome3,002MWofwindfarminstalledcapacityby2036.

• Viet Nam: Viet Nam is considered to have quite goodwind energy potential.However,likemanyotherdevelopingcountries,thepotentialofwindpowerinViet Nam has not yet been quantified in detail. According to theWorld Bankstudy (2011), a total of 10,000 MW of wind capacity could be theoreticallyexploitedat surfaceswith80mheightandwithwind speedsover6m/s.ThestudyidentifiedthatBinhThuanprovincehasthegreatestwindpotentialbeingmeasured.AccordingtothedatacollectedbyNASAAtmosphereScienceDataCentre,manylocations in Viet Nam have been recorded with reasonable wind speedsthroughout the year except for April, May and September. Geographically,locations with strong wind are located along the country’s south central andcentralcoastalareasDifferentreportshaveindicatedthatsince2007VietNamhasplannedupto50windpowerprojects.However,manyoftheseprojectshavenotprogresseddueto various difficulties and barriers. Vietnam had 83.2 MW of wind powercapacityaddedinJanuary2016,asaresultoftheBacLieuwindfarmexpansionfrom 16MW to 99.2MW. The totalwind installed capacity as at Jan 2016 is135.2MW.A limited amount of data is reported by Institute of Energy in relation tooffshorewindresourcesataheightof10mfor11islandsandataheightof60mfor two islands. The information is limited, but it appears that Viet Nam haspotentialforoffshorewindwithalittleunderhalfthesiteshavingbeentestedbeingratedas“good”orbetterforoffshore.AccordingtothelatestdevelopmentstrategyofrenewableenergyofVietNamapprovedby thePrimeMinister, total electricityproduction fromwindpowerwouldincreasefrom180millionkWhin2015toabout2.5billionkWhin2020(1% share), approximately 16 billion kWh in 2030 (2.7%) and about 53 billionkWhin2050(5%).

3.3 PowerGenerationPotentialfromBiomass

In relation to biomass potential the following summarises themain prospects byGMScountry:

• Cambodia: Cambodia has significant biomass resources such as that fromnatural forests, plantation forests, rice husks and palm trees but this has

Page 85: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 86

droppedsignificantlyasa resultof loggingandclearingof forestland.Biomasscanbeused forpower requirementsor converted intoother fuels. The2015ADB study estimated Cambodia’s theoretical biomass energy generationpotentialat15,025GWh/year.Biomass-basedenergygenerationinCambodiahas gainedmomentumduring the last 2-3 years applyingbiomass gasificationtechnologyboth for captive consumptionaswell as electricity generationandsupplycompaniesalthoughenergyconversionefficiencyislowandapplicabletomainlysmallscaleprojects.Severallargerscaleprojectsareplannedatvarioussugar cane and palm oil plantations. There are also various other smallerbiomass pilot projects at rice mills, ice factories, brick factories and garmentfactories,ofaround40projectswithcapacitiesbetween150kWand700kW.

• LaoPDR: LaoPDRhasvastforestcoveragearound100,000squarekilometresor about 45% of its land. In addition, a large amount of agricultural residuesrepresenting significant energy potential can be harvested. Projections ofbiomass potential based on the ADB study “Renewable Energy DevelopmentsandPotentialintheGreaterMekongSubregion”suggestanenergypotentialofaround17,000GWhperyearorupto2,300MWisachievable forLaoPDRby2050.

• Myanmar:Approximatelytwo-thirdsofprimaryenergyinMyanmarissuppliedbybiomassincludingfuelwood,charcoal,agricultureresidue,andanimalwaste.Fuelwood accounts for more than 90% of biomass-sourced energy, most ofwhichisharvestedfromnaturalforestsandusedinbothurbanandruralareas.Charcoal,whichaccountsfor4%-6%oftotalfuelwoodconsumption,ismainlyused in urban areas. The annual consumption of fuelwood per household isestimatedtobeabout2.5cubictons(4.5m3)forruralhouseholdsand1.4cubictons(2.5m3)forurbanresidents37.AccordingtoMOEP,useofbiomassforoff-grid electricity production is currently not significant, with only 5 MW ofcapacity currently installed. The 2015 ADB study (Renewable EnergyDevelopments and Potential in theGreaterMekong Subregion) suggests totaltheoretical energy potential from agricultural residues at around 60,000GWhperannum38.Projectionswehavemadesuggestthataround48,000GWh/yearofgenerationfrombiomasswouldbepossibleby205039.

• Thailand: Thailand has a huge agricultural output, such as rice, sugarcane,rubbersheets,palmoilandcassava.Partoftheharvest isexportedeachyear,generating billions of baht revenues for the country. In processing theseagricultural products, a large amount of residues is generated which can beexploited as a feedstock to generate electricity. As of end 2014, Thailand isestimated to have some 400 MW of biomass power production capacity

37ADBMyanmarEnergySectorInitialAssessment(2012)38Ricehusks,ricestraw,corncob,cassavastalk,bagasse,sugarcanetrash,andoilpalmandcoconutresidues.39Basedonimprovedefficiencyandcollectionratesovertime,aswellasagrowingagriculturalsector.

Page 86: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 87

installed.TheAEDP2015hasputinplaceatargetforbiomasspowercapacityof5,570MWby2036.

• Viet Nam: As an agricultural country, Viet Nam has significant potentials forpowergenerationfrombiomass.Typicalformsofbiomassincludewoodenergy,cropwasteandresidues.Sustainableexploitationcapacityofbiomassforenergyproduction inVietNamisestimatedatabout150milliontonsperyear40,withoverall power generation potential of around 11-15 GW from biomass.AccordingtothelatestdevelopmentstrategyofrenewableenergyofVietNam,totalbiomasselectricityproductionistargetedtoincreasefrom0.6billionkWhin2015 tonearly7.8billionkWh in2020 (3%share), approximately37billionkWhin2030(6.3%)and85billionkWhin2050(8.1%).

3.4 PowerGenerationPotentialfromBiogas

Inadditiontobiomass/solidwastepotential,thereisalsothepotentialtogenerateelectricity from biogas. Biogas potential based on the ADB study “RenewableEnergyDevelopments and Potential in theGreaterMekong Subregion” estimatesCambodia to have a technical potential primarily based on livestock manure ofaround 13,590,766 kWh/day. Lao PDR’s biogas energy technical potential fromlivestockmanurehasbeenestimatedataround8,540MWhperday.Overthepast10years,inMyanmar,around150community-basedbiogasdigesters(plants)havebeenbuilt,mostlyinthecentralregion(Mandalay,Sagaing,andMagwaydivisions)andintheNorthernShanState.Thedigestersvaryincapacity(from25to100cubicmeters)andelectricityoutputrangesfrom5–25kW.Whilethecombinedoutputofthesedigestersismodest,ithasbeenenoughtoservesome172villageswithfourhoursofelectricityperday.InThailand,biogaspowerlikewisehashighpotentialinThailandduetotheabundantavailabilityofindustrialwasteandlivestockmanure.AccordingtoAEDP2015,theinstalledcapacityofThaibiogassourceswas312MWat end of 2014 and has set a target of 600 MW by 2036. This could besupplementedbysome500MWofinstalledcapacitythatwouldbebasedonpowergeneration from municipal waste. Finally, Viet Nam is considered to havereasonablepotential forpowergeneration frombiogassourceswith typical formsbeing animal waste, urban waste and other organic waste. Some 4-5 GW ofgenerationfrombiomasshasbeenestimated.

3.5 HydroPower

AllGMScountrieshavehydropowerpotential,andmanyhavesignificantamountsofuntappedpotential.Wesummarisethehydropowerpotentialofeachcountryineachsubsectionthatfollows.

40http://ievn.com.vn/tin-tuc/Tong-quan-ve-hien-trang-va-xu-huong-cua-thi-truong-nang-luong-tai-tao-cua-Viet-Nam-5-999.aspx

Page 87: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 88

3.5.1 Cambodia’sHydroPowerPotential

Cambodiahas an estimatedhydropotential of 10,000MW,with currently less than10%developed.Approximately50%of theseresourcesare located in theMekongRiverBasin,40% on tributaries of the Mekong River, and the remaining 10% in the south-westerncoastal areas. Hydro has been a focus of recent developments with previous studieshighlighting42potentialhydropowerprojects,withatotalinstalledcapacityof1,825MW,being capable of generating around 9,000 GWh/year of electricity. By the end of 2014,approximately930MWofhydropower installedcapacityhadbeen inoperation,800MWwasunderconstructionandanother198MWbeingconsideredforfeasibility.

3.5.2 LaoPDR’sHydroPowerPotential

Hydropower is the most abundant energy resource in Lao PDR. There is anestimatedpotentialof23,000MWalong theMekongRiverand its sub-basins.By2014, around 3,200MW has been developed and is supplying domestic demandand other neighbouring countries. Figure 66 summarises the information aboutcapacity of the existing, committed and considered projects in Lao PDR. There iscurrently6,000MWofcommittedprojectsinthepipelinewith75%ofitplannedforexport. For implementation of this plan, the Lao Government has opened updevelopment opportunities to the neighbouring governments (Thailand, Lao PDR,andVietNam)andforeigncompanies.

The country’s small hydropower potential is also substantial, estimated to bearound2,000MW.Thedevelopmentofsmallhydropower(capacityupto15MW)couldalsoplayanimportantroleinmeetingthecountry’sobjectivesof increasingruralelectrificationcoverage fromthecurrent levelof70%to90% in2020.Thereare75smallerhydroprojectsasattheendof2013atvariousstages.Therearealsoapproximately60,000microunitsinstalledinLaoPDRservicing90,000households.

Page 88: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 89

Figure66 LaoPDRHydroProjects:Existing,CommittedandConsidered

Source:CompiledbyConsultant

3.5.3 Myanmar’sHydroPowerPotential

HydropowerisbyfarthedominantsourceofelectricityinMyanmar,accountingforaround70%ofboththecapacitymixandannualproduction.VariousstudieshavereportedMyanmar has huge hydropower potential, estimated to be at 108 GW,from its four main river basins: Ayeyarwaddy, Chindwin, Thanlwin and Sittaung.MyanmarElectricPowerEnterprise(MEPE),undertheMOEP,hassofar identifiedmore than 300 locations suitable for hydropower development,with a combinedpotentialcapacityofabout46,000MW.Amongthese locationsthereareasmanyas92potentialsitesforconstructionofmediumtolargepowerplants,eachhavingcapacity greater than 10 MW. These hydro sites have been grouped into 60potential hydro projects including 10 projects that are in various stages ofdevelopment.Similarly,asmanyas210smallandmediumsizesiteseachhavelessthan 10MW potential. A total potential installed capacity of 231MW has beenidentified.Themajorityofhydropowerpotential is locatedon theeastern sideofthecountryinKayinState(17GWpotential),ShanState(7GWpotential)andKayahState(3.9GWpotential).

Atthepresent, justover4,000MWofhydropowercapacityhasbeendeveloped,representing just a small portion of the estimated potential of 46 GW for thecountry.Until2030andbeyond,thirty-sixprojectshavebeenformedtorealisethe

2,426

1,635

3,632

1,288

2611.8

611

2,335

250

- 1,000 2,000 3,000 4,000

OtherConsidered(Poten[alThailandExport)

OtherConsidered(Poten[alVietnamExport)

ConsideredonMekong(Poten[alThailandExport)

ConsideredonMekong(Poten[alVietnamExport)

Commided(2020)

Exis[ng(LaoPDR)

Exis[ng(Export-Thailand)

Exis[ng(Export-Vietnam)

MW

Page 89: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 90

untapped hydro power resources, most of them would be built under a JV/BOTbasisbyforeigninvestorsandonlysmallportionsoftheprojectswouldbefundedbyMinistryofElectricPoweranddomesticentrepreneurs.

Small hydropower projects for border area development: Over the past 5 years,some 26 micro and 9 mini-hydropower power projects have been developed byMEPE, with installed capacity ranging from 24 to 5,000 kW. These projects haveincludedborder areas, aimed at improving the social and economic conditions ofpoor rural households and remote communities. Thesemini-hydropower projectsalso facilitate cottage industries and enhance agricultural productivity throughimprovedirrigation.

3.5.4 Thailand’sHydroPowerPotential

ThepotentialofhydropowerinThailandisestimatedat15,155MW41.Hydropowerhas been developed for power generation since 1964 with the construction ofseveral largehydropowerprojects throughout thecountry.AsofDecember2014,hydro installed capacity was 3,444 MW, accounting for 10% the total systemcapacity.Itisnotedthattheannualvolumeofelectricitygenerationfromhydrohasnot changedmuch since decades ago. In 2014, the hydropower generated 5,163GWh, accounting for less than 3% of the total generation of 180,945 GWh,compared to around 20% back in 1986 42 . The environmental externalitiesassociatedwith exploiting hydro beyond the current 3.5GWof large scale hydroalreadydevelopedisregardedtobeunsustainableandthereisstrongresistancetofurther developments. The government has therefore focused on and promotedsmallhydropowerprojects.

Thegovernmenthasbeensponsoringdevelopmentprojectsofsmallhydropowerplants for a new planned capacity of 350 MW. The DEDE and the ProvincialElectricityAuthority(PEA)arethemain institutions involvedwithmini-andmicro-hydropowerplants.DEDEhasalsoinstalledmanyvillage-levelhydropowerplants,andthereisconsiderablepotentialforvillage-scalesmallhydroineastandcentralThailand. According to the 2012 Alternative and Renewable Energy DevelopmentPlan(AEDP2012),Thailandplannedtoincreasesmallhydropowercapacityfrom102MW in 2012 to 1,608 MW by 202143. Nevertheless, the latest AEDP2015 hasreducedthistargetto376MWfor2036.

3.5.5 VietNam’sHydroPowerPotential

VietNamhas high potential for hydro power. The country has some2,360 riversandstreamsthatexceed10km.ThemainriversystemsareillustratedinFigure67TheRedRiversysteminthenorthcomprisestheDaandLo-Gam-Chayriverbasins,41GreenlineEnergy:http://www.greenlineenergy.com.au/index-4.html42EPPO2015Statistics:http://www.eppo.go.th/info/5electricity_stat.htm43ThailandAlternativeEnergyIndustry:http://www.slideshare.net/boinyc/thailands-alternative-energy-industry

Page 90: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 91

theMekongriverdeltais inthesouth. Inthecentralregion,therearemanyriverbasins,includingtheMaRiver,CaRiverinthenorthcentralarea,VuGia–ThuBonRiverinthecentralarea,SesanRiverandSrepokRiversareinthecentralhighlandsandtheBaRiverisinthecoastalarea.TheDongNaiRiverbasinisinthesouth.

Figure67 IllustrationoftheMainRiverSystemsinVietNam

Source:Consultant

In 2013, hydro power accounted for 47.5% of the country’s total 30,473 MWinstalled generating capacity. In 2014, hydropowerproductionwas59,479millionkWh,accounting for41.41%totalelectricitysupply.Currently,SonLahydropowerplantisthelargestpowerplantwith2,400MWinstalledcapacity.

According to the latest development strategy of renewable energy of Viet Nam,electricityproductionfromhydropowersourceswouldincreasefromapproximately56billion kWh in 2015 tonearly 90billion kWh in 2020and to approximately 96billionkWhfrom2030.

Lo-Gam-ChayRiverBasin

DaRiverBasin

Ma-ChuRiverBasin

CaRiverBasin

HuongRiverBasin

VuGia–ThuBonRiverBasin

SesanRiverBasin

SrepokRiverBasin

BaRiverBasin

DongNaiRiverBasin

Page 91: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 92

LargeHydroAround 38% of Viet Nam’s electricity is currently generated by a range of largereservoirs and in some cases cascaded hydropower stations that are locatedthroughoutthecountry.Thelargestreservoirs,HoaBinhandSonLa,arelocatedininthenorthwestofthecountry,althoughtherearesignificantstorageslocatedinthe central and south regions as well. Viet Nam is able to gain the benefits ofdiversityinhydrologicalconditionsacrossmanyseparateriversystemswithnotablediversityininflowsacrossnorth,centralandsouthregions.However,VietNamhaslargelyexploitedallofthelargescalehydroconsideredtobeeconomicallyfeasible;further development beyondwhat has been exploited to date andwhat is underconstructionnowisnotconsideredanoption.Small,mini,andmicrohydroVietNamhasuntappedsmallscalehydropotential.Inrecentyears,therehasbeena lotof small hydropowerdevelopment inVietNamwith thenumberofprojectsgoingfromabout141in2006(167MW)toabout156(622MW)by2009,andsome226 projects (1,635 MW) by 2014. Some 1,943 MW of capacity is now underconstruction,andsome236projects(withtotalcapacityof2,019MW)understudy.However,concernshavebeenraisedonsmallhydroprojects inthecountrybasedon considerations of the low levels of efficiency achieved from some projectsrelative to the environmental externalities. Recent revisions of the hydroelectricplanninghaverecognisedthisissueandindicatedthattherehavebeen424projectseliminated corresponding to reduction of around 34% of the projects that hadpreviouslybeenplanned.Pumpedstoragehydro

VietNamdoesnot presently have anypumped storagehydroplant in operation.However, feasibilitystudieshavebeencarriedoutandshowthatpumpedstoragepowerplantsmaybefeasiblewiththesouthandcentralregionsofferingthemostfavourable geographical conditions. Pumped storage hydro plants do feature ingovernmentplansfortheelectricityindustry.

TheNationalMasterPlanforpowerdevelopmentforthe2011-2020periodwiththevision to 2030 has included five pumped storage hydro plants to be constructedbetween2019and2030.Theseprojects includeBacAi1(4x300MW),DongPhuYen(4x300MW),DonDuong(4x300MW),NinhSon(4x300MW)andPumpedStorage Hydro plant in the North (3 x 300 MW). According to the latest PrimeMinister’s Decision No. 2068/QD-TTg dated 25 November 2015, approving thedevelopment strategy of renewable energy of VietNamby 2030with a vision to2050, pump storage hydro installed capacity should target 2,400MWby 2030 to8,000MWby2050.

Page 92: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 93

3.6 GeothermalEnergy

SomeGMScountrieshavemodestlevelsofgeothermalenergypotential.Basedonresearchcollectedfromavarietyofsources:

• LaoPDR: Basedonproceedings to the2014WorldGeothermalCongress,11geothermal resources have been identified in Lao PDR in a study of thecountry’s northernmountainous areas. The sources are believed to be of thelowtemperaturetypeandunlikelytosupportpowerprojectsona largescale.TheAsianDevelopmentBank(ADB)hashoweverreportedthatsome59MWofgeothermalgenerationcapacitycouldbedevelopedinLaoPDR.

• Myanmar:GeothermalenergyisconsideredtobereasonableinMyanmar,withpotentialforcommercialdevelopment.Ninety-threegeothermallocationshavebeen identified throughout the country. Forty-three of these sites are beingtested by the Myanmar Oil and Gas Enterprise (MOGE) and MEPE, incooperation with the Electric Power Development of Japan and Union OilCompany of California and Caithness Resources of the United States. Areasidentified with considerable geothermal potential include Kachin, Shan, andKayah states, Kayin, Kayah, Mon, Taninthayi, and also the southern part ofRakhine.

• Thailand: There are approximately 64 geothermal locations in Thailand, butmajoronesare in thenorthof thecountry,especially thegeyser fieldatFangDistrict in Chiangmai Province. Survey on the potential of geothermal energydevelopmentatFangDistrictcommencedin1978,withtechnicalassistanceandexpertsfromFrancelaterin1981.Currently,EGATisoperatinga300kWbinarycyclegeothermalpowerplantatFangDistrict,generatingelectricityatabout1.2millionkWhperyear,whichhelps reduceoilandcoal consumption forpowergeneration. Thailand’s AEDP2012 set a target of 1MWof geothermal and 2MWoftidalcapacitybuiltby2021.Nevertheless,thistargethasbeenremovedfromAEDP2015.

• Viet Nam: Presently there are no geothermal power plants in Viet Nam.However,basedonsurveysandstudiescarriedoutoverthelastfewdecadesongeothermalenergyresources,thecountryisestimatedtohavethegeothermalpotential inbetween300MWand400MWwiththefollowingareas/regionsbeingidentifiedastheprimecandidates:- ORMATincoordinationwithEVNundertookapre-feasibilitystudyanditis

understoodthatthefindingsledtothemapplyinginApril2012foralicensetobuild5geothermalenergyplantsinLeThuy(QuangBinh),MoDuc,NghiaThang (Quang Ngai), Hoi Van (Binh Dinh) and Tui Bong (Khanh Hoa)withtotalcapacityofthegeneratorsintherangefrom150to200MW;

- VietNamGeothermalEnergyCorpisalsoreportedlyworkingwithOrmatasthe major technical partner for two projects in Mo Duc and Tu Nghia

Page 93: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 94

district,QuangNgaiprovincewithadesignedcapacityeachbeing18.7MW;and

- In 2013, Quang Tri Province granted an investment certificate andconstructionpermitforageothermalenergyplantwithacapacityof25MWatDakrongandaccordingtopress,theproject’spricetaghasbeenstatedasUS$46.3million.

TherehasbeennopotentialforgeothermalenergyreportedforCambodia.

3.7 OceanEnergy

There are currently no available studies suggesting any significant ocean/marinepotentialinCambodia,LaoPDRorThailand.However,oceanenergyoptionshavebeenidentifiedforMyanmarandVietNam44:

• Myanmar: Myanmar has a vast coastline that is 2,832 km long. There ispotentialfortidalandoceancurrentenergygiventhestrongcurrentsandtidesalong the coast. The first tidal power plant was commissioned in 2007 inKambalar village. It has a 3 kW turbine and provides electricity to 220 villagehouseholds.Thecountryisestimatedtohavewaveenergypotentialbetween5to10kW/m45.

• Viet Nam: Viet Nam’s 3,200 km coastline and thousands of islands presentsignificantpotentialforwaveandtidal-basedenergytechnologies.Thecountryisestimatedtohaveatidalenergypotentialofaround1,753GWhperyearandwaveenergypotentialbetween40–411kW/mlocatedaroundBinhThuanandcentralVietNam.ThegovernmenthasincludedoceanenergyaspartofitsVietNamMarineStrategyto202046.

3.8 CoalResources

CoaldepositsofvaryinggradesarescatteredthroughouttheGMS:

• Cambodia: Estimates of coal reserves in Cambodia are low. Coal reserves areknowntoexistintheStungTrengprovincelocatedinnorthernCambodiaandasofearly2013,14exploration licenseshavebeen issuedtocompanies for localcoalexploration.Cambodia’s first120MWcoal-firedpowerplantcommencedoperationinFebruary2014inSteungHavDistrict,SihanoukvilleProvince.

• Lao PDR: Lao PDR has coal reserves estimated at approximately 900 milliontons, comprisingmostlyof lignite, andanthracite to amuch smaller extent atvarious sites. Main lignite basins lie in Hong Sa, Viengphoukha andKhangphaniang. Located in the north western region, Hong Sa is the largestknown reserve of lignite,with 400-700million tons being reserved for power

44Basedon“OceanrenewableenergyinSoutheastAsia:Areview”byQuirapas,Lin,Abundo,Brahim,Santos,2014.45kWpermetreofcoastline.46Referto:http://english.vietnamnet.vn/fms/special-reports/144832/vietnam-and-the-marine-strategy.html

Page 94: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 95

generation. The country’s first coal-fired power plant - 1,878 MW Hong SaLignite Power Project - would be completed by 2016with 1,473MW alreadysold to EGAT. Anthracite (and bituminous) can be found at various sites,includingSaravanandPhongSalyprovinces,with the totalprovenresourceatapproximately100milliontons.Currently130,000tonsofproductionisusedforlocalfactoriesandexportpurposesandthegovernmenthasaplantosupporta500MWcoalunitdependingonfurtherexplorationsuccess.

• Myanmar:CoalhashistoricallybeenofminorsignificanceinMyanmaralthoughthecountrypossessesreasonablereservesofcoal,itisgenerallyoflowquality.Therearesome500occurrencesandover200deposits,ofwhicharound34areconsidered to warrant some attention in terms of exploitation. According toMinistryofMines (MOM)data,Myanmar’scombinedcoal reserveshavebeenproventobesome405.89milliontonsinvariouscategories.Significantdepositshave been identified in Magway, Tanintharyi, Shan State and Ayeyarwadyregions. Most of Myanmar’s coal resources were formed during the Tertiaryperiod and are of lignite to sub-bituminous grade. Coal found in Shan Statetends to be of lower quality (sub-bituminous). Closer analysis ofMyanmar’sdomesticcoalreserves,takingintoaccountfactorssuchasdepositsize,andthecalorificvaluesuggeststhatexploitationofdomesticcoalforpowergenerationwouldonlybefeasibleonasmallscale(fluidisedbedforexample).Thisimpliesthatfuturecoalpowerplantsifdeveloped,woulddependoncoalimports.

• Thailand: According to BP Statistics, Thailand proven coal reserves at end of2013 were estimated at 1,239 million tons, consisting of lignite and sub-bituminousgradesofcoal.Thecountry’smajorcoalsitesincludetheMaeMohbasinoperatedby theElectricityGeneratingAuthorityof Thailand (EGAT), theKrabibasin,theSabaYoiandSinPunbasinsinthesouthernarea,andtheWiangHaeng,NgaoandMaeThanbasins inthenorth. BasedonEPPOstatistics,theproductionofdomesticligniteoverthe2003-2014periodwasstableataround18milliontonsperyear,whereasthecoalimportshavesubstantiallyincreased,from 7million tons in 2003 to 20.9million in 2014, surpassing the domesticsupply.Mostofthedomesticlignitesupply(17.1outof18milliontonsin2014)isproducedbyEGATownedandoperatedMaeMohMine,whichthen is fullyconsumedbyEGATcoalfiredpowerplants. Morethan25milliontonsofcoalwas used for electricity generation in 2014. This accounted for around twothirdsofthetotalconsumption.

• Viet Nam: Viet Nam is a country with relatively abundant coal reserves. ByJanuary 2011, the results of investigations indicated that Viet Nam has coalreserves of around 48.7 billion tons, of which, some 39.35 billion tons, liebeneaththeRedRiverbasininanareaofsize2,000km2.TheNortheastofVietNampossesses the second largest coal depositwith reserves estimated to bearound8.83billiontons.TheNortheastisthelargestminingareainthecountrybecause it iscurrentlynotfeasibletoexploitcoal fromtheRedRiverbasin,as

Page 95: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 96

depositsliesome150-2,500metersundergroundnecessitatinglargeinvestmentandmodernminingtechnologiesthatarecurrentlynotavailableinVietNam.Inaddition,theRedRiverdeposithascomplicatedhydrogeologicalfeaturesandislocatedinapopulousarea.AssuchcoalproductionismainlycarriedoutintheNortheastofthecountry.As of 2012, Viet Nam is the 17th largest coal producer in the world. Coalproduction inVietNamhas increased rapidly from11.6Mt/y in 2001 to 44.5Mt/yin2011.Thelargeincreaseinproductionisduemainlytoincreasesincoalexports, although domestic consumption has also increased significantly from2009, driven in part by the commissioning of coal plants in the north. Coalreserves from Viet Nam have almost entirely been produced in the form ofanthracite,sourcedfromVinacomin(VietNamNationalCoalMineralIndustriesHoldingCorporationLimited)minesandusedinindustry,theelectricitysector,andsoldasexports.

3.9 ImportedCoal

Generally,itisrecognisedwithintheGMSthatforlargescalecoalgeneration,therewouldbe a need for imported coal and the development of facilities to support coal import.IndonesiaandAustraliaarethetwomostfeasiblecountriestoimportcoalfromduetotheircloseproximity, coalquality, levelof coal reservesand stageofdevelopment in termsoftransportationandcoalhandlingfacilities.

3.10 OffshoreNaturalGasResources

3.10.1 Cambodia’sNaturalGasReserves

CambodiacurrentlyimportsallofitsoilandnaturalgasfromSingapore,ThailandandVietNam.Thereisanestimated14trillioncubicfeetofgasreservesinCambodiaincludingitsoffshorebasins47.In2005itwasannouncedgaswasfoundinonewell(BlockA).Todatenogas (and oil) production has commenced due to the uncertain legal framework andinsufficientservicecapacityandinfrastructuretosupporttheprocessing.Thegovernmenthowevercontinuespushingtowardsoilandgasproduction,hopingforittohappensoonerratherthanlatertoreduceenergyrelianceonothercountries.

3.10.2 LaoPDR’sNaturalGasReservesLaoPDRhasnoconfirmedreservesofoilorgas,however,theGovernmenthasissuedtwoexplorationconcessions incentralandsouthernLao(SalamanderEnergyGroupandPetroViet Nam respectively). Significant work remains to be done to determine the results.Based on this the likelihood of indigenous oil or gas reserves making an impact to theelectricity sector development in the next 10-20 years is low. Consequently, Lao PDRimports petroleum products from other countries, with these products being used47SharedwithThailandandcontingentonterritorialnegotiations,http://www.upi.com/Business_News/Energy-Industry/2012/09/27/Cambodia-gears-for-offshore-drilling/UPI-86021348765641/,accessedJune2015.

Page 96: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 97

approximatelyasfollows:88%usedintransportsector,11%usedinthecommercialsector;andtheremainderforresidential,industryandagriculture.

3.10.3 Myanmar’sNaturalGasReserves

According to ADB Myanmar Energy Sector Initial Assessment (2012), Myanmar’snatural gas reserves have been estimated to be 11.8 trillion cubic feet (Tcf).Offshore gas discoveries have been significant. Two major offshore gas fields,Yadana(5.7Tcf)andYetagun(3.16Tcf),werediscoveredinthe1990sintheGulfofMoattama.ThetwofieldshavebeensupplyingnaturalgastoThailandsince2000,atarateofabout755millioncubicfeetperday(MMcfd)fromtheYadanafieldand424 MMcfd from the Yetagun field. In 2004, Daewoo International CorporationdiscoveredthenewShwegasfield,offthecoastofSittwe,withestimatedreservesofabout5Tcf.ProductionfromtheShwefieldwascommencedin2013,forexportto the PRC, through an overland pipeline from Myanmar to Kunming, YunnanProvince. The pipeline will have capacity of about 500 MMcfd, with a possibleexpansionto1,200MMcfd.

TheBPstatisticsin2014,ontheotherhand,estimatedMyanmar’sprovedreservesof natural gas to be at some 283.2 billion cubic metres (Bcm) or 10,0 Tcf,representing around 52% of the total proved natural gas reserves of the GMS.Figure68plotsprovednaturalgasreservesfortheGMScountriesandthereservesto production ratio (RPR)48in years. ForMyanmar, the number is relatively lowbecause a number of fields with proven reserves have already been put intoproduction.

48TheRPRistheprovedreservesdividedbytheamountofreservesproducedeachyearandthusaroughmeasureofhowmanyyearsuntiltheresourceisdepleted.Furtherinformation:http://en.wikipedia.org/wiki/Reserves-to-production_ratio.

Page 97: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 98

Figure68 ProvedGasReservesforMyanmar,ThailandandVietNam

Source:BPStatistics2014

Myanmar’soilandgasindustryinvolvesthe100percentstate-ownedMyanmarOiland Gas Enterprise (MOGE), foreign-invested companies and joint venturesbetween international and domestic firms. MOGE is responsible for natural gasexploration, domestic supply, pipelines construction, and coordination of theproductionsharingcontractswithforeigncompanies.

Since the year 2000, offshore production has become a key component ofMyanmar’sgassector.Totalproductionin2012/13was453,000MMcf,morethan90%ofwhichwas from theoffshore Yadana (57%) and Yetagun (34%) fields; theremainderwas from theMOGE-operated onshore fields. Production in Shwe andZawtika (scheduled tobegin in 2014), is anticipated tobringMyanmar's total gasoutputtoroughly2,200MMcfdby2015.

Around80%ofnaturalgasproducedinMyanmarisforexports.Asof2012/13,theexport volume was 362,000 MMcf and most of it was for Thailand; however,productionfromShwefromJuly2013meansthatPRChasalsobecomeasignificantexportdestinationforMyanmar’sgas.

Myanmar’s electricity sector accounts for around 60% of natural gas domesticconsumption. Othermajor gas users are the government-owned factories (20%),fertiliser plants (7.9%), a compressed natural gas facility (7.2%), and LiquefiedPetroleumGas (LPG)production (0.9%). Inabsolute terms, theamountofnaturalgasusedforpowergenerationhasincreasednearlytwo-foldovertheperiod2001–2013,from29,066MMcfto57,333MMcfperyear.

Page 98: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 99

3.10.4 Thailand’sNaturalGasReservesThailand is estimated to have some 285 Bcm (10.1 Tcf) of proved reserves, oraround6.8%ofthetotalprovednaturalgasreservesoftheGMS.ThailandhasalowRPRnumber,meaningthatthemajorityoffieldswithprovenreserveshavealreadybeenputintoproduction.

Upstreamoil and gas activities aredominatedbyPTT Exploration andProduction(PTTEP), a subsidiary of PTT Public Company Limited (PTT). The PTT Group hasbusiness areas across supply procurement, transportation, distribution, gasprocessing, investment in natural gas vehicle (NGV) service stations, andinvestmentsinrelatedbusinessesthroughtheGroup’ssubsidiaries.Eighty-fivepercentofThailand’spetroleumreservesare locatedintheGulfofThailand,which ischaracterisedbyclustersofsmallwellsinshallowwaterandover300platforms

According to EPPO statistics, Thailand’s total natural gas production in was 42.1billioncubicmetresin2013,whichwasnearlytwiceasmuchthe2003productionvolume of 21.5 Bcm. Despite increases in production, Thailand is relying on gasimports fromMyanmar tomeet the domestic demand. In 2014, it imported 10.6Bcmofnatural gas in LNGpurchasesandviapipelines fromYadana,YetakunandZawtikagasfieldsinMyanmar.Currentimportedvolumesaccountforaround20%ofthetotalnaturalgassupply.Itisevidentthatfuturegasdemandgrowthwillhaveto be met by increased gas imports, and particularly LNG, as domestic suppliesprogressivelydeplete49.

Thetotalconsumptionin2014wassome48.4Bcm,ofwhich28.5Bcmwasusedforelectricitygeneration.Althoughgasconsumptionbythepowersectorhasincreasedone third in volume over the period from 2003 to 2014, its share in the totalconsumptiondeclined,from77%in2003to59%in2014.Thisindicatesthatuseofnaturalgasbytheothersectorsincludingindustry,gassubcooledprocess(GSP)andNGVhasbeengrowingatfasterrates.

3.10.5 VietNam’sNaturalGasReserves

VietNamisacoastalcountrywithseveralhundredthousandsquarekilometresofcontinentalshelfinwhichseventertiarybasinshavebeenidentified.Gasreserveshavebeenfoundinfiveofthesevenoffshorebasins50:SongHong,PhuKhanh,NamConSon,CuuLongandMalay-ThoChu.TheseareshowninFigure69.

49Enerdata,2014:http://www.enerdata.net/enerdatauk/press-and-publication/energy-news-001/thailand-natural-gas-conundrum_29249.html50“BCCContractSignedforBillionGasPipelineProject,”PetroVietnam,March11,2010,http://english.pvn.vn/?portal=news&page=detail&category_id=11&id=3278.

Page 99: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 100

Figure69 GasReserves(ontheleft)andOffshoreGasFieldsandPipelines51(2015)

Insummarythestatusofupstreamfieldsthatareinproductionisasfollows:

• CuuLong,whichisinproductionandisanoil-pronebasinthatisindecline;• NamConSon,whichisinproductionandwhichisagas-pronebasinthatisalso

indecline;and• Malay-ThoChu,which transports natural gas toCaMau fromBlockPM3CAA

andtheCaiNuocfield;anoffshoreareaadministeredjointlywithMalaysia.Thefollowingarepotentialoffshorereservesthatcouldbeexploitedinthecountry:

• BlockB–intheMalayBasinundertheoperatorshipofPetroleumofVietNam(PVN)withMitsuiandPTTaspartners,with reservesestimated tobe>4TCf;and

• Cai Voi Xanh – in the Song Hong Basin off the central coast, operated byExxonMobil,hasbeenidentifiedtohavereservesof5TCf.

Figure69showson the right theoffshoregas fieldsandpipeline infrastructure inVietNam.ThisshowstheexistinginfrastructureforgasinVietNamaswellassomepreviouslyplanneddevelopmentsthatwereunderconsiderationbutnowdeferred(dashedline).

Gas production is observed to have ramped up since 2003 and again in 2007coincidingwiththecommissioningoftheNamConSonGasProjectandtheCaMaupipelinedevelopments.Around85%ofnatural gas consumption is attributable topower generation, 10% for fertilizer production, and the rest provided to lowpressuregasnetworksorasLPGtoindustrialconsumers.Currentgassupplyisonly

51Notethatthediagramisnottoscaleandisintendedtobeofaconceptualnature.Source:IES.

Page 100: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 101

satisfying 60% of the demand for gas for VietNam’s power demand, 30% of thedemandforfertilizerfeedstocksand60%ofthedemandforLPG52.

3.11 LiquefiedNaturalGas

Liquefiednaturalgas(LNG)importfacilitieshaveonlybeendevelopedinThailand.However,feasibilitystudieshavebeenundertakeninCambodia,MyanmarandVietNam.Commentsoneachcountryare:

• Cambodia: The economics underpinning an LNG terminal need to break evenwiththebenefitsassociatedwithdevelopingtheiroffshorereservesandgiventhepresentglobaloutlookforfuelprices,thedevelopmentofanLNGterminalinCambodiaseemsunlikelytomaterialisewithinthenextdecade.

• Myanmar:While rich in offshore natural gas potential,Myanmar has enteredintogassalesagreements(GSAs)thatrequirethemajorityofitsprovennaturalgasreservestobeexportedtoneighbouringcountries.InthecaseofMyanmar,thefeasibilityofLNGimportterminalshavebeenstudiedaswellbutatatimewhenglobaloilpricesmadetheconcept infeasible. TherationaleforstudyinganLNG terminal ispredicatedon theexistingGSAsonlyallowinga fractionofthe natural gas reserves to be directed to domestic uses and a scenario ofsignificant increase in demand for natural gas as expected under the presenteconomic outlook for Myanmar. This combined with an outlook of lowinternationalnaturalgaspricesmaymakesense.

• Thailand:TheMapTaPhutLNGfacilityintheeasternprovinceofThailandhasbeen operating only at a partial output as domestic demand is being metprimarily by imported supplies. According to PTT, its imports of LNG reachedaround2milliontonnesoverthelastyearanditisplanningtomorethandoublethis volume for 2015, partly to help replace potential declines in pipelineimports from Myanmar. Current LNG suppliers for Thailand include QatarLiquefied Gas Company Limited; it is also reported to be in talks with othersuppliers from Mozambique, United States, Australia and Russia to secureadditionallongtermsupplycontracts.Theexistingimportterminalhasacapacityof5milliontonnesayear,andPTTisconstructing a second LNG terminal at the same location and of the samecapacity,with completion expected in 2017. In preparation for falling importsfromMyanmaranddecliningdomesticoutputfromtheGulfofThailand,PTTisalso considering a plan to build an LNG receiving terminal adjacent to a gaspipeline linkedtogasfields inMyanmar.PTT’sargumenthasbeenthatsuchasiteonthecoastofMyanmarwouldofferamoreconvenientdeliverypointforLNGfromMiddleEastsuppliers.

52AroundhalfofVietnam’sLPGdemandissatisfiedbydomesticproduction,withtheremainderimportedfromChina,Australia,UnitedArabEmiratesandothers.

Page 101: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 102

• Viet Nam: PetroVietnam is working on the development of amajor LNG-to-powercomplexatSonMy,BinhThuanProvince,onthecoasttotheeastofHoChiMinhCity. SonMy is conceivedof as a significant onshore LNG terminal,with twophasesofLNG-firedpowerdevelopment,eachof2,000MW,andaninitial import capacity of 3million tonnes per annum (MTPA), and a plannedexpansion to 6MTPA. PetroVietnam has memoranda of understanding withGDFSuez(nowcalledEngie)onSonMy-1(2,000MW)andwithShellrelatedtothe LNG terminal; additionally, there are LNG master sales agreements withShell andGazprom.Thedevelopmentof SonMy terminal, however,hasbeendelayed and it seems unlikely that Viet Nam would develop an LNG importterminalbefore2020.AsmallerLNGterminalontheThiVairiver,closertoHoChiMinhCity,hasalsobeendeferred.

3.12 NuclearPower

NuclearPowerhasfeaturedinthepowerdevelopmentplansofbothThailandandVietNamforthelastdecadewiththeobjectivetoaddressenergysecurityconcerns.

InthecaseofThailand:

• Nuclearpowerwas included in theThailand’s PowerDevelopmentPlan2007-2021 (PDP 2007). This planned to have 2,000 MW of nuclear capacity inoperationby2020andanother2,000MWthefollowingyear.ThePDPhasbeenrevised a number of times due to the change in the electricity demand, allrevisedPDPshaveconsiderednuclearpower53.

• Thailand had carried out the self- evaluation on Intergraded NuclearInfrastructureReview(INIR)andsubmittedareporttotheInternationalAtomicEnergy Agency (IAEA) in October 2010. IAEA experts conducted a mission toThailand during December 2010 to conclude that “Thailand can make aknowledgeabledecisionontheintroductionofnuclearpower”.

• According to the PDP2010 – Revision 3, the first nuclear power plant (NPP)project was postponed for 6 years until 2026 to promote greater publicunderstanding of NPP and fill major gaps identified by INIR mission. A pre-project phase was underway for activities such as preparation of laws andregulations, technical and safety reviews, site selection reviews, publiccommunication, education and participation, and human resourcedevelopment.

• Nevertheless, the latest PDP2015 has nuclear power generators occurring atlaterperiodsoftime,withthefirstunitin2035andthesecondin2036.

InthecaseofVietNam:

53IAEA,2013:https://www.iaea.org/NuclearPower/Downloadable/Meetings/2014/2014-03-17-03-21-WS-INIG/DAY3/COUNTRY/Thailand_v1.pdf

Page 102: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 103

• In January 2006, the PrimeMinister of VietNam signed decisionNo.01-2006-QD-TTg on the approval of the strategy to apply nuclear energy for peacefulpurposes by 2020. The intent is to build and develop a nuclear technologyindustry. The strategy in place envisaged the commencement of the firstnuclearpowerplantprojectinVietNamby2020.

• In2009, theNationalAssemblydecided the firstnuclearpowerplantof2,000MWcapacitywouldbebuilt intheNinhThuanprovince.Theinvestigationandconstructionwork has since then begun but the expected commencement oftheplant’soperationwaspushedbackuntil2024duetoadditionalunforeseenworkcomponentsandtightenedsafetyrequirementsaspartofthefalloutfromtheFukushimacrisis.Thesecondplant,NinhThuan2,hasbeenscheduledtobeconstructedinthesamelocationandoperatingfrom2025.

• According to the recently revised Power Development Plant 7 (updated inMarch 2016), expected operation of the 1,200 MW first nuclear powergeneratingunit(NinhThuan1,firstphase)hasbeenfurtherdelayedto2028.

3.13 PowerPlanningintheGMS

Eachpowersectorstatus isuniqueandeach faces itsownsetofchallenges. ThekeyfeaturesofcurrentpowerdevelopmentplansforeachcountryaresummarisedinTable14.

Table14 ApproachtoPowerPlanningineachGMSCountry

Country FeaturesofCurrentPlans RenewableEnergyPlan EnergyEfficiencyPlanCambodia Mostplannedgeneration

capacityinthenearterm54isbasedoncoalandhydroprojectswithnaturalgasdevelopmentinthelongerterm.

RenewableEnergyActionPlaninPlacetopromoterenewableenergybutnotargets.

NationalEnergyEfficiencyPolicyhastargettoreducedemandby20%in2035vs.BAUdemand.

LaoPDR Mostplannedgenerationcapacityisbasedonhydroandonecoalproject.Manyplannedhydroprojectsaregearedtowardsexporttoneighbouringcountries.

RenewableEnergyDevelopmentStrategy(2011)whichpromotesthedeploymentofsmallhydro,solar,wind,biomass,biogas,solidwasteandgeothermal.

EnergyefficiencyisinanearlystageinLaoPDR.Someeffortshavebeentakeninruralelectrificationprojectstoconsiderdemandsidemanagementmeasures.

Myanmar MOEP’spubliclyavailableplansuggestshydrobeingdominantinthegenerationmix,followedbycoal,gasandrenewables.TheNationalElectrificationPlanhasatargetof100%centralgridelectrificationby2030.Powerdevelopmentplanscontinuetoevolvein

Myanmardoesnotcurrentlyhaveinplaceacomprehensiveandtargetedpolicyforrenewableenergy.

Apartfrombroaddirectivestopromoteenergyefficiencyandconservation,Myanmardoesnothaveaconcretepolicyframeworkforpromotingenergyefficiency.

54Next10years.

Page 103: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 104

Country FeaturesofCurrentPlans RenewableEnergyPlan EnergyEfficiencyPlanMyanmarwiththeoptimalgenerationmixbeingstronglydebated.

Thailand PDP2015suggestsatechnologycapacitymixby2036consistingofaround30-40%naturalgas,20%renewableenergy,20-25%coal,15-20%hydro,andupto5%nuclearpower.Thetotalnewinstalledcapacityfrom2015to36requiredissome57GW.

AEDP2015targetssome19.6GWofrenewables(waste,biomass,biogas,hydro,wind,solarandenergycrops)by2036.

EEPtargetstoreduceenergyintensityby25%in2030comparedto2005levels,orequivalently,a20%reductionagainstaBAUdemandoutlook.

VietNam ThemostupdatedPDP7(2016version)plansa129,500MWoftotalinstalledcapacityby2030(comparedto146,800MWintheoriginal,2011versionofPDP7).Thecapacitymixisexpectedtoconsistof42.6%coal,16.9%hydropower,14.7%naturalgas,21%RE,3.6%Nuclearand1.2%imports.

NewREtargetshavebeenincludedintothelastupdatedPDP7.Renewablesources(smallhydro,wind,solarandbiomass)wouldaccountfora21%shareinthecapacitymixanda10.7%shareinthegenerationmixby2030

In2006,thePrimeMinisterapprovedtheEEnationaltargettosave5%-8%totalelectricityconsumptionby2015.TheEEtargethasnotbeenupdated,butgenerally8%-10%savingshavebeenexpectedby2020.

3.13.1 Cambodia’sPowerDevelopmentPlans

The Royal Government of Cambodia sets targets for the energy sector in theNational Strategic Development Plan (NSDP) which sets priorities on increasingelectricity supply capacity and reducing electricity tariffs to an appropriate level,whilestrengtheningtheinstitutionstomanagetheenergyindustry.Oneofthekeyfocus areas has been to enhance access to electricity, and so an electrificationmaster plan was established around the following three principles: (1) developelectricity generation capacity includinghydropower and coal or gas, (2) leveragepower imports from neighbouring countries to enhance access to provinces nearthe Cambodian borders, and (3) continue investments and enhancements to thenationaltransmissionsystem.

Most of Cambodia’s committed generation capacity is currently coal and hydroprojects.CambodiahasinplaceaRenewableEnergyActionPlan(REAP)topromoterenewableenergy.However,therearenospecifictargetsinplace. ThereisalsoaNational Energy Efficiency Policy which has a target to reduce future nationalenergydemandby20%to2035againstabusinessasusualprojectionandtoreduceCO2 emissions in 2035 by 3 million tons. In the longer-term, it is expected thatoffshoregasreservesthathavebeenidentifiedcouldbedeveloped.

3.13.2 LaoPDR’sPowerDevelopmentPlans

Energy policy in Lao PDR is focused on making energy supplies affordable andreliable while also ensuring the exploitation of energy resources is done in anenvironmentally-friendly, efficient and sustainable manner. Key policies for LaoPDR are: (1) maintain and expand generation capabilities that will deliver

Page 104: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 105

affordable, reliable and sustainable electricity supply to promote socioeconomicdevelopment, (2) promote cross-border trade (exports) to generate additionalrevenue used to further reduce poverty, (3) develop policy, legal and regulatoryframeworks to promote private investments and/or partnerships and (4) ensureaccountability and transparency in power market developments in relation tosustainableoutcomesandenhancingtechnicalknowledge.

LaoPDR’ssocioeconomicpolicyalsopushesforfurtherindustrialisationandhigherelectrification rates. The former has resulted in focused effort on developingspecial economic zones which will have implications for electricity demand andtransmissiondevelopment. Thelatterhasresultedinagovernmentelectrificationtarget of 90%by 2020,which is nearly achieved. The vastmajority of Lao PDR’sgenerationdevelopmentisbasedonhydroprojectsgearedtowardsexport55.

3.13.3 Myanmar’sPowerDevelopmentPlans

Myanmar'spowersystemiscurrentlydominatedbyhydro(around70%)withgas-basedgenerationmakingupmostoftherest. WithintheGMS,Myanmarhasthehighest population without access to electricity and increased economic activityover the last 5 years is straining existing infrastructurewhich is in great need ofinvestment.In2014,aWorldBankstudyproposedatargettoachieve100%centralgridelectrificationby2030.MOEP,whoisresponsibleforplanning,developeda15yearpowerdevelopmentplan56wheredemandwasforecasttoincreaseatdoubledigitratesto2030andgenerationexpandedtoachieveatechnologymixofaround81% hydro, 9% coal, and the rest natural gas and renewables (wind, solar andgeothermal). However, since this plan was developed in 2014, there have beenongoing debates around what constitutes the most appropriate generationexpansionplantosatisfyhighdemandgrowth,particularlygivenconstraintsontheamountofnaturalgasthatisavailablefordomesticmarkets57,ensuringsustainablehydro development and opposition to coal. Power sector planning in Myanmarcontinuestoevolve,particularlyinlightofenhancedunderstandingofthecountry’srenewableenergypotential.

3.13.4 Thailand’sPowerDevelopmentPlans

Thailand’s power development plan of 2015 (PDP2015) was proposed to theNationalEnergyPolicyCouncil(NEPC)on14Mayandsubsequentlyapprovedon15May 2015. It is based on the following three principles: (1) energy security tosupporteconomicandsocialdevelopmentsandtodiversifythefuelmixtonotbetoo reliant on natural gas, (2) ensure that electricity prices are cost-reflective in

55HongSacoalprojectistheonlyexception.56http://www.ifc.org/wps/wcm/connect/46f9da00471bab5caff4ef57143498e5/1.4.Min+Khang.pdf?MOD=AJPERES.57WhileMyanmarhassignificantprovenreservesofnaturalgasthemajorityisforexporttoneighbouringcountriesunderlongtermgassupplyagreements,whichentitleMyanmartoafractionofthegasfordomesticuse.

Page 105: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 106

order to ensure efficient investment and consumption patterns, and (3) reducenegative impacts on the environment and aim to reduce carbon emissions bypromotingrenewableenergyandenergyefficiency.ThelatestPDPsuggestssome57.4GWofnewcapacityby2036andischaracterisedbyacapacitymixbasedon30%to40%naturalgas(vs.64%asof2014),renewableenergyintherange15%to20% (vs. 8% as of 2014), coal around 20% to 25% (vs. 20% as of 2014) with anunspecifiedportionbasedoncarboncaptureandsequestrationtechnology,hydro15% to 20% and up to 5% nuclear. Complementing the PDP2015 are two otherplans:(1)theAlternativeEnergyDevelopmentPlan2015(AEDP2015)whichtargetsatotalof19,635MWofrenewables(basedonwaste,biomass,biogas,hydro,wind,solar andenergy crops) by 2036; and (2) the Energy EfficiencyDevelopment Plan(EEP)which targets to reduceenergy intensityby25% in2030compared to2005levels,orequivalently,a20%reductionagainstaBAUdemandoutlook.

3.13.5 VietNam’sPowerDevelopmentPlans

VietNam'selectricityconsumptionhashadannualgrowthratesintherangeof10%to15%overthelastdecade.Thishasplacedpressureonthegovernmenttoensureadequate levels of infrastructure are being pursued. EVN and other state-ownedcorporationsinvolvedinelectricitygenerationhavenotbeenfinanciallycapabletobuildalltherequiredadditionalcapacity,andthishascreatedaheavyfocustodateon least (direct) cost planning coupled with desire of government to diversifyinvestmentparticipationsinensuringenergysecurity.Planninghasrevolvedmainlyarounddomesticcoal, importedcoalanddevelopmentofoffshoregasreserves inthe short term while in the longer term nuclear energy is considered a viableoption.PlansforREhavegenerallybeenatamodest levelwithinthe2011PowerDevelopmentPlant7(PDP7),havingtargetedonlya6%shareforREgenerationby2030.MorerecentlythegovernmenthasmadecommitmentstoraisetheREsharein the system generation mix to 6.5% by 2020 and 10.7% by 2030. These newtargetsforREhavebeenfactoredintotherevisedversionofthePDP7,whichwasapprovedbythePrimeMinisterinMarch2016.

3.14 SummaryofDevelopmentsforGMSPowerSectors

ThissectionhasprovidedasummaryofthekeyissuesrelevanttothedevelopmentofrenewableenergyoptionsandfossilfueloptionsforeachoftheGMScountries.Thepurposewas toprovidebalancedconsiderationof themainoptions that faceplanners for each GMS country. Table 15summarises the key findings for thissectionand this in turn forms thebasisof theassumptions thatwereused in thepowersystemmodellingconductedforeachscenario.Itshouldbenotedthattherenewable energy potential numbers were drawn from multiple sources andinformed by analysis of IRENA Global Atlas data as well as our own analyses ofpotential.ThekeysourcesaresummarisesinAppendixF.

Page 106: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 107

Page 107: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 108

Table15 SummaryofPowerSectorDevelopmentOptionsforeachGMSCountry(MW)

ResourceCommentsonDevelopmentPotentialGMS TotalPotential Cambodia LaoPDR Myanmar VietNam Thailand

LargeHydro Atotalinstalledcapacityof24,105

MW(2014),potentialfor

124,155MWintotal

10,000MWtotal,ofwhich929developed

(2014)

23,000MWtotal,ofwhich3,058

developed(2014)

46,000totalofwhich3,011developed(2014)

Morethan30,000ofwhich13,833developed(2014).Plansforfurtherhydrodevelopment

15,155MWofwhich5,541MWdeveloped(2014).

SmallHydro 27,265 700 2,000 231 24,334 -PumpStorage

18,807 - - - 8,000 10,807

SolarPV VeryGood Significant Good Significant Significant SignificantSolarCSP ModeratetoGood Haspotential Haspotential Significant SignificantintheSouth ModerateWindOnshore

Atleast110,000MW

Atleast500 27,104 26,962 26,673 30,000

WindOffshore

Significant(Thailand&Viet

Nam)Haspotential - Haspotential Significant 7,000

Biomass 37,952 2,392 1,271 6,899 10,358 17,032Biogas 14,757 1,591 1,146 4,741 5,771 1,507Geothermal 859 - 59 400 400 -Ocean 13,950 - - 1,150 12,800 -

DomesticCoal

Over2,500milliontons

LowcoalreservesaroundNorthern

Cambodia

Approximately900milliontonsofcoal

Approximately400milliontonsofcoal

Significant,currentlyproducing45mtperyear

Approximately1,200milliontons

ofcoal

Page 108: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 109

ResourceCommentsonDevelopmentPotentialGMS TotalPotential Cambodia LaoPDR Myanmar VietNam Thailand

ImportedCoal

RequiredunderBAUgenerationdevelopment

Possible Unlikely Possible Yes Yes

DomesticNaturalGas

Over1,000Bcm

Estimatedat140billioncubicmetres,notcurrentlybeing

produced

Noconfirmedreserves

283Bcm,orestimatedtobe10trillioncubic

feet

617Bcm–anumberofoffshoregasandoilfields

couldbedeveloped284Bcm

LNG /Natural GasImports

CurrentlyimportsfromThailand,VietNamand

Singapore

Oilandgasisimported

Possiblebutdependentongasdemandand

economics

PotentialatSonMy,BinhThuanProvincefor3.5mtpaexpandingto6

mtpa.

Alreadyexists,importing11BcmviaLNGorpipelinesfromMyanmar

NuclearPower

DevelopmentinVietNamand

Thailand

Unlikelyinthenearfuture

Unlikelyinthenearfuture

Unlikelyinthenearfuture

Yesaspartofpowerdevelopmentplan

Yesaspartofpower

developmentplanSources:RefertoAppendixF

Page 109: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 110

4 PowerSectorVisionScenariosInthissection,wedefinethethreescenariosfortheGMSthatwehavemodelled:

the Business as Usual (BAU), Sustainable Energy Sector (SES), and Advanced SES

(ASES) scenarios. We firstly provide the assumptions that were common to all

countriesinstudy:technologycostsandfuelprices.Wethensetassumptionsused

fortheGMS, includinganeconomicoutlook,generationprojectsconsideredtobe

committed58and assumptions around power imports and transmission. Further

assumptions thatarespecific toeachscenariosare thenprovided in sections5,6

and7.

4.1 Scenarios

Thethreedevelopmentscenarios(BAU,SESandASES)areconceptually illustrated

inFigure70.

Figure70 GMSPowerSectorScenarios

TheBAU scenario is characterisedbyelectricity industrydevelopments consistent

withthecurrentstateofplanningwithintheGMScountriesandreflectiveofgrowth

rates in electricity demand consistent with an IES view of base development,

existing renewable energy targets, where relevant, aspirational targets for

58Thatis,constructionisalreadyinprogress,theprojectisneartocommissioningoritisinanirreversible/

advancedstateoftheplanningprocess.

2015-30 2030-50

AdvancedSES

BAUScenario

SESScenario(ExistingTechnologies)

Page 110: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 111

electrificationrates,andenergyefficiencygainsthatarelargelyconsistentwiththe

policiesseenintheregion.

Incontrast,theSESseekstotransitionelectricitydemandtowardsthebestpractice

benchmarksofotherdevelopedcountries in termsofenergyefficiency,maximise

therenewableenergydevelopment,ceasethedevelopmentoffossilfuelresources,

and make sustainable and prudent use of undeveloped conventional hydro

resources.Whererelevant,itleveragesadvancesinoff-gridtechnologiestoprovide

accesstoelectricity toremotecommunities. TheSEStakesadvantageofexisting,

technicallyprovenandcommerciallyviablerenewableenergytechnologies.

Finally theASES assumes that thepower sector is able tomore rapidly transition

towards a 100% renewable energy technology mix under an assumption that

renewableenergyisdeployedmorethanintheSESscenariowithrenewableenergy

technology costs decliningmore rapidly compared to BAU and SES scenarios. A

briefsummaryofthemaindifferencesbetweenthethreescenariosissummarised

inTable1659.

Table16 SummaryofBAU,SESandASESScenarios

Scenario Demand SupplyBAU Demandisforecasttogrowin

linewithhistoricalelectricity

consumptiontrendsand

projectedGDPgrowthratesin

awaysimilartowhatisoften

doneingovernmentplans.

Electricvehicleuptakewas

assumedtoreach20%across

allcarsandmotorcyclesby

2050fortheGMS.

Generatornewentryfollowsthatof

powerdevelopmentplansforthe

countryincludinglimitedlevelsof

renewableenergybutnotamaximal

deploymentofrenewableentry.

SES • Assumesatransition

towardsenergyefficiency

benchmarkforthe

industrialsectorofHong

Kong60andofSingaporefor

thecommercialsectorby

year2050.

• Assumesnofurthercoalandgas

newentrybeyondwhatisalready

understoodtobecommitted.

• Amodestamountoflargescale

hydro(4,700MWintotal)was

deployedinLaoPDRandMyanmar

aboveandbeyondwhatis

59Notethatwesummarisethekeydrivershere.Forfurtherdetails,pleaserefertotheseparateIESassumptions

document.60BasedonouranalysisofcomparatorsinAsia,HongKonghadthelowestenergytoGDPintensityforindustrial

sectorwhileSingaporehadthelowestforthecommercialsector.Thailand,Myanmar,LaoPDRandCambodia’s

industryintensitywastrendedtowardslevelscommensuratewithHongKong.VietNam’sindustrialintensitywas

trendedtowardsKorea(2014)by2035andcontinuesthetrajectoryto2050.

Page 111: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 112

Scenario Demand Supply• Fortheresidentialsector,it

wasassumedthaturban

residentialdemandper

electrifiedcapitagrowsto

approximately60%ofthe

levelintheBAU.

• Demand-response

measuresassumedtobe

phasedinfrom2021with

some15%ofdemand

beingflexible61by2050.

• Slowerelectrificationrates

forthenationalgridsin

CambodiaandMyanmar

comparedtotheBAU,but

deploymentofoff-grid

solutionsthatachieve

similarlevelsofelectricity

access.

• Mini-grids(off-grid

networks)areassumedto

connecttothenational

systeminthelonger-term.

• Electricvehicleuptakeas

pertheBAU.

understoodtobecommittedhydro

developmentsinthesecountries62.

• Supplywasdevelopedbasedona

leastcostcombinationof

renewablegenerationsources

limitedbyestimatesofpotential

ratesofdeploymentand

judgmentsonwhentechnologies

wouldbefeasiblefor

implementationtodeliverapower

systemwiththesamelevelof

reliabilityastheBAU.

• Technologiesusedinclude:solar

photovoltaics,biomass,biogasand

municipalwasteplants,CSPwith

storage,onshoreandoffshore

wind,utilityscalebatteries,

geothermalandoceanenergy.

• Transmissionlimitsbetween

regionswereupgradedasrequired

tosupportpowersector

developmentintheGMSasan

integratedwhole,andthe

transmissionplanallowedtobe

differentcomparedtothe

transmissionplanoftheBAU.

ASES TheASESdemand

assumptionsaredoneasa

sensitivitytotheSES:

• Anadditional10%energyefficiencyappliedtotheSES

demands(excluding

transport).

• Flexibledemandassumedto

reach25%by2050.

• Uptakeofelectricvehiclesdoubledby2050.

ASESsupplyassumptionswerealso

implementedasasensitivitytothe

SES,withthefollowingthemain

differences:

• Allowratesofrenewableenergydeploymenttobemorerapid

comparedtotheBAUandSES.

• Technologycostreductionswereacceleratedforrenewableenergy

technologies.

• Implementamorerapidprogramme

ofretirementsforfossilfuelbased

61Flexibledemandisdemandthatcanberescheduledatshortnoticeandwouldbeimplementedbyavarietyof

smartgridanddemandresponsetechnologies.62ThisisimportanttoallcountriesbecausetheGMSismodelledasaninterconnectedregion.

Page 112: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 113

Scenario Demand Supplypowerstations

63.

• Energypolicytargetsof70%renewablegenerationby2030,90%

by2040and100%by2050across

theregionareinplace.

• Assumethattechnical/operational

issueswithpowersystemoperation

andcontrolforaveryhighlevelof

renewableenergyareaddressed64.

4.2 TechnologyCostAssumptions

Technologycapitalcostestimatesfromavarietyofsourceswerecollectedandnormalised

tobeonaconsistentanduniformbasis65.Mid-pointsweretakenforeachtechnologythat

is relevant to the GMS region. The data points collated reflect overnight, turnkey

engineering procurement construction (epc) capital costs and are exclusive of fixed

operatingandmaintenancecosts,variableoperatingandmaintenancecostsandfuelcosts.

The capital costs by technology assumed in the study are presented in Figure 71 for the

BAU and SES scenarios. For theASES scenario,we assumed that the technology costs of

renewabletechnologiesdeclinemorerapidly.Thesetechnologycostassumptionsarelisted

in Figure 72. Note that the technology capital costs have not included land costs,

transmissionequipment costs,nordecommissioning costs andarequotedonaRealUSD

2014basis.

CommentsonthevarioustechnologiesarediscussedbelowinrelationtotheBAUandSES

technologycosts:

• Conventional thermal technology costs are assumed to decrease at a rate of

0.05%pacitingmaturationofthetechnologieswithnosignificantscopeforcost

improvement.

• OnshorewindcostswerebasedonthecurrentinstalledpricesseeninPRCand

Indiawith future costs decreasing at a rate of 0.6% pa. Future offshorewind

costswere developedby applying the current percentage difference between

currentonshoreandoffshorecapitalcostsforallfutureyears.

• Largeandsmall-scalehydrocostsareassumedtoincreaseovertimereflecting

easy andmore cost-efficient hydro opportunities being developed in the first

instance.IRENAreportednocostimprovementsforhydroovertheperiodfrom

63Decommissionedcoalandgasplantwouldbemothballedwithsomeunitsretainedasanadditionalcontingency

againstdroughtorotherlowrenewableresourcesituations.64Inparticular:(1)sufficientreal-timemonitoringforbothsupplyanddemandsideoftheindustry,(2)appropriate

forecastingforsolarandwindandcentralisedreal-timecontrolsystemsinplacetomanageamoredistributed

supplyside,storagesandflexibledemandresources,and(3)powersystemsdesignedtobeabletomanagevoltage,

frequencyandstabilityissuesthatmayarisefromhavingapowersystemthatisdominatedbyasynchronous

technologies.65WestandardisedonReal2014USDwithalltechnologiescostsnormalisedtoreflectturnkeycapitalcosts.

Page 113: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 114

2010 to 2014. Adjustments are made in the case of Lao PDR and Myanmar

wheresignificanthydroresourcesaredevelopedintheBAUcase66.

• Solar PV costs are based on the more mature crystalline silicon technology

which accounts for up to 90% of solar PV installations (IRENA, 2015), and

forecasttocontinuetodrop(2.3%pa)albeitataslowerpacethaninprevious

years.

• Utility scale battery costs are quoted on a $/kWh basis, and cost projections

based on a report by Deutsche Bank (2015) which took into account several

forecastsfromBNEF,EIAandNavigant.

• Solarthermal(CSP)capitalcostsareprojectedtofallat2.8%paonthebasisof

the IRENA 2015 CSP LCOE projections. While globally there are many CSP

installations in place, the technology has not taken off and the cost of CSP

technologyoverthepast5yearshasnotbeenobservedtohavefallenasrapidly

assolarPV.

• BiomasscapitalcostsarebasedoncostsobservedintheAsiaregionwhichare

significantly less than those observed in OECD countries. Capital costs were

assumed to fall at 0.1% pa. Biogas capital costs were based on anaerobic

digestionandassumedtodeclineatthesamerateasbiomass.

• Oceanenergy(waveandtidal)technologieswerebasedonlearningratesinthe

‘Ocean Energy: Cost of Energy and Cost Reduction Opportunities’ (SI Ocean,

2013) report assuming global installation capacities increase to 20 GW by

205067.

• Capitalcostswerediscountedat8%paacrossalltechnologiesovertheproject

lifetimes.Decommissioningcostswerenotfactoredintothestudy.

• Fortechnologiesthatrunonimportedcoalandnaturalgas,wehavefactoredin

the additional capital cost of developing import / fuel management

infrastructureinthemodelling.

Forreference,AppendixAtabulatesthetechnologycostassumptionsthatwehaveusedin

themodelling,aswellasresultingLCOE.

66Capitalcostsforlargescalehydroprojectsareassumedtoincreaseto$3,000/kWby2050consistentwithhaving

themosteconomicallyfeasiblehydroresourcesdevelopedaheadoflesseconomicallyfeasibleresources.67Waveandtidalcostswereaveraged.

Page 114: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 115

Figure71 ProjectedCapitalCostsbyTechnologyforBAUandSES

*BatterycostsarequotedonaReal2014USD$/kWhbasis.

Figure72 ProjectedCapitalCostsbyTechnologyforASES

*BatterycostsarequotedonaReal2014USD$/kWhbasis.

4.3 FuelPricingOutlook

IEShasdevelopedaglobalfuelpriceoutlookwhichisbasedonshort-termcontractstraded

onglobalcommodityexchangesbeforerevertingtowardslong-termpriceglobalfuelprice

Page 115: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 116

forecastsbasedontheIEA’sWorldEnergyOutlook(WEO)2015450scenario68andasetof

relationships between different fuels that have been inferred from historical relations

betweendifferent typesof fuels. A summaryof the fuel prices expressedon anenergy-

equivalentbasis($US/MMBtuHHV)ispresentedinFigure73.

The 30% fall from 2014 to 2015 for the various fuels was the result of a continued

weakeningofglobalenergydemandcombinedwithincreasedstockpilingofreserves.Brent

crudeprices fell from$155/bbl inmid-2014to$50/bbl inearly2015.TheOrganisationof

thePetroleumExportingCountries (OPEC)at theNovember2014meetingdidnotreduce

production causing oil prices to slump. However, fuel prices are then assumed to return

fromthecurrent lowlevelstoformerlyobservedlevelswithina10yeartimeframebased

onthetimerequiredfortheretobeacorrectioninpresentoversupplyconditionstosatisfy

softeneddemandforoilandgas69.

Tounderstandtheimplicationsoflowerandhigherglobalfuelpriceswealsoperformfuel

pricesensitivityanalysis.Oneofthescenariosisbasedona50%fuelcostincrease70toput

thestudy’s fuelprices in therangeof the IEA’sCurrentPoliciesscenario71whichcouldbe

arguedtobeclosertothefuelpricingoutlookthatcouldbeanticipatedinaBAUoutlook,

whiletheSESandASESscenarioscouldbearguedtohavefuelpricesmoreconsistentwith

the IEA’s450scenario. Wediscussthe implicationsof fuelpricing inthescenarioswithin

thecontextofelectricitypricinglaterinthereport(seeSection9.5).

Forreference,weprovidethebasefuelpricingoutlookforeachyearthatwasusedinthe

fuelpricemodelling inAppendixB. Thesefuelpriceswereheldconstant intheBAU,SES

andASESscenarios.

68TheIEA’s450scenarioisanenergypathwayconsistentwiththegoaloflimitingglobalincreaseintemperatureto

2°Cbylimitingtheconcentrationofgreenhousegasesintheatmosphereto450partspermillionCO2;further

informationavailablehere:https://www.iea.org/media/weowebsite/energymodel/Methodology_450_Scenario.pdf.69Reference:FactsGlobalEnergy/AustralianInstituteofEnergy,F.Fesharaki,“ANewWorldOilOrderEmergingin

2016andBeyond?”,February2016,suggestareboundinpriceslevelsovera5to7-yearperiodasthemost

“probable”scenario.70Includingbiomassandbiogasfeedstockprices.

71TheIEA’scurrentpoliciesscenarioassumesnochangesinpolicyfromtheyearofWEOpublication.

Page 116: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 117

Figure73 IESBaseCaseFuelPriceProjectionsto2050

4.4 RealGDPGrowthOutlook

RealGDPgrowthisassumedtomaintaina7%paGDPgrowthrate,inallcountries

exceptThailand,to2025whichisslightlyhigherthanthe15-yearhistoricalaverage

growth as the region continues to pursue industrialisation. Towards 2050, GDP

growth is assumed to decline towards the world average of 1.96%72pa seen in

Figure74.Thetrenddownisassumedtoreflecttheeconomicdevelopmentcycle

towardsadevelopedcountrystatus.ThisassumptionisheldconstantintheBAU,

SESandASESscenarios.

721.96%reflectstheprevious5-yearGDPgrowthofthetop10GDPcountriesintheworldexcludingBrazil,China

andRussia.

0

5

10

15

20

252012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Price

($Re

al201

4US

D/MMBtu)

CrudeOil DatedBrent FuelOil DieselOil ImportedCoal AsianLNG Uranium

Page 117: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 118

Figure74 GDPProjections

4.5 PopulationGrowth

PopulationwasassumedtogrowinlinewiththeUNMediumFertilityscenarioand

isheldconstantacrossallscenarios73.

4.6 CommittedGenerationProjectsinBAU,SESandASESScenarios

Committed generation projects are the ones that are under construction or at a

stage of development that is sufficiently advanced for decision for the project to

comeonlinetonotbereversed.Acrossallscenariosweassumedthatprojectsthat

werecommittedwouldbedevelopedandwehavesetoutafulllistforeachcountry

inAppendixD74. Thiswasbasedon informationfromrecentPowerDevelopment

PlansandongoingresearchonthecurrentstatusofpowerprojectsintheGMS.

4.7 TransmissionSystem,ImportsandExports

ThemodellingpresentedinthisreportassumestransmissionintheGMSbecomes

moretightlyintegratedthanatpresent.Giventhemodellingperiodisfor35years,

weuseaverysimplemodelfortheinterconnectionsasillustratedinFigure75.The

figureshowstheinterconnectionswithintheregionaswellastocountriesoutside

the region (PRCandMalaysia). Initiallynotall transmission linesare inplaceand

thepowersystemismodelledasperthestatusquo.However,overthemodelling

period the transmission system evolves as needed to provide mutual support

73UNDepartmentofEconomicandSocialAffairs,WorldPopulationProspects:The2012Revision.

74ThelistincludesdedicatedexportprojectsfromLaoPDRsuchasXekaman1.Thecapacityquotedforthese

projectshasbeenadjustedtoreflectthededicatedexportquantity.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

GDPGrowth(real)

CM LAO MY TH VN

Page 118: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 119

between the two regions and to minimise costs. This leads to a different

transmissionplanineachscenario.

Figure75 GMSRegionalTransmissionSystemModel

There are some slight differences in the assumptions behind the transmission

systemenhancementsineachscenarioasfollows:

• In the BAU, it is assumed that transmission developments occur slowly and a

tightly integrated regional power system is in place fromabout 2030, but the

powersectorsaredevelopedsothatthereisonlyalimitedlevelofdependency

on imports fromneighbouringcountries. This is consistentwithpower sector

planning that seeks to not be overly dependent on power imports from

neighbouringcountries.

• IntheSESandASES,thetransmissionsystemevolvesfrom2025andweallow

thetransmissionsystem(basedonasimplifiedmodeloftheregion)toexpand

THAILAND

MYANMAR

CAMBODIA

VIETNAM

LAOPDR

HanoiLuangPrabang

Vientiane

Mandalay

Yangon

HoChiMinhCity

PhnomPenh

Bangkok Angkor

SiemReap

Vientiane

ChiangMaiMM

TH

LAO

CAM

VN-S

VN-C

VN-N

PRC

MAL

Page 119: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 120

as needed to optimise the use of a geographically disperse set of renewable

energy resources. A consequence of this is that some countries become

significantexportsofpowerwhileotherstakeadvantageofpowerimportsfrom

neighbouring countries. In particular Myanmar and Lao PDR become major

powerexporterswiththebeneficiariesbeingtheotherGMScountries.

4.8 PowerImportsandExports

4.8.1 Cambodia

Apart fromgeneration plants in Cambodia, theNationalGrid gets electricity supply from

VietNamat230kV,Thailandat115kVandLaosat22kV75. In2013,56%ofCambodia’s

totalelectricitydemandwasmetbypowertransfersfromThailand,LaoPDRandVietNam.

Table 17 summarises the imports split by high voltage (HV) and medium voltage (MV)

transmission lines. The interconnectors are for imports into Cambodia. TheMMEhas in

placeanagreementwith theMinistryof IndustryofVietNam forpowerpurchases from

VietNam intoCambodiaacross several transmissionpoints. Supply fromThailandvia the

ProvincialElectricityAuthorityofThailandissoldtosomeofthePECsinareasaroundthe

Cambodia and Thailand border. Imports from Laos are through Electricité du Cambodge

(EDC)andsuppliedtotheSteungTrengarea.Importshavebeenreducedsubstantiallysince

thenduetonewhydroplantscomingonlineinCambodia.

Table17 Cambodia:ElectricityGenerationandImports(2012-13)

SourceofElectricity

EnergyinMillionkWh

Proportionofenergyin%

for20132012 2013GenerationinCambodia 1,423 1,770 44.7%

ImportfromVietNamatHV 1,220 1,329 32.8%

ImportfromVietNamatMV 341 362 8.9%

ImportfromThailandatHV 392 417 10.3%

ImportfromThailandatMV 143 163 4.0%

ImportfromLaosatMV 9 11 0.3%

Total 3,527 4,052 100.0%Source:ReportonPowerSectorfortheYear2013,ElectricityAuthorityofCambodia(2014)

4.8.2 LaosPDR

LaoPDRpowerexportstoneighbouringcountriesaremainlyintheformofprojects

that are dedicated76. In addition to these projects, Lao PDR also exports smaller

quantities of power into Thailand and Viet Nam via Thakhek and Champasak

respectively (power flows totalling approximately 12 GWh in 2014). Lao PDR has

importingarrangementswithThailand,VietNamandPRC.FlowsfromVietNam(34

GWhin2014)andThailand(1,137GWh)provideelectricitytoareasinLaoPDRnot

75SeveralconnectionsfromVietnamandThailandareat22kV.76Thatistheprojectisconnectedtothenationalgridoftheneighbouringcountry.

Page 120: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 121

connected to the grid. The significant flows from Thailand support remotemines

suchastheSepongoldandcoppermines,whicharenotconnectedtothemainLao

PDRgrid.TheflowsfromPRCtotalled239GWhin2014ortheequivalentof27MW

averagedemandand connected to the LuangPrabangandNorthernprovinces to

relievethepressureofcentralLaoPDRplants.PowerflowsfromPRCwereassumed

constantthroughoutthemodellingperiod.

4.8.3 Myanmar

PresentlyMyanmarexportselectricitytoPRCviaShewli,adedicatedhydropower

project via a 600 MW 220 kV double circuit transferring power into Dehong

(Yunnan, PRC). Myanmar does not have connections to any other GMS country.

Myanmar was identified as one of the main sources of power in the GMS with

exportpotentialofmorethan5.5GWby2028intoThailandasasubstituteforits

gas generation as part of the Update of the Regional Indicative Master Plan on

PowerInterconnection(2010)inADB’sGMSRoadmap77.Thisformsthebasisofthe

transmissiondevelopmentsmodelledintheBAU,SESandASES.

4.8.4 Thailand

ThailandisconnectedtotheCambodianandMalaysianpowergridsandtherearea

numberofprojectsunderdevelopment inneighbouringcountries thatwill export

most if not all of their power output to Thailand. Figure 76 below plots the

historicalexportsandimportsfrom1990to2014andshowssignificantincreasesin

importedelectricityfrom2010tomorethan12,000GWhperannumby2014.Most

of the imports are from Lao PDR and Malaysia, whereas exports are mainly to

Cambodia and the remote regionsof LaoPDR (350 and1,220GWh in 2015).We

have assumed the construction of the projects listed in Table 18. The capacities

shown inthetablehavebeende-ratedbasedonthepowerpurchaseagreements

thatThailandhaswiththehostcountryfortheseprojects.

77GreaterMekongSubregionPowerTradeandInterconnection,2012,ADB.

Page 121: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 122

Figure76 ThailandImportsandExports(GWh)

Table18 Thailand:CommittedImportProjectsunderdevelopment

No. Unit Country Capacity(MW) Type COD

1Su-ngai Kolok - Rantau-

Panjang

Malaysia (TNB) – Thailand (EGAT)

132kVInterconnection100

Grid-to-

Grid2015

2 HongsaThermal#1-2Lao PDR (power purchased from

LaoPDR)982 Coal 2015

3 HongsaThermal#3Lao PDR (power purchased from

LaoPDR)491 Coal 2016

4Impact Energy Wind

Farm

Most of the wind farm’s output

willbepurchasedbyThailand540 Wind 2019

4.8.5 VietNam

VietNamimported966GWhin2006growingto5,599GWhin2011and1,683GWh

in2015mainlyfromPRCandmorerecentlyLaosPDR.ForVietNam,itwasassumed

that projects in Lao PDR that export power to Viet Nam’s national system do so

initiallyonadedicatedbasisbutovertimetheybecomepartofaninterconnected

GMS power system as the countries have their power systems becoming

increasinglyintegrated.Table19showstheseprojects.Thecapacitiesshowninthe

tablehavebeende-ratedbasedonthepowerpurchaseagreementsthatVietNam

haswiththehostcountryfortheseprojects;thatis,theyreflectjustthepowerthat

istransferredtoVietNam,nottheportionthatisavailabletothehostcountry.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

ImportsandExports(GWh)

Export Import

Page 122: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 123

Furtherassumptionsthatweremadeinrelationtoimportsandexportsthatapply

toallscenarios:

• ImportsfromMalaysiaintoThailandat135MWandimportsfromPRCintoLao

PDRat25MWremainingconstantthroughoutthemodelling;and

• ImportsfromPRCintoVietNamstartat412MWbutdeclinessteadilyto0MW

by2025asVietNamreducesitsrelianceonPRCpowerflows.

Table19 VietNamCommittedImportProjects

No. Unit Country Capacity(MW)78 Type COD

1 Xekaman1 LaoPDR(powerpurchasedfromLaoPDR) 232 Hydro 2016

2 Xekaman3 LaoPDR(powerpurchasedfromLaoPDR) 200 Hydro 2015

3 Xekaman4 LaoPDR(powerpurchasedfromLaoPDR) 64 Hydro 2018

4.9 Technical-EconomicPowerSystemModelling

TechnicalandeconomicmodellingoftheGMSwasdoneinthePROPHETelectricity

planningand simulationmodels79. Itdevelopsa least cost generationbasedplan

andwasusedtosimulatetheoperationoftheGMSregionasanintegratedpower

system.

Abriefoverviewofthevariousaspectsisprovidedbelow:

• Planning Module: The Planning Module of Prophet allows for intertemporal

constraints such as energy limits to be preservedwhen simulating the power

systemanddevelopments. Italsodevelopsaleastcostsetofnewentrantsto

satisfydemandoverthe35-yearmodellinghorizon.

• Transmission: Thepower systemwasmodelledbasedon the configurationas

perFigure75withfixed/scheduledflows(redlines)topowersystemsoutside

the GMS not being explicitlymodelledwhile power transferswithin the GMS

countrieswere optimised as needed to allow supply and demand to balance.

Thisisimportantwithrespecttomodellingdiversityindemandinthedifferent

regions and geographical variation in generation patterns from supply-driven

renewable energy (solar andwind) and seasonal variation of inflows into the

hydrostorages.

• Economics:Capitalandoperatingcostsrelatingtogenerationplantsaspertheassumptions covered in this report allow the Planning Module to model

generation and transmission development in a least costmanner. On top of

78Capacityfigurespresentedherearepro-ratedbasedontheintendedpowerflowsbetweenthecountries.

79Simulationisbasedonhourlyprofilesofdemandandsupply.Thehourlygenerationprofilesforsolarandwind

weredevelopedbasedonseasonalmeasurementsforeachlocationforeachGMScountryofDNI(solar)andwind

speeds.Thehourlyprofileswerebasedongenerationprofilesofrealwindandsolarfarmsforsimilarconditions

butadjustedfortheexpectedsiteconditions.

Page 123: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 124

this, resourceconstraintshad tobe formulated to reflectactual limits suchas

the maximum renewable resource and development rates available to each

country.• Demand: Demand profiles were constructed from energy and peak demand

forecasts for electricity based on regression models that were developed for

each sector of the electricity industry (commercial, industrial, residential,

agricultural and transport). The monthly and intraday construction of the

profiles were performed in Prophet based on historical data and/or external

datasourcesindicatingtheseasonalprofileofdemandforeachcountry.• Flexibledemand:wasmodelledasMWandGWh/monthquantitiesthatcanbe

scheduledasnecessarytoreducesystemcosts.Thismeansthatdemandtends

tobeshiftedfromperiodswhensupplyanddemandwouldotherwisebetight

to other times. The technology for rescheduling demandwas assumed to be

rolledoutstartingfrom2020intheSESandASESscenarios.

• Supply: The approach taken for modelling generation supply technologies

variedaccordingtothetechnologytype.Thisisdiscussedfurtherbelow:- Conventionalthermalplant:ismodelledascapacitylimitedplants,withfuel

take or pay contracts applied to generators running on natural gas and

where relevant supply constraints put in place – for example, gas supply

limits applied to LNG facilities or offshore gas fields. Examples of such

plantsincludecoal,biomass,gas,anddieselgenerators.

- Energy limitedplants: suchas large-scalehydroswithreservoirs/storagesandCSPhavemonthlyenergylimitscorrespondingtoseasonalvariationsin

energy inflows. The equivalent capacity factors are based on external

reportsforhydroandresourcedataforCSP(seenextpoint).

- Supply-drivengenerationforms:Seasonalprofilesforwind,solarandrunofriver hydros without reservoirs were developed on an hourly basis. For

wind and solar they were derived from monthly resource data collected

fromavarietyofsourcesincludingNASA,NREL80andaccessedviatheSolar

andWind EnergyResourceAtlas (SWERA) Toolkit and IRENAGlobal Atlas.

Resourceamountswerematchedagainstactualgenerationdataforknown

plants to develop equivalent monthly capacity factors at various high

resource pockets in each country. Several traces were built from known

generationtracestoprovidediversificationbenefits.

- PumpStorageandbatterystorage: thesearemodelled inasimilarwayto

flexibledemand inthatdemandcanbeshiftedwithacapacityandenergy

limit but the scheduled demand is stored for generation later with an

appropriateenergyconversionefficiency(pumpedstoragesassumedtobe

70%andbatterystoragesystemsat85%).

80DNIandWindNASALowResolutionandNRELDIModerateResolutiondata.

Page 124: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 125

5 BusinessasUsualScenario

5.1 BusinessasUsualScenario

TheBAUscenarioassumesindustrydevelopmentsconsistentwiththecurrentstate

of planningwithin theGMS countries and reflective of growth rates in electricity

demand consistent with an IES view of base development, existing renewable

energy targets, where relevant, aspirational targets for electrification rates, and

energy efficiency gains that are largely consistent with the policies seen in the

region.

5.2 ProjectedDemandGrowth

GMS’s on-grid electricity demand (including transmission and distribution losses81) is

plotted inFigure77as isbasedonthesumofelectricitydemandfromthefivecountries.

TheGMSelectricitydemand is forecast to increaseata rateof4.5%paover the35-year

period to 2050with the region going through a period of industrialisation and highGDP

growthof7%pa.

The industrial sector is forecast to grow the fastest at 4.8% followedby the commercial

sectorat4.6%, residential sectorat3.3%andagricultureat2.8%perannumas theGDPs

shifts towards commerce/services and industry with increases in residential per capita

electricity consumption. The transport sector is forecast to hit 70 GWh by 2050 as the

numberofcarsanduptakeofelectriccarsandmotorbikes increaseto20%uptake. GMS

electricitydemandisforecasttoreach1,685TWhby2050.

Peakdemand is plottedbelow in Figure 78 and showspeakdemand growing at 4.3%pa

reaching248GWby2050.The loadfactors inthe individualcountriestrendtowards75%

by2040,andVietNamto80%,drivenbyadditionalindustrialloads.Keydriversfordemand

growthandthedemandprojectionsaresummarisedinTable20.

81Notethatunlessotherwisestated,allotherdemandchartsandstatisticsincludetransmissionanddistribution

losses.

Page 125: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 126

Figure77 GMSProjectedElectricityDemand(2015-2050,BAU)

Figure78 GMSProjectedPeakDemand(BAU)

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Energy(inclosses,TWh)

Agriculture Industry Commercial Residenqal Transport

0

50,000

100,000

150,000

200,000

250,000

300,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

PeakDemand(MW)

Page 126: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 127

Table20 GMSDemandandDemandDrivers(BAU)

No. Aspect 2015-30 2030-40 2040-501 DemandGrowth(pa) 6.8% 6.4% 3.7%

2 GDPGrowth(Real,pa) 5.4% 4.7% 2.9%

3 ElectrificationRate(Population) 72.7% 89.3% 97.5%

4 PopulationGrowth 0.6% 0.2% 0.0%

5 PerCapitaConsumption(kWh) 1,991 3,602 5,164

6 ElectricityElasticity* 2.45 1.81 1.43

7 ElectricityIntensity(kWh/USD) 0.331 0.388 0.417

*Electricityelasticityiscalculatedaselectricitydemandgrowthdividedbythepopulationgrowthoverthesameperiod

5.3 ProjectedInstalledCapacity

TheBAUinstalledcapacity(MW)forGMSisplotted inFigure79andFigure80by

capacity shares for selected years: 2010, 2015, 2020, 2030, 2040 and 2050. The

formershowsinstalledgenerationcapacitybythemaingenerationtypecategories.

WeprovidecorrespondingstatisticsinTable21andTable22.

Installedcapacity in2014 increases from77GWto352MWwithcoalgeneration

accounting for the largest share,or 29%of total installed capacity, in2050.Coal-

firedcapacityincreasesfrom20GWin2015withtherecentcommissioningofthe

severalcoalplantsto104GWin2050.Large-scalehydrobecomesthesecondmost

dominant generation type growing to 69 GW by 2050 driven by hydro resource

exploitation along the Mekong River and tributaries. Renewable technologies,

mainlysolarPVandwind,growsto29%ofcapacitywhilegasgenerationdeclines

from43%in2015to18%by2050.Nuclearalsofeaturesinthecapacitymixwith11

GWbuiltinVietNamandThailand.

Page 127: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 128

Figure79 GMSInstalledCapacity(BAU,MW)

Figure80 GMSInstalledCapacityMixPercentages(BAU,%)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

CapacityM

W

Coal Hydro Gas Wind Diesel/FO Nuclear Bio Solar HydroROR

14%23% 25% 28% 28% 29%

25%

31% 27% 22% 21% 20%

58%

43%

34%

27%22%

18%

2%

6%8%

9%

8%12% 14% 14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

Capa

cityM

ix

Coal Hydro Gas Wind Diesel/FO Nuclear Bio Solar HydroROR

Page 128: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 129

Table21 GMSCapacitybyType(BAU,MW)

Resource 2010 2015 2020 2030 2040 2050Coal 7,931 20,066 28,928 55,642 79,076 103,566

Diesel 727 446 446 596 1,216 3,545

FuelOil 1,141 1,334 1,004 72 72 142

Gas 32,370 37,231 39,733 54,832 62,656 62,656

Nuclear 0 0 0 1,200 3,500 10,500

Hydro 13,740 27,381 31,351 45,178 60,913 68,749

OnshoreWind 0 273 2,149 12,084 21,705 29,569

OffshoreWind 0 0 0 10 239 1,026

Biomass 0 335 1,708 4,608 8,778 12,978

Biogas 0 0 0 0 0 0

Solar 0 100 9,612 24,312 39,812 50,412

CSP 0 0 0 0 0 0

Battery 0 0 0 0 0 0

HydroROR 0 0 400 3,100 4,900 7,100

Geothermal 0 0 0 0 0 0

PumpStorage 0 0 0 200 583 1,750

Ocean 0 0 0 0 0 0

Off-Grid 0 0 0 0 0 0

Table22 GMSCapacitySharebyType(BAU,%)

Resource 2010 2015 2020 2030 2040 2050Coal 14% 23% 25% 28% 28% 29%

Diesel 1% 1% 0% 0% 0% 1%

FuelOil 2% 2% 1% 0% 0% 0%

Gas 58% 43% 34% 27% 22% 18%

Nuclear 0% 0% 0% 1% 1% 3%

Hydro 25% 31% 27% 22% 21% 20%

OnshoreWind 0% 0% 2% 6% 8% 8%

OffshoreWind 0% 0% 0% 0% 0% 0%

Biomass 0% 0% 1% 2% 3% 4%

Biogas 0% 0% 0% 0% 0% 0%

Solar 0% 0% 8% 12% 14% 14%

CSP 0% 0% 0% 0% 0% 0%

Battery 0% 0% 0% 0% 0% 0%

HydroROR 0% 0% 0% 2% 2% 2%

Geothermal 0% 0% 0% 0% 0% 0%

PumpStorage 0% 0% 0% 0% 0% 0%

Ocean 0% 0% 0% 0% 0% 0%

Off-Grid 0% 0% 0% 0% 0% 0%

Page 129: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 130

5.4 ProjectedGenerationMix

Figure81plotsthegenerationmix(onanasgeneratedbasis82)overtimeintheBAU

case and Figure 82 plots the corresponding percentage shares. Coal-fired

generation in linewithcapacity increases toaccount for46%ofgeneration in the

GMS with gas falling to 17% by 2050. The large-scale hydro generation share

increases in theearlieryears thenmaintains its sharearound17%andrenewable

energygeneration(excluding large-scalehydro) increasesto16%mainlydrivenby

renewable developments in Thailand. Most of the renewable generation comes

fromsolarPVandwind.

82Unlessotherwisestated,allgenerationchartsandstatisticsinthisreportarepresentedonan“asgenerated”

basis,meaningthatgenerationtocovergenerator’sauxiliaryconsumptionaccountedfor.

Page 130: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 131

Figure81 GMSGenerationMix(BAU,GWh)

Figure82 GMSGenerationMixPercentages(BAU,%)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Generaqon(GWh)

Coal Hydro Gas Wind Diesel/FO Nuclear Bio Solar HydroROR

19%25%

33%38%

42%46%

18%

27%

24%18%

17%16%

61%

47% 37%31% 24% 17%

4%4%

5%

4% 5%

3% 5% 5% 5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

Gene

ra^o

nMix

Coal Hydro Gas Wind Diesel/FO Nuclear Bio Solar HydroROR

Page 131: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 132

Table23 GMSGenerationbyType(BAU,GWh)

Generation 2010 2015 2020 2030 2040 2050Coal 49,296 90,035 163,664 350,590 561,397 769,821

Diesel 928 0 0 59 82 183

FuelOil 4,760 0 0 0 0 0

Gas 162,316 165,885 186,585 287,935 321,563 292,121

Nuclear 0 0 0 9,750 28,441 85,165

Hydro 47,631 96,976 120,222 172,976 233,160 263,057

OnshoreWind 0 624 5,019 29,238 52,229 70,887

OffshoreWind 0 0 0 25 575 2,459

Biomass 0 2,059 9,083 30,275 57,834 85,270

Biogas 0 0 0 0 0 0

Solar 0 170 17,318 43,456 71,816 90,787

CSP 0 0 0 0 0 0

Battery 0 0 0 0 0 0

HydroROR 0 0 1,551 11,843 18,864 27,190

Geothermal 0 0 0 0 0 0

PumpStorage 0 0 0 204 609 1,979

Ocean 0 0 0 0 0 0

Off-Grid 0 0 0 0 0 0

Table24 GMSGenerationsharebyType(BAU,%)

Generation 2010 2015 2020 2030 2040 2050Coal 19% 25% 33% 37% 42% 46%

Diesel 0% 0% 0% 0% 0% 0%

FuelOil 2% 0% 0% 0% 0% 0%

Gas 61% 47% 37% 31% 24% 17%

Nuclear 0% 0% 0% 1% 2% 5%

Hydro 18% 27% 24% 18% 17% 16%

OnshoreWind 0% 0% 1% 3% 4% 4%

OffshoreWind 0% 0% 0% 0% 0% 0%

Biomass 0% 1% 2% 3% 4% 5%

Biogas 0% 0% 0% 0% 0% 0%

Solar 0% 0% 3% 5% 5% 5%

CSP 0% 0% 0% 0% 0% 0%

Battery 0% 0% 0% 0% 0% 0%

HydroROR 0% 0% 0% 1% 1% 2%

Geothermal 0% 0% 0% 0% 0% 0%

PumpStorage 0% 0% 0% 0% 0% 0%

Ocean 0% 0% 0% 0% 0% 0%

Off-Grid 0% 0% 0% 0% 0% 0%

Page 132: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 133

5.5 EvolutionofGMSPowerSystemsunderBAUScenario

Figure 83 shows the generationmix in each GMS country for the BAU for 2015,

2030and2050withanindicationofpowerflowsacrossthevariousborders.Please

refertoAppendixHforthetabulateddata.

The BAU assumes generation development consistent with the current state of

planning within the GMS countries and is characterized by generation

developmentsonacountrybycountrybasisleadingtominimalflows(below10,000

GWh) tradedacrossborders.Thecurrent systemsare largelydominatedby large-

hydro inMyanmar,CambodiaandLaoPDRandgasandcoal inThailandandViet

Nam. By 2050, other renewable technologies are developed to meet country-

specificBAUrenewableenergytargets(between10-20%)butthepowersystemis

still largelydominatedbygrowthinfossilfuelgeneration.LaoPDRremainslargely

dependent on large hydro whereas the Myanmar and Cambodia systems shift

towards fossil fuels by 2050. Flow from Lao PDR to Thailand, and Viet Nam to

Cambodiagrowto374MWand247MWonaverageandby2050,Myanmarand

Lao PDR are exporting 822 MW and 655 MW into Thailand with flows into

Cambodia fromVietNamgrowingto636MW.Flows intoThailandandCambodia

displace some of the gas generation in those countries asmost of the flows are

drivenbygenerationcostdifferencesbetweenthegrids.

Page 133: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 134

Figure83 BAUScenarioDevelopment:Snapshotsforyears2015,2030and2050

2015 BAU(2030) BAU(2050)

Resource FlowsCoal,Diesel,FuelOil,Nuclear Below10,000GWhGas 10,001-20,000GWhLargeHydro Above20,000GWhWindSolar,Battery,CSPBiomassandBiogasOtherRenewables

Page 134: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 135

5.6 ProjectedGenerationFleetStructure

Figure 84 shows the installed generation capacity by the main categories of

generation: thermal, renewableand large-scalehydro, inorder toprovidegreater

insightintothebasicstructureofinstalledcapacityundertheBAU.Thishighlights

thatGMS’sBAUprojection isheavilydominatedbycoalandgas-firedgeneration.

Figure 85 shows the on-grid composition of generation by major categories of

generation: thermal, large hydro and renewable. As could be anticipated

generationcloselyreflectstheBAU’sinstalledcapacitymix.

Figure84 GMSInstalledCapacitybyGenerationType(BAU,MW)

Figure85 GMSGenerationMixbyGenerationType(BAU,GWh)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Capacity,MW

FossilFuel LargeHydro Renewable

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

GeneraWon,GWh

FossilFuel LargeHydro Renewable

Page 135: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 136

To facilitate later comparisonwith theSES, Figure86plots installedcapacitywith

capacity being distinguished between the following basic categories: (1)

dispatchable capacity, (2) non-dispatchable capacity; and (3) semi-dispatchable

capacity83. This provides some insight into the operational flexibility of the

generation fleet tomatchdemanduncertainty. Thedispatchablecategoryrelates

togenerationthatcanbecontrolledanddispatchedatshortnoticetorampupor

down,non-dispatchablemeansthatthegenerationisnotabletorespondreadilyto

dispatchinstructionswhilethesemi-dispatchablecategorymeansthattheresource

canrespondwithinlimits,andinparticulariscapableofbeingbackedoffshouldthe

needarise to forexample, avoidoverloading thenetworkor “spill” energy in the

eventthatanovergenerationsituationemerges;solarphotovoltaicsandwindfarms

withappropriatelyinstalledcontrolsystemscanbeclassifiedinthiscategory.Inthe

BAU, the dispatchable percentage starts at 100% with only coal, gas and hydro;

then,asrenewablesareaddedtothesystem,itdropsto75%by2050.

Figure86 GMSInstalledCapacitybyDispatchStatus(BAU,MW)

83Windandsolarisclassifiedassemi-dispatchable,geothermalandhydrorun-of-riverisclassifiedasnon-

dispatchableandallothertechnologiesareclassifiedasdispatchable.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Capa

city,M

W

Dispatchable Non-Dispatchable Semi-Dispatchable

Page 136: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 137

5.7 ReserveMarginandGenerationTrends

Figure87plots the reservemarginbasedonnameplatecapacityandannualpeak

demand. The GMS reservemargin declines to 34%, due to the deferral of non-

committedprojectsandsignificantcommittedsupply in theshort-termrelativeto

demand,thenedgesbackupto40%throughto2050asrenewablecapacityenters

the GMS. Levels around 30-40% are expected for thermal dominated power

systemsasisthecasewiththeBAU.Toobtainabetterunderstandingofthebroad

mixofgenerationcapacityandgenerationmix,Figure88andFigure89showshares

ininstalledcapacityandingenerationgroupedbythemaincategoriesofgenerator:

thermal, large hydro, renewable energy (RE) and large hydro plus renewable

energy. Figure 89 plots the generation shares by several different categories of

generation. The thermal generation share declines to 63% and renewable energy

including large-scale hydro increases from 30% to 37%. The BAU has large-scale

hydrobeinglargelyexploitedtosupportthegrowingpowerdemandsinGMS.

Figure87 GMSReserveMargin(BAU)

0%

10%

20%

30%

40%

50%

60%

70%

80%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

ReserveMargin RenewableCapacity

HydroCapacity FossilFuelCapacity

Page 137: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 138

Figure88 GMSCapacitySharesbyGenerationType(BAU)

Figure89 GMSGenerationSharesbyGenerationType(BAU)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

CapacityShare

FossilFuel LargeHydro Renewable Renewable+LargeHydro

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

GeneraWonShare

FossilFuel LargeHydro Renewable Renewable+LargeHydro

Page 138: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 139

5.8 ElectrificationandOff-GridSupply

GMS’sgrid-basedelectrificationratefor itsurbanandruralpopulationisassumed

toreachcloseto100%by2030intheBAU.Duetothelimitedimpactofoff-gridin

this scenario ithasbeendecided toonlymodel thecentralgrid-connectedpower

system.

Page 139: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 140

6 SustainableEnergySectorScenario

6.1 SustainableEnergySectorScenario

The SES seeks to transition electricity demand towards the best practice benchmarks of

other developed countries in termsof energy efficiency,maximise the renewable energy

development, cease the development of fossil fuel resources, andmake sustainable and

prudent use of undeveloped conventional hydro resources. The SES takes advantage of

existing,technicallyprovenandcommerciallyviablerenewableenergytechnologies.

6.2 ProjectedDemandGrowth

Figure90plotsGMS’sforecastenergyconsumptionfrom2015to2050withtheBAUenergy

trajectory charted as a comparison. The significant savings are due to additional energy

efficiency assumptions relating to the various sectors achieving energy intensity

benchmarks of comparable developed countries in Asia84. The SES demand grows at a

slowerrateof3.5%paovertheperiodto2050withthecommercialsectorgrowingat3.5%

pa,industrygrowingat3.9%paandtheresidentialsectorandagriculturalsectorsgrowing

at1.6%pa.Theuptakeofelectrictransportoptionsoccursfrom2025onwardsandgrows

to70TWhaccountingfor6%oftotaldemandby2050,or20%ofallcarsandmotorbikes.

Off-grid demand forms part of the overall demand picture as off-grid technologies are

deployedintheinterimbeforethecentralgridsinMyanmarandCambodiaarebuiltout.

In Figure 91 the firmblue line represents peak demand before any flexible demand side

resourceshavebeenscheduled85.Flexibledemandresponseis“dispatched”inthemodelin

line with the least cost dispatch of all resources in the power system. The dashed line

represents what peak demand became as a consequence of scheduling (“time-shifting”)

commercial, industrial and residential loads to minimise system costs. From 2020, the

amountofflexibledemandwasassumedtogrowto10%oftotaldemandacrossallsectors

by2050,or15%ifstoragemethodsareincluded.Theloadfactorsatthecountrylevelinthe

SESareassumedtoreach80%(comparedto75%undertheBAUcase)by2050andreach

83%attheregionallevelwithdemanddiversification.

KeydriversfordemandgrowthandthedemandprojectionsaresummarisedinTable25.

84Thailand,Myanmar,LaoPDRandCambodia’sindustryintensitywastrendedtowardslevelscommensuratewith

HongKong.HongKonghadthelowestintensitybasedontheintensitymetricofabasketofcomparablecountries.

VietNam’sindustrialintensitywastrendedtowardsKorea(2014)by2035andcontinuesthetrajectoryto2050.85Flexibledemandresponseis“dispatched”inthemodelinlinewiththeleastcostdispatchofallresources.The

solidlinerepresentspeakdemandasputinthemodel,whilethedashedlinerepresentswhatpeakdemandended

upbeingasaconsequenceofshiftingdemandfromoneperiodoftimetoanother.Thisincludesschedulingof

loadsassociatedwithbatterystoragedevicesandrescheduling(time-shifting)commercial,industrialand

residentialloads.

Page 140: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 141

Figure90 GMSProjectedElectricityDemand(2015-2050,SES)

Figure91 GMSProjectedElectricityDemand(SES)

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Energy(inclosses,TWh)

Agriculture Industry Commercial

ResidenWal Transport OffgridDemand

BAU

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

PeakDemand(MW)

Demand

Demand(postDSM)

Page 141: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 142

Table25 GMSDemandandDemandDrivers(SES)

No. Aspect 2015-30 2030-40 2040-501 DemandGrowth(pa) 6.3% 5.1% 2.7%

2 GDPGrowth(Real,pa) 5.4% 4.7% 2.9%

3 Grid –based electrification Rate

(Population)

72.1% 84.2% 92.1%

4 PopulationGrowth 0.57% 0.24% 0.01%

5 PerCapitaConsumption(kWh) 1,857 2,977 3,868

6 ElectricityElasticity* 2.29 1.60 1.30

7 ElectricityIntensity(kWh/USD) 0.309 0.321 0.313*Electricityelasticityiscalculatedaselectricitydemandgrowthdividedbythepopulationgrowthoverthesameperiod

6.3 ProjectedInstalledCapacity

Figure 92 plots the installed capacity developments under the SES and Figure 93

plots the corresponding percentage shares. Table 26 and Table 27 provide the

statisticaldetailsoftheinstalledcapacityandcapacitysharesbytypeincludingthe

estimated2010levels.

Committed and existing plants are assumed to come online as per the BAU but

aren’treplacedwhenretired.Plannedandproposedthermalandlarge-scalehydro

developmentsarenotbuiltandallothergenerationrequirementsareinsteadmet

by renewable technologies86. Coal and gas fired-generation in the earlier years is

verysimilartotheBAUduetocommittedprojects.Overtime,coal,gasandhydro

capacitysharesdropto3%,4%and8%respectivelyby2050fromacombined97%

sharein2015.

Additional demand in the SES is predominantlymet by renewableswith 375GW

requiredtomeet2050electricitydemanddominatedbyinvestmentinsolarPV(159

GW)supportedby62GWdischargeequivalentofbatterystorage,onshorewind(62

GW), CSP (32GW) and biomass (26GW). Smaller amounts of hydro run of river,

oceanenergy,andgeothermalarealsodevelopedintheSES.By2050,thereis444

GWofinstalledgridcapacitywhichincludes1GWofoff-gridtechnologieswhichis

integratedbackintothegridasthecentralgridsarebuiltout.

86MyanmarandLaoPDRhasanadditional4,500MWoflarge-scalehydrotosupportrenewabledevelopments.

Page 142: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 143

Figure92 GMSInstalledCapacitybyType(SES)

Figure93 GMSCapacityShares(SES,%)

0

100,000

200,000

300,000

400,000

500,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

CapacityM

W

Offgrid Coal Hydro Gas Wind

Diesel/FO Bio Solar CSP Bakery

HydroROR Geothermal Ocean PumpStorage

14%

23% 22%12%

6% 3%

25%

31%26%

18%

11%

8%

58%

43%

30%

13%

7%

4%

5%

14%

16%

17%

7%

8%

7%

13%

29%

34%

36%

3%

6%

7%

8%14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

Capa

cityM

ix

Offgrid Coal Hydro Gas Wind

Diesel/FO Bio Solar CSP HydroROR

Bakery Geothermal Ocean PumpStorage

Page 143: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 144

Table26 GMSCapacitybyType(SES,MW)

Resource 2010 2015 2020 2030 2040 2050Coal 7,931 20,066 27,288 24,005 20,129 15,051

Diesel 727 446 446 296 5 5

FuelOil 1,141 1,334 1,004 72 72 72

Gas 32,370 37,231 37,479 26,842 20,941 17,808

Nuclear 0 0 0 0 0 0

Hydro 13,740 27,381 32,026 35,865 34,917 34,917

OnshoreWind 0 273 6,267 27,822 48,771 62,288

OffshoreWind 0 0 0 144 2,996 11,079

Biomass 0 335 3,110 12,795 21,743 26,382

Biogas 0 0 0 905 5,017 5,898

Solar 0 100 16,520 58,720 109,120 159,220

CSP 0 0 0 6,750 19,500 32,400

Battery 0 0 0 0 26,473 61,793

HydroROR 0 0 400 4,900 8,000 11,100

Geothermal 0 0 0 200 750 1,075

PumpStorage 0 0 0 0 900 2,700

Ocean 0 0 0 0 500 1,250

Off-Grid 0 2 107 1,325 1,335 1,348

Table27 GMSCapacitySharebyType(SES,%)

Resource 2010 2015 2020 2030 2040 2050Coal 14% 23% 22% 12% 6% 3%

Diesel 1% 1% 0% 0% 0% 0%

FuelOil 2% 2% 1% 0% 0% 0%

Gas 58% 43% 30% 13% 7% 4%

Nuclear 0% 0% 0% 0% 0% 0%

Hydro 25% 31% 26% 18% 11% 8%

OnshoreWind 0% 0% 5% 14% 15% 14%

OffshoreWind 0% 0% 0% 0% 1% 2%

Biomass 0% 0% 2% 6% 7% 6%

Biogas 0% 0% 0% 0% 2% 1%

Solar 0% 0% 13% 29% 34% 36%

CSP 0% 0% 0% 3% 6% 7%

Battery 0% 0% 0% 0% 8% 14%

HydroROR 0% 0% 0% 2% 2% 2%

Geothermal 0% 0% 0% 0% 0% 0%

PumpStorage 0% 0% 0% 0% 0% 1%

Ocean 0% 0% 0% 0% 0% 0%

Off-Grid 0% 0% 0% 1% 0% 0%

Page 144: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 145

6.4 ProjectedGenerationMix

GridgenerationisplottedinFigure94andFigure9587.Thecorrespondingstatistics

forsnapshotyearsareprovidedinTable29andTable30.

GMS’s generation mix in the earlier years to 2020 is similar to the BAU case as

committednewentry iscommissioned.Coal,gasandlarge-scalehydrogeneration

increasefrom353TWhin2015to468TWhin2030beforedecliningto303TWhas

coalandgasunitsareretiredandnotreplacedovertime.Thegenerationshareof

theseconventionaltechnologiesdecreasefrom99%in2015to25%in2050.

Timing of renewable energy developments are based on the maturity of the

technologyandjudgmentsofwhenitcouldbereadilydeployed.SolarPVbackedup

by battery storage (to provide off-peak generation) generates 287 TWh by 2050

followedbybioenergygeneration(mainlybiomass)of234TWhwithwindandCSP

contributing172TWhand153TWhrespectively.

87Batterystorageisnotincludedasstoragetechnologiesaregenerationneutral.

Page 145: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 146

Figure94 GMSGenerationMix(SES,GWh)

Figure95 GMSGenerationShare(SES,%)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

GeneraWon(GWh)

Offgrid Coal Hydro Gas

Wind Diesel/FO Bio Solar

CSP HydroROR Geothermal Ocean

19%25% 29% 25%

16%8%

18%

27%26%

18%

13%

11%

61%

47%32%

17%

8%

6%

3%

8%

12%

14%

12%

19%

19%

6%

14%

19%

24%

3%9%

13%

3% 4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

Gen

era[

onM

ix

Offgrid Coal Hydro Gas Wind Diesel/FO

Bio Solar CSP HydroROR Geothermal Ocean

Page 146: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 147

Table28 GMSGenerationbyFuel(SES,GWh)

Generation 2010 2015 2020 2030 2040 2050Coal 49,296 90,035 136,603 194,770 160,799 98,889

Diesel 928 0 0 0 10 0

FuelOil 4,760 0 0 0 147 0

Gas 162,316 165,885 151,258 136,320 86,809 70,693

Nuclear 0 0 0 0 0 0

Hydro 47,631 96,976 124,419 137,751 131,468 133,996

OnshoreWind 0 624 14,592 65,096 114,147 146,463

OffshoreWind 0 0 0 338 7,011 26,051

Biomass 0 2,059 13,194 89,668 158,486 191,313

Biogas 0 0 0 6,342 36,570 42,773

Solar 0 170 29,941 105,777 197,868 287,322

CSP 0 0 0 24,788 89,295 153,208

Battery 0 0 0 0 0 0

HydroROR 0 0 1,668 18,676 30,745 42,430

Geothermal 0 0 0 1,314 4,954 7,087

PumpStorage 0 0 0 0 728 2,720

Ocean 0 0 0 0 1,318 3,285

Off-Grid 0 3 139 1,685 963 971

Table29 GMSGenerationSharebyFuel(SES,%)

Generation 2010 2015 2020 2030 2040 2050Coal 19% 25% 29% 25% 16% 8%

Diesel 0% 0% 0% 0% 0% 0%

FuelOil 2% 0% 0% 0% 0% 0%

Gas 61% 47% 32% 17% 8% 6%

Nuclear 0% 0% 0% 0% 0% 0%

Hydro 18% 27% 26% 18% 13% 11%

OnshoreWind 0% 0% 3% 8% 11% 12%

OffshoreWind 0% 0% 0% 0% 1% 2%

Biomass 0% 1% 3% 11% 16% 16%

Biogas 0% 0% 0% 1% 4% 4%

Solar 0% 0% 6% 14% 19% 24%

CSP 0% 0% 0% 3% 9% 13%

Battery 0% 0% 0% 0% 0% 0%

HydroROR 0% 0% 0% 2% 3% 4%

Geothermal 0% 0% 0% 0% 0% 1%

PumpStorage 0% 0% 0% 0% 0% 0%

Ocean 0% 0% 0% 0% 0% 0%

Off-Grid 0% 0% 0% 0% 0% 0%

Page 147: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 148

6.5 EvolutionofGMSPowerSystemsunderSESScenario

TheSESassumesgreaterdeploymentofrenewabletechnologiesandhigherenergy

efficiencymeasures relative to the BAU. Figure 109 charts the generationmix in

eachGMScountry(2015,2030,2050)withanindicationofpowerflowsacrossthe

variousborders.PleaserefertoAppendixHforthetabulateddata.

TheSEShastheGMSshiftingawayfromfossilfuelsandby203057%thegeneration

mix is non-fossil fuel based growing to 86% in 2050. Generation resources are

optimised across the region with significant renewable generation developed in

MyanmarandLaoPDRoverandabovetheirdemandrequirementstosupportthe

regionalshiftawayfromfossilfuels.By2050,solarPVandCSParegenerating36%

oftheregion’selectricityfollowedbybiomassat19%andwindat14%.TheSEShas

much greater flows going between each of the GMS countries given optimised

generation and transmission developments at the regional level with significant

amounts of power (above 20 TWh) exported into Thailand and Viet Nam from

MyanmarandLaoPDRrespectively.Myanmar isamajorexporter in theSESwith

flowsgoingintoThailandincreasingto3,000MWand5,300MWin2030and2050

respectively.ThailandalsoimportspowerfromLaoPDRandexportsaportionofit

intoCambodia.TherearesignificantnetflowsfromLaoPDRtoVietNamwith7,400

MWonaverageby2050.

Page 148: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 149

Figure96 SESScenarioDevelopment:Snapshotsforyears2015,2030and2050

2015 SES(2030) SES(2050)

Resource FlowsCoal,Diesel,FuelOil,Nuclear Below10,000GWhGas 10,001-20,000GWhLargeHydro Above20,000GWhWindSolar,Battery,CSPBiomassandBiogasOtherRenewables

Page 149: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 164

Figure109 ASESScenarioDevelopment:Snapshotsforyears2015,2030and2050

2015 ASES(2030) ASES(2050)

Resource FlowsCoal,Diesel,FuelOil,Nuclear Below10,000GWhGas 10,001-20,000GWhLargeHydro Above20,000GWhWindSolar,Battery,CSPBiomassandBiogasOtherRenewables

Page 150: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 150

6.6 ProjectedGenerationFleetStructure

AsfortheBAU,togaininsightintothenatureofthemixofgenerationtechnologiesdeployedintheSES,wepresentanumberofadditionalcharts.Figure97andFigure98showinstalledcapacityandgenerationbytypefortheSESintheGMS–this isheavily biased towards renewable generation forms. For GMS, a considerableamountof non-renewable energy continues to feature in the generationmix andmainlyrelatestothecommittedcoalandgasgenerationprojects.

Figure 99, shows the dispatchable, semi-dispatchable and non-dispatchablecomponents of installed capacity and it can be seen that semi-dispatchableincreases toaround60%of thetotalsystemcapacitycomparedtoaround23% inthe BAU by 2050. Based on operational simulations with this resource mix, itappearstobeoperationallyfeasible,althoughtherelianceongenerationformsthatprovidestorageandhavingflexibilityinthedemandsideplayimportantroles.Itisclearthatshort-termrenewableenergysolarandwindforecastingsystemswillbeimportant, as will real-time updates on demand that can be controlled.Furthermore, control systems that canallow thedispatchof flexible resourcesonboth supply and demand sides of the industry and across the region will berequired.

Figure97 GMSInstalledCapacitybyGenerationType(SES)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Capacity,M

W

FossilFuel LargeHydro Renewable

Page 151: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 151

Figure98 GMSGenerationMixbyGenerationType(SES)

Figure99 GMSInstalledCapacitybyDispatchStatus(SES)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Gene

raXo

n,GWh

FossilFuel LargeHydro Renewable

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Capa

city,M

W

Dispatchable Non-Dispatchable Semi-Dispatchable

Page 152: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 152

6.7 ReserveMarginandGenerationTrends

Figure 100 plots the reserve margin under the SES. Figure 101 and Figure 102,respectively, show the installed capacity mix and generation mix for differentcategories of generation in the power system. Asmore thermal plant is retired,additionalrenewablecapacityisrequiredtosupporttheregionalsystemexplainingthereservemargintrajectory.Renewableplantcapacityincludinglarge-scalehydroreaches93%or85%withoutlarge-scalehydro.

Conventional reservemarginmeasuresaregenerallynotsuitedtomeasuringhighrenewable energy systems in the same context used for thermal-based systems.Renewable technologies generally have much lower capacity factors and requiremorecapacity tomeet thesameamountofenergyproducedfromthermal-basedtechnologies.

Figure100 GMSReserveMargin(SES)

0%

20%

40%

60%

80%

100%

120%

140%

160%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

ReserveMargin RenewableCapacity

HydroCapacity FossilFuelCapacity

Page 153: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 153

Figure101 GMSInstalledCapacitySharesforSESbyGenerationType

Figure102 GMSGenerationSharesforSESbyGenerationType

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Caacity

Share

FossilFuel LargeHydro Renewable Renewable+LargeHydro

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Gene

raXo

nShare

FossilFuel LargeHydro Renewable Renewable+LargeHydro

Page 154: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 154

6.8 ElectrificationandOff-Grid

IntheSES,mostoftheGMSisgridelectrifiedwithamuchsmallerpercentage(lessthan1%)oftotalregionaldemandmetbyoff-gridtechnologies,morespecificallyinMyanmarandCambodia.Formoreinformationonoff-griddeploymentpleaseseetherespectivecountryreports.

Page 155: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 155

7 AdvancedSustainableEnergySectorScenario

7.1 AdvancedSustainableEnergySectorScenario

TheASESassumesthatthepowersectorisabletomorerapidlytransitiontowardsa100%renewableenergytechnologymixunderanassumptionthatrenewableenergyisdeployedmore than in the SES scenario with renewable energy technology costs declining morerapidlycomparedtoBAUandSESscenarios.

7.2 ProjectedDemandGrowth

Figure103plotsGMS’sforecastenergyconsumptionfrom2015to2050withtheBAUandSESenergy trajectory chartedwith adashed line for comparison. The SESenergy savingsagainst theBAUare due to allowingGMS’s energy demand to transition towards energyintensity benchmarks of comparable developed countries in Asia. The ASES applies anadditional 10% energy efficiency against the SES demands, which is partially offset byadditionaltransportdemandsassociatedwithhigheruptakerates(40%uptake).TheASESdemandgrowsat a slower rateof 3.4%paover theperiod from2015 to2050withthecommercialsectorgrowingat3.3%pa,industrygrowingat3.7%paandresidentialsectorgrowingat1.5%pa. DemandfromthetransportsectorintheASESisdoubledandgrows to 140 TWh, 12% of total demand by 2050. Total electricity demand increases to1,156TWhby2050.Off-griddemandgrows toalmost7TWhasoff-grid technologiesaredeployedinplaceofcompletelybuildingoutthecentralgridsinMyanmarandCambodia.InFigure104the firmblue linerepresentspeakdemandbeforeany flexibledemandsideresourceshavebeenscheduled88.Flexibledemandresponseis“dispatched”inthemodelinline with the least cost dispatch of all resources in the power system. The dashed linerepresents what peak demand became as a consequence of scheduling (“time-shifting”)commercial, industrial and residential loads to minimise system costs. From 2020, theamount of flexible demand was assumed to grow to 17.5% of total demand across allsectorsby2050,or25% if storagemethodsare included.The load factorsat thecountrylevel in the ASES are assumed to reach 83% at the regional level because of demanddiversification.

Key drivers for demand growth and the demand projections are summarised inTable17.

88Flexibledemandresponseis“dispatched”inthemodelinlinewiththeleastcostdispatchofallresources.Thesolidlinerepresentspeakdemandasputinthemodel,whilethedashedlinerepresentswhatpeakdemandendedupbeingasaconsequenceofshiftingdemandfromoneperiodoftimetoanother.Thisincludesschedulingofloadsassociatedwithbatterystoragedevicesandrescheduling(time-shifting)commercial,industrialandresidentialloads.

Page 156: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 156

Figure103 GMSProjectedElectricityDemand(2015-2050,ASES)

Figure104 GMSProjectedElectricityDemand(ASES,MW)

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Energy(inclosses,TWh)

Agriculture Industry CommercialResidenXal Transport OffgridDemandBAU SES

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

PeakDem

and(M

W)

Demand

Demand(postDSM)

Page 157: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 157

Table30 GMSDemandandDemandDrivers(ASES)

No. Aspect 2015-30 2030-40 2040-501 DemandGrowth(pa) 6.0% 4.9% 2.8%2 GDPGrowth(Real,pa) 5.4% 4.7% 2.9%3 Grid-based Electrification Rate

(Population)71.7% 81.2% 86.0%

4 PopulationGrowth 0.57% 0.24% 0.01%5 PerCapitaConsumption(kWh) 1,793 2,812 3,6926 ElectricityElasticity* 2.21 1.57 1.317 ElectricityIntensity(kWh/USD) 0.298 0.303 0.298*Electricityelasticityiscalculatedaselectricitydemandgrowthdividedbythepopulationgrowthoverthesameperiod

7.3 ProjectedInstalledCapacity

Figure 105 plots the installed capacity developments under the ASES and Figure106plotsthecorrespondingpercentageshares.Table31andTable32providethestatisticaldetailsoftheinstalledcapacityandcapacitysharesbytypeincludingthe2010levels.

TheASEShas coalplants retiringearlier than in theSESundera100% renewablegeneration target across the region. Total installed capacity increases to 530GWwhichisconsiderablyhigherthantheinstalledcapacityintheSES(444GW)duetothe retirement of coal and gas units and replacementwith lower capacity factortechnologies.

SolarPVaccountsfor36%oftotalinstalledcapacity,or190GW,supportedby108GWequivalentofbattery storage forgenerationdeferral.Onshorewindaccountsfor 79 GW with 15 GW of offshore wind developed in Viet Nam andMyanmar.BiomassandCSPcontribute35GWeach.TheASEShas6GWofbiogasandallowsfor up to 4 GW of ocean/marine energy technologies as part of diversifying therenewable energy mix. Off-grid technologies are also deployed in Myanmar andCambodiawith5GWofinstalledsolarPVandbatterystorage.

Page 158: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 158

Figure105 GMSInstalledCapacitybyType(ASES,MW)

Figure106 GMSCapacityShares(ASES,%)

0

100,000

200,000

300,000

400,000

500,000

600,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

CapacityM

W

Offgrid Coal Hydro Gas WindBio Solar CSP Bajery HydroRORGeothermal Ocean PumpStorage

14%23% 21%

11%

25%

31%28%

16%

9% 7%

58%43%

23%

6%

6%

15%

18%18%

3%

8%

8%8%

17%

35%

36%36%

3%

5%7%

17% 20%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

Capa

cityM

ix

Offgrid Coal Hydro Gas WindBio Solar CSP HydroROR BajeryPumpStorage Geothermal Ocean

Page 159: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 159

Table31 GMSCapacitybyType(ASES,MW)

Resource 2010 2015 2020 2030 2040 2050Coal 7,931 20,066 24,871 25,426 8,205 0Diesel 727 446 446 291 0 0FuelOil 1,141 1,334 1,004 0 0 0Gas 32,370 37,231 26,615 13,883 5,826 0Nuclear 0 0 0 0 0 0Hydro 13,740 27,381 32,026 35,991 35,991 35,991OnshoreWind 0 273 7,559 34,022 69,024 78,552OffshoreWind 0 0 0 187 4,885 14,907Biomass 0 335 3,610 15,760 28,697 35,113Biogas 0 0 0 940 4,143 5,867Solar 0 100 19,729 76,737 148,081 190,841CSP 0 0 0 7,200 20,400 34,500Battery 0 0 0 3,668 71,430 107,754HydroROR 0 0 400 4,900 8,000 11,100Geothermal 0 0 0 200 750 1,075PumpStorage 0 0 0 0 1,500 4,800Ocean 0 0 0 0 3,375 3,875Off-Grid 0 2 117 2,407 3,620 5,158

Table32 GMSCapacitySharebyFuel(ASES,%)

Resource 2010 2015 2020 2030 2040 2050Coal 14% 23% 21% 11% 2% 0%Diesel 1% 1% 0% 0% 0% 0%FuelOil 2% 2% 1% 0% 0% 0%Gas 58% 43% 23% 6% 1% 0%Nuclear 0% 0% 0% 0% 0% 0%Hydro 25% 31% 28% 16% 9% 7%OnshoreWind 0% 0% 6% 15% 17% 15%OffshoreWind 0% 0% 0% 0% 1% 3%Biomass 0% 0% 3% 7% 7% 7%Biogas 0% 0% 0% 0% 1% 1%Solar 0% 0% 17% 35% 36% 36%CSP 0% 0% 0% 3% 5% 7%Battery 0% 0% 0% 2% 17% 20%HydroROR 0% 0% 0% 2% 2% 2%Geothermal 0% 0% 0% 0% 0% 0%PumpStorage 0% 0% 0% 0% 0% 1%Ocean 0% 0% 0% 0% 1% 1%Off-Grid 0% 0% 0% 1% 1% 1%

Page 160: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 160

7.4 ProjectedGenerationMix

ASESgridgeneration isplotted inFigure107andgenerationshares inFigure108.ThecorrespondingstatisticsforsnapshotyearsareprovidedinTable33andTable34TheGMSgenerationmixintheearlieryearsto2020issimilartotheBAUcaseascommitted new generation projects are commissioned and this has largely beenkeptthesame.

Of the renewable technologies, by 2050, solar PV combinedwith battery storagecontributes the highest generation share of 343 TWh or 29%, significantly higherthan onshore wind and biomass generation with a share of 16% and 17%respectively.AsgasplantsareretiredinThailand(andnotreplaced)from2020andcoalunitsacrosstheregionareretiredstartingfrom2030,bioenergy,CSPandsolarPVwith battery technologies fill the baseload role in the power system. By 2030morethan70%ofthegenerationisfromrenewables(includinglarge-scalehydro),andby2040thisshareincreasespast90%reaching100%by2050.

Page 161: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 161

Figure107 GMSGenerationMix(ASES,GWh)

Figure108 GMSGenerationMix(ASES,%)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Gene

raXo

n(GWh)

Offgrid Coal Hydro Gas Wind Bio

Solar CSP HydroROR Geothermal Ocean

1%

19% 25% 28% 21%

4%

18%

27% 26%

19%

14%12%

61%47%

31%

6%

4%

11%

18%19%

4%

17%

20%20%

8%

19%

28%29%

4%10% 14%

3% 4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2030 2040 2050

Gene

raYo

nMix

Offgrid Coal Hydro Gas Wind Bio

Solar CSP HydroROR Geothermal Ocean

Page 162: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 162

Table33 GMSGenerationbyType(ASES,GWh)

Generation 2010 2015 2020 2030 2040 2050Coal 49,296 90,035 125,911 156,993 40,236 0Diesel 928 0 0 0 0 0FuelOil 4,760 0 0 0 0 0Gas 162,316 165,885 141,516 43,986 12,266 0Nuclear 0 0 0 0 0 0Hydro 47,631 96,976 117,624 137,564 136,162 139,769OnshoreWind 0 624 17,566 79,633 162,837 185,479OffshoreWind 0 0 0 438 11,525 35,199Biomass 0 2,059 17,397 118,372 170,284 199,978Biogas 0 0 0 7,063 24,582 33,413Solar 0 170 35,660 137,795 267,207 343,062CSP 0 0 0 26,690 93,313 163,509Battery 0 0 0 0 0 0HydroROR 0 0 1,512 18,676 30,707 42,430Geothermal 0 0 0 1,314 4,954 7,087PumpStorage 0 0 0 0 1,730 5,438Ocean 0 0 0 0 8,894 10,184Off-Grid 0 3 151 3,107 4,672 6,658

Table34 GMSGenerationSharebyType(ASES,%)

Generation 2010 2015 2020 2030 2040 2050Coal 19% 25% 28% 21% 4% 0%Diesel 0% 0% 0% 0% 0% 0%FuelOil 2% 0% 0% 0% 0% 0%Gas 61% 47% 31% 6% 1% 0%Nuclear 0% 0% 0% 0% 0% 0%Hydro 18% 27% 26% 19% 14% 12%OnshoreWind 0% 0% 4% 11% 17% 16%OffshoreWind 0% 0% 0% 0% 1% 3%Biomass 0% 1% 4% 16% 18% 17%Biogas 0% 0% 0% 1% 3% 3%Solar 0% 0% 8% 19% 28% 29%CSP 0% 0% 0% 4% 10% 14%Battery 0% 0% 0% 0% 0% 0%HydroROR 0% 0% 0% 3% 3% 4%Geothermal 0% 0% 0% 0% 1% 1%PumpStorage 0% 0% 0% 0% 0% 0%Ocean 0% 0% 0% 0% 1% 1%Off-Grid 0% 0% 0% 0% 0% 1%

Page 163: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 163

7.5 EvolutionofGMSPowerSystemsunderASESScenario

TheASEShas inplacea90%and100%renewablegeneration targetby2040and2050respectivelywithhigherenergyefficiencymeasuresthantheSES.Figure109charts the generation mix in each GMS country (2015, 2030, 2050) with anindicationofpowerflowsacrossthevariousborders.PleaserefertoAppendixHforthetabulateddata.

TheASES followsasimilarpathas theSESwithretirementofall fossil fuelpowerplantstomeetthe100%renewablegenerationtarget.SignificantamountsofsolarPVandCSParedevelopedoverthisperiodaccountingfor43%oftotalgenerationintheregionby2050.Windandbiogenerationalsoplayasignificantroleaccountingfor20%ofthegenerationmixeach.MyanmarisamajorexporterintheASESwithflowsgoingintoThailanddoublingfrom3,700MWto7,500MWfrom2030to2050as Myanmar’s renewable resources are developed to support the region’s 100%renewablegenerationtarget.Thailandalso importsasignificantamountofpowerfromLaoPDRasitretiresallofitsgasandcoal-firedgenerators,whichprovidedalot of thebase loadpower in theBAUand SES. Theothermajor importer isVietNamwith almost 8,000MWof power flowing into the north from Lao PDR; VietNam’s significant demand growth relative to its renewable resources availablerequiresittoimportupto15%ofitspowerneedsby2050.

Page 164: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 165

7.6 ProjectedGenerationFleetStructure

Togain insight into thenatureof themixof generation technologiesdeployed inthe ASES, we present a number of additional charts. Figure 110 and Figure 111show the installed capacityby generation type for the SES– this is clearlybiasedtowards renewable generation forms as there are no additional thermal projectsbuilt after 2015 and all are retired before 2050. Committed large-scale hydroremainsonplaceintheGMSthroughto2050.

Figure110 GMSInstalledCapacitybyType(ASES)

Figure111 GMSGenerationMixbyType(ASES)

0

100,000

200,000

300,000

400,000

500,000

600,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Capacity,M

W

FossilFuel LargeHydro Renewable

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Gene

raTo

n,GWh

FossilFuel LargeHydro Renewable

Page 165: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 166

Figure 112, shows the dispatchable, semi-dispatchable and non-dispatchablecomponents of installed capacity and it can be seen that semi-dispatchableincreases toaround67%of thetotalsystemcapacitycomparedtoaround23% inthe BAU by 2050. Based on operational simulations with this resource mix, itappearstobeoperationallyfeasible,althoughtherelianceongenerationformsthatprovidestorageandhavingflexibilityinthedemandsideplayimportantroles.Itisclearthatshort-termrenewableenergysolarandwindforecastingsystemswillbeimportant, as will real-time updates on demand that can be controlled.Furthermore, control systems that canallow thedispatchof flexible resourcesonbothsupplyanddemandsidesoftheindustrywillberequired.

Figure112 GMSInstalledCapacitybyDispatchStatus(ASES)

7.7 ReserveMarginandGenerationTrends

Figure 113 plots the reserve margin under the ASES. The ASES reserve margintrendstowards200%asexpectedwiththeretirementofconventionalthermalcoaland gas plants. It is worth noting conventional reserve margin measures aregenerally not suited to measuring high renewable energy systems in the samecontextusedforthermal-basedsystemsasalreadyexplainedinSection6.7.Figure114 and Figure 115, respectively, show the installed capacitymix and generationmixfordifferentcategoriesofgenerationinthepowersystem.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Capa

city,M

W

Dispatchable Non-Dispatchable Semi-Dispatchable

Page 166: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 167

Figure113 GMSReserveMargin(ASES)

Figure114 GMSInstalledCapacitySharesforASESbyGenerationType

0%

50%

100%

150%

200%

250%2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

ReserveMargin RenewableCapacity

HydroCapacity FossilFuelCapacity

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

CapacityShare

FossilFuel LargeHydro Renewable Renewable+LargeHydro

Page 167: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 168

Figure115 GMSGenerationSharesforASESbyGenerationType

7.8 ElectrificationandOff-Grid

Whileaquitehighshareofthepopulationiselectrifiedwithoff-grid(ormicro-grid)technologies in the ASES, this represents a relatively low total electricityconsumptioncomparedtothetotalelectricityconsumption intheGMS.Lessthan1%oftotaldemandismetbyoff-gridtechnologiesinMyanmarandCambodia.Formoreinformationonoff-griddeploymentpleaseseetherespectivecountryreports.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Gene

raTo

nShare

FossilFuel LargeHydro Renewable Renewable+LargeHydro

Page 168: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 169

8 AnalysisofScenarios

Section5,Section6andSection7presentedprojectionsofcapacityandgenerationmixfortheBAU,SESandASESscenariosrespectively. Inordertounderstandtheimplications of the SES and ASES over the BAU, we present a number of simplemeasures to compare electricity demand, generation mix, renewable energyintegrationlevels,carbonemissions,hydrodevelopmentandananalysisofbiomassandbiogas.

8.1 EnergyandPeakDemand

Figure116comparesthetotalelectricityconsumptionoftheBAU,SESandASESwithFigure117plottingthepercentagereductioninelectricityconsumptionoftheSESrelativetotheBAUandASESrelative to theBAU. Ascanbeseentheenergyconsumption in theSES islower than theBAUwith themaindriverbeingenhancements inenergyefficiency in theSES. The reduction in energy in the ASES is partially offset by the doubling of transportdemand.Figure118comparespeakloadandshowsthesamerelativities.Thisisattributableto improvements in loadfactor(80%inSESandASES).OntopofthistheSESandASES has contributions from flexible and controllable demand that allowsreductionsinpeakdemandconsumption(notshownhere).Figure119presentsthepopulation electricity access rates based on grid and off-grid access driven byelectrification and off-grid assumptions relating to Myanmar and Cambodia. TheBAU assumes close to 100% grid electrification by 2030with the SES following asimilar trajectory, albeit delayed, as off-grid technologies are deployed in theinterim as the central grid is built out. The ASES also assumes slower gridelectrificationbutstopsgridextensiononcethecostofoff-gridtechnologies(solarand battery storage) reach parity with grid generation costs (which occurs from2025) and off-grid supply is developed to meet the remaining potential off-griddemand. The SES and ASES reach 100% electricity access by 2032 and 2033respectively.

Page 169: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 170

Figure116 GMSEnergyDemandComparison

Figure117 GMSPercentageReductioninElectricityDemand

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

Energy(G

Wh)

BAU SES ASES

0%

5%

10%

15%

20%

25%

30%

35%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

SES ASES

Page 170: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 171

Figure118 GMSPeakDemandComparison

Figure119 GridandOff-gridElectricityAccessRates(%)

0

50,000

100,000

150,000

200,000

250,000

300,000

2010

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

2042

2044

2046

2048

2050

PeakDem

and(M

W)

BAU

SES

ASES

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

BAU SES ASES

Page 171: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 172

8.2 Energyintensity

Figure 120 plots the per capita electricity consumption per annum across thescenarios. Electricity consumption includes all electricity consumption across thecountry. In the BAU, per capita consumption levels increase at a rate of 3.5% toreach 6,513 kWh pa which reaches Hong Kong and Japan consumption levelscurrently. In theASES and SES, it increasesmore slowly at 2.5%pa and 2.6%pa,respectively,duetohigherenergyefficiencysavings.

Figure120 GMSPerCapitaConsumptionComparison(kWhpa)

8.3 GenerationMixComparison

Figure121andFigure122belowshowtherenewablecapacityandgenerationmixbetween the three scenarios. Renewable capacity (including large-scale hydro)reaches48% in theBAU,which isequivalent toa32%generationsharedrivenbysignificant large-hydro exploitation. The SES reaches 91% renewable capacity and86%generationcapacityby2050.TheASESreaches100%renewablecapacityandgenerationby2050.

0

2,000

4,000

6,000

8,000

10,000

12,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Totalelectricity

use(kWhpe

rcapita

)

BAU SES ASES

Singapore-2014 HK-2014 Japan-2014

Taiwan-2014

Page 172: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 173

Figure121 GMSRenewableInstalledCapacityMix

Figure122 GMSRenewableGenerationMixComparison

0%10%20%30%40%50%60%70%80%90%100%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Ren

ewab

leCap

acityMix(%

)

BAU(RE) SES(RE) ASES(RE)

BAU(RE+LargeHydro) SES(RE+LargeHydro) ASES(RE+LargeHydro)

0%10%20%30%40%50%60%70%80%90%100%

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Ren

ewab

leGen

eraZ

onM

ix(%

)

BAU(RE) SES(RE) ASES(RE)

BAU(RE+LargeHydro) SES(RE+LargeHydro) ASES(RE+LargeHydro)

Page 173: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 174

Table35 BAURenewableEnergy89GenerationPercentageSummary(%)

Year Cambodia LaoPDR Myanmar Thailand VietNam

2015 87% 83% 61% 13% 40%

2020 53% 83% 65% 20% 33%

2030 52% 75% 57% 28% 25%

2040 47% 72% 47% 33% 26%

2050 44% 74% 41% 37% 24%

Table36 SESRenewableEnergyGenerationPercentageSummary(%)

Year Cambodia LaoPDR Myanmar Thailand VietNam

2015 87% 83% 61% 13% 40%

2020 68% 92% 78% 28% 39%

2030 63% 91% 92% 51% 52%

2040 78% 95% 98% 75% 68%

2050 87% 98% 100% 84% 81%

Table37 ASESRenewableEnergyGenerationPercentageSummary(%)

Year Cambodia LaoPDR Myanmar Thailand VietNam

2015 87% 83% 61% 13% 40%

2020 72% 86% 80% 33% 40%

2030 77% 92% 89% 76% 64%

2040 90% 97% 100% 92% 95%

2050 100% 100% 100% 100% 100%

8.4 RenewableEnergyIntegration

Figure123belowplotstheGMSin2030and2050undertheSESandASESagainstthe top21countries in2013by renewablegenerationpercentage includingsomeadditionalEuropeancountries90.Thecountries listedherearegenerallydevelopedor at an advanced development stage with great renewable potential (generallyfromlargehydro)orcountrieswithlowgenerationlevels.Atahighlevel,thechart

89Renewableenergyincludeslargehydro,smallhydro,pumpedstoragehydro,solarPVandCSP,wind,biomass,biogas,oceanenergy,geothermal,andoff-gridsupply(forCambodiaandMyanmar)90Includeslargehydro.Worldwideelectricityproductionfromrenewableenergysources,Observer.2013.

Page 174: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 175

indicates that SES and ASES renewable developments in the GMS fall within theboundsofpercentagesachievedcurrentlyaroundtheworld.

Figure123 RenewableGenerationPercentage(%)

8.5 CarbonEmissions

Figure124andFigure125showthecarbon intensityofGMS’spowersystemandthetotalperannumcarbonemissionsrespectively.The intensitytrajectorymovesupintheBAUasmorecoalentersthesystemthenmaintainsitslevelaround0.45t-CO2e/MWhasrenewabletechnologiesarealsodeveloped.TheintensityintheSESdropsto0.10t-CO2e/MWhby2050andtheASESis100%carbonemissionsfree.Intermsoftotalcarbonemissions,theshifttowardstheSESandASESsavesupto659and771mt-CO2e, respectively,or theequivalent toa85%and100%saving fromtheBAU.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Iceland

GMS2050

(ASES)

Ethiop

ia

Norway

CostaRica

GMS2050

(SES)

Brazil

Colombia

Ugand

a

Austria

Cameroo

n

Kenya

GMS2030

(ASES)

New

Zealand

Latvia

Gua

temala

Venezue

la

Canada

ElSalvado

r

Switzerland

Uruguay

Sweden

GMS2030

(SES)

Mali

Peru

Den

mark

Finlan

d

Spain

German

y

France

Renewan

lePercentage

Page 175: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 176

Figure124 GMSCarbonIntensityComparison

Figure125 GMSCarbonEmissionsComparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Carbon

Intensity

(t-CO2e/M

Wh)

BAU SES ASES

0

100

200

300

400

500

600

700

800

900

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Emissions(m

t-CO

2eperann

um)

BAU SES

ASES AvoidedEmissions(SES)

AvoidedEmissions(ASES)

Page 176: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 177

8.6 CoalPowerDevelopments

Figure 126 plots the dependence on coal in all scenarios. The AES and SEStrajectoriesdeclineasexpectedwhereastheBAUincreasesto46%by2050as104GWofcoalplantsisdevelopedtomeetincreasingdemands.Table38,Table39andTable40provideasnapshotoftheinstalledcoalcapacitydevelopmentsineachofthescenarios.

Figure126 GMSCoalShareMeasure

Table38 BAUCoalPlantDevelopment(MW)

Year Cambodia LaoPDR Myanmar Thailand VietNam

2015 268 405 30 5,758 13,605

2020 1,243 405 0 5,640 21,640

2030 2,093 1,005 1,830 5,276 45,438

2040 4,093 1,605 5,860 8,080 59,438

2050 5,843 1,905 10,300 16,080 69,438

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

2010 2015 2020 2030 2040 2050

BAU SES ASES

Page 177: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 178

Table39 SESCoalPlantDevelopment(MW)

Year Cambodia LaoPDR Myanmar Thailand VietNam2015 268 405 30 5,758 13,6052020 1,243 405 0 5,640 20,0002030 1,243 405 0 2,567 19,7902040 1,243 405 0 1,221 17,2602050 975 405 0 1,221 12,450

Table40 ASESCoalPlantDevelopment(MW)

Year Cambodia LaoPDR Myanmar Thailand VietNam2015 268 405 30 5,758 13,6052020 508 405 0 5,458 18,5002030 1,243 405 0 5,098 18,6802040 975 405 0 2,965 3,8602050 0 0 0 0 0

8.7 HydroPowerDevelopments

Comparedto2015,intheBAUby2030thereisapproximately18,000MWofhydrodevelopedintheGMS(2,100inCambodia,3,900inLao,3,300inMyanmar,4,100inThailand, and 4,400 in Viet Nam). In contrast, the SES and ASES has 8,500MWdeveloped between 2015 to 2030 which include approximately 3,500 MW ofcommitteddevelopmentsand5,000MWacrossMyanmarandLaoPDRtosupportrenewable energy projects. Table 41 and Table 42 provide a snapshot of theinstalledhydrocapacitydevelopmentsineachofthescenarios.

Table41 BAUHydroDevelopmentSummary(MWDeveloped)

Year Cambodia LaoPDR Myanmar Thailand VietNam2015 1,634 1,577 3,252 5,743 15,1752020 1,634 2,257 3,508 6,265 17,6882030 3,738 5,509 6,544 9,858 19,5292040 6,268 7,509 9,162 15,465 22,5092050 7,518 10,009 10,882 17,565 22,775

Page 178: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 179

Table42 SESandASESHydroDevelopmentSummary(MWDeveloped)

Year Cambodia LaoPDR Myanmar Thailand VietNam2015 1,634 1,577 3,252 5,743 15,1752020 1,634 2,692 3,748 6,265 17,6882030 1,634 4,192 6,213 6,139 17,6882040 1,634 4,192 6,213 5,191 17,6882050 1,634 4,192 6,213 5,191 17,688

AppendixE lists thehydrogenerationprojectsandcommissioningyearunder thethreescenariosacrosstheGMS.

8.8 AnalysisofBioenergy

Figure127showsaprojectionofthebiomassavailablefortheGMS(convertedtoGWh)andthetotalbiomassgenerationforeachscenariofortheGMS.Theshadedpink area represents the projected total technical biomass resource availability91whilethesolidlinesshowthebiomassconsumptionusedbyeachscenariofortheregion.Theprojectedavailablebiomasswasbasedonforecastgrowthratesintheagriculturalsectorsofeachcountry.Itwasassumedthatnomorethan75%ofthetotal projected available biomass resource was used. The remainder of thebioenergy requirements for each scenario was then assumed to be satisfied bybiogastechnologies.

Figure128showsasimilarchartfortheGMSexceptforbiogas.Thegreenshadedareainthischartrepresentstheamountofbiogasavailable(againinunitsofGWh)and the corresponding generation frombiogas in each scenario. This shows thattheSESandASESaredependentonbiogaswhiletheBAUisassumedtonotdeploythis technology. Based on the projections the biomass and biogas resourcesavailable to the region can be seen to be sufficient to support the amount ofbiomassandbiogasgenerationto2050.

91ProjectionsofbiomassavailabilitydevelopedbyIESbasedonbaselinesestablishedfrominformationonbiomassandbiogaspotentialreportedin‘RenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion’,ADB(2015)report.

Page 179: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 180

Figure127 ProjectedBiomassAvailabilityandConsumptionintheBAU,SESandASESscenariosfortheGMSasawhole

Figure128 ProjectedGMSBiogasAvailabilityandConsumptionintheBAU,SESandASESscenariosfortheGMSasawhole

0

50,000

100,000

150,000

200,000

250,000

300,0002015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

GWh

BiomassLimit BAUBiomass SESBiomass ASESBiomass

0

20,000

40,000

60,000

80,000

100,000

120,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

GWh

BiogasLimit BAUBiogas SESBiogas ASESBiogas

Page 180: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 181

9 EconomicImplications

In this sectionwe consider the economic implications of the three scenarios andexamineinparticular:(1)thelevelisedcostofelectricity(LCOE)generationfortheentire system, (2) investment costs, (3) total operating and capital expenditureincluding the cost of energy efficiency, (4) off-grid cost comparisons, and (5)implications for job creation. The analysis presented is supported by sensitivityanalysistoexaminehowchangesinfuelprices,technologycostsandcarbonpricesmayimpactprojectionsoftheLCOE.Itshouldbenotedthattheanalysispresentedinthissectionisdoneforthepurposeofcomparison,andthatthepricesandcostsprovided are dependent on the fuel price projections and technology costassumptions that were used in both scenarios and which have been listed inAppendixAandAppendixB.

9.1 OverallLevelisedCostofElectricity(LCOE)

ThecomparisonoftheLCOE(onlyincludesgenerationcosts)isshowninFigure129,notingthatThailandandVietNamdrivesmostofthefluctuations,duetotheirhighrelativeconsumptionintheregion.TheLCOEfortheBAUstartstoincreaseasfuelcostsincreasebacktolong-termaveragesbeforedecliningto$92/MWhasaresultof the deployment of lower capital costs associated with its slow transition torenewableenergygeneration.

The ASES and SES LCOE’s remain close due to similar supply mixes with theexceptionof2030to2040wherecommittedgasandcoalplantstillexistintheSES.From 2035 the LCOE edges up slightly as traditional base load technology isreplaced with more expensive renewable generation (CSP, battery and biogasgeneration). This LCOE analysis only compares central grid connected electricityproductionanditdoesnotincludethecostofexternalities92.

92Adetailedstudyonthecostofexternalitiesispresentedinthefollowingreference:Buonocore,J.,Luckow,P.,Norris,G.,Spengler,J.,Biewald,B.,Fisher,J.,andLevy,J.(2016)‘Healthandclimatebenefitsofdifferentenergy-efficiencyandrenewableenergychoices’,NatureClimateChange,6,pp.100–105.

Page 181: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 182

Figure129 GMSLCOEforGeneration

9.2 AnnualSystemCost

Figure130,Figure131andFigure132plotstheannualsystemcostbycomponentfortheBAU, SES and ASES. Grid electrification and off-grid supply applies only toMyanmar andCambodiaandincludesthecostofbuildingoutthecentraltransmissionnetwork,andsolarPV and battery technology, respectively. The BAU system costs increase to almost $160billionayearby2050withoperationalexpenditures,mainlyfuelcosts,accountingformorethan 50% of the total cost. The SES and ASES have significantly lower costs by 2050,approximately$120billionayear,drivenbythesignificantfuelcostsavings.Therelativitiesincapitalexpenditureandoperationalexpenditurerelatetothedifferences ingenerationmixbetweenthescenarios.Figure133 and Figure134presents thedifference in cost componentsbetween theBAUandSESandtheBAUandASES,respectively.

0

20

40

60

80

100

120

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

LCOE($/M

Wh)

BAU SES ASES

Page 182: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 183

Figure130 AnnualSystemCost(BAU)

Figure131 AnnualSystemCost(SES)

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

System

costs($

m's)

OPEX CAPEX EnergyEfficiency

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

System

costs($

m's)

OPEX CAPEX GridElectrificaTon EnergyEfficiency Offgrid

Page 183: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 184

Figure132 AnnualSystemCost(ASES)

Figure133 DifferenceinAnnualSystemCost(BAUagainstSES)

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

System

costs($

m's)

OPEX CAPEX GridElectrificaTon EnergyEfficiency Offgrid

-60,000

-50,000

-40,000

-30,000

-20,000

-10,000

0

10,000

20,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Diffe

rence($m's)

OPEX CAPEX GridElectrificaTon

EnergyEfficiency Offgrid NetInvestment

Page 184: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 185

Figure134 DifferenceinAnnualSystemCost(BAUagainstASES)

9.3 CumulativeCapitalInvestment

The following section details the investment costs of meeting demand in GMS.Figure 135 shows the cumulative investment in generation CAPEX and energyefficiencyinmillionsofReal2014USD,althoughtheearlierobservationoftheSESand ASES having lower demand owing to energy efficiency gains should berecognised.Figure135showstheBAUrequiringtheleastcapitalinvestmentbytheendofthemodellinghorizonprimarilydrivenbythelowerCAPEXcostsbecauseofinvestmentsintotraditionalcoaltechnologies,whichprovidebase-loadsupporti.e.theCAPEXcosttakingintoaccountcapacityfactors isfar lowerforcoalthansolarPVwith battery as an example. The SES and ASES include investment in energyefficiencymeasuresandgreater investments inCSP,biogasandbatterystoragetodefer generation post-2035with the ASES requiringmore investment because ofhigherreplacementrequirementsforretiredcoalandgasplant.

ThebreakdownofcostsbycomponentarepresentedinFigure136,Figure137andFigure138.

-70,000

-60,000

-50,000

-40,000

-30,000

-20,000

-10,000

0

10,000

20,000

30,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Diffe

rence($m

's)

OPEX CAPEX GridElectrificaTonEnergyEfficiency Offgrid NetInvestment

Page 185: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 186

Figure135 GMSCumulativeInvestment(Real2014USD)

Figure136 GMSCumulativeInvestmentbyType(BAU,Real2014USD)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

CumulaT

veInvestmen

t($m

's)

BAU SES ASES

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

CumulaT

veInvestmen

t($m

's)

Hydro Wind Coal Gas Diesel/FO Nuclear Bio Solar

Page 186: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 187

Figure137 GMSCumulativeInvestmentbyType(SES,Real2014USD)

Figure138 GMSCumulativeInvestmentbyType(ASES,Real2014USD)

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

CumulaZ

veIn

vestmen

t($m's)

Hydro Wind Coal GasDiesel/FO Bio Solar CSPBaoery Geothermal Ocean GridElectrificaTonEnergyEfficiency Offgrid

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

CumulaZ

veIn

vestmen

t($m's)

Hydro Wind Coal GasBio Solar CSP BaoeryGeothermal Ocean GridElectrificaTon EnergyEfficiencyOffgrid

Page 187: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 188

9.4 OperatingCosts,AmortisedCapitalCostsandEnergyEfficiencyCosts

Figure139andTable43presentthenetpresentvalueofthepowersystemcostsintheGMSbycomponentusingan8%and15%discountrate.TheBAUiscomprisedofahigherpercentageoffuelcosts,whereastheASEShasthehighestpercentagerelating to capital costs. The total NPV difference between the BAU and ASES isapproximately$192billionunderan8%discountrate.

Figure139 NPVofSystemCosts(Real2014USD)forperiod2015to2050

Table43 NPVofSystemCosts(Real2014USD)forperiod2015to2050

NPV BAU@8% SES@8% ASES@8% BAU@15% SES@15% ASES@15%

FuelCost 462,919 288,682 219,927 208,384 150,668 126,589CapitalCost 322,100 321,220 347,175 142,637 143,706 149,783FOM 31,035 32,394 35,582 14,222 14,552 15,153VOM 34,841 30,264 29,199 15,414 13,902 13,371GridElectrification 4,601 3,386 1,825 1,902 1,341 807EnergyEfficiency 0 22,111 28,028 0 6,587 8,715Off-Grid 0 856 2,071 0 355 648Total 855,495 698,913 663,807 382,560 331,111 315,066

9.5 Off-gridCostComparison

Figure140belowcompares the costofproviding100%electricity accessby2050across the three scenarios, for the population that has no access to electricity

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

BAU@8% SES@8% ASES@8% BAU@15%SES@15% ASES@15%

NPV

($m's)

FuelCost CapitalCost FOM VOM GridElectrificaTon EnergyEfficiency Offgrid

Page 188: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 189

currently. The BAU is assumed to achieve close to 100% central grid basedelectrification by 2030 and the costs relate to grid electrification and gridgenerationcoststosupporttheelectrifiedloads93.TheASESassumesamuchslowercentralgridbasedelectrificationwhichceasesaround2030whenoff-gridsolarandbattery storage becomes economic. The ASES line comprises mainly investmentcosts relating to residential solar PV and battery storage and a small gridelectrification cost component. The SES assumes a 100% central grid basedelectrificationtargetalbeitataslowerpacethanintheBAUwithoff-griddemandsuppliedwith solar PVandbattery technology in the interim. Thedifferences aremainly driven by the difference in electricity demands per capita between thescenarios.

Figure140 GridElectrificationandOff-gridCosts

9.6 FuelPriceSensitivity

Figure141plotstheLCOEoftheBAU,SESandASES.Inaddition,itplotstheLCOEfora50%increase to the fuel prices, which reflects the difference between IEA’s crude oil pricingunder the 450 Scenario and the Current Policies Scenario ($95/bbl and $150/bblrespectively)anda-50%sensitivity.ItcanbeseenthattheLCOEoftheBAUrisesmore(upto$20/MWh)againstafuelpriceincreasecomparedwithsmallerincreasesintheSESandASES as would be anticipated as a direct consequence of having a higher thermal93MyanmarNationalElectrificationProgramRoadmapandInvestmentProspectus,CastaliaStrategicAdvisors(2014).ElectrificationcostswerebasedonMyanmar’scostestimatesof100%electrification(7.2millionhouseholdsby2030)costing$5.8billionandpro-ratedbasedonMyanmarpopulationfigures.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

GridElectrifi

caTo

nandOffg

ridCost($m

's)

BAU SES ASES

Page 189: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 190

generationshareintheBAUcomparedtorenewableenergyintheSESandASES.TheSESincreases,andtheASEStoasmallerextent,asaconsequenceofbioenergygeneration,butisstilllesssensitivetofuelpriceshocksthantheBAU.

Figure141 GMSFuelPriceSensitivity($/MWh)

9.7 ImpactofaCarbonPrice

Inasimilarwaytotheprevioussection,Figure142plotstheLCOEundertheBAU,SES and ASES and the LCOE under a carbon price scenario. The carbon scenarioputsa$20/t-CO2impostthroughouttheentiremodelledperiod.ThisisintendedtoshowthesensitivityoftheBAU,SESandASEStocarbonprices.Inasimilarwaytotheprevioussection,thisshowsthattheLCOEintheSESandASESisinsensitivetocarbon prices by 2050 while for the BAU, it adds an additional $10 Real 2014USD/MWhtotheLCOEbecauseofitscoalgeneration.

40

60

80

100

120

140

160

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

BAU.BASE BAU.Fuel+50% BAU.Fuel-50%

SES.BASE SES.Fuel+50% SES.Fuel-50%

ASES.BASE ASES.Fuel+50% ASES.Fuel-50%

Page 190: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 191

Figure142 GMSCarbonSensitivities($/MWh)

9.8 RenewableTechnologyCostSensitivity

Figure 143 shows the LCOE sensitivity to 20% and 40% decreases in renewabletechnologycosts.AsexpectedtheASESfollowedbytheSESarethemostsensitivewith potential declines of up to $25/MWh. The results also show that anytechnologycostdropsbeyondwhatwasassumedwillbringtheSESandASESLCOEwellbelowthatintheBAU.

40

50

60

70

80

90

100

110

1202015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

BAU.BASE BAU.Carbon$20/tSES.BASE SES.Carbon$20/tASES.BASE ASES.Carbon$20/t

Page 191: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 192

Figure143 GMSRenewableTechnologyCostSensitivities($/MWh)

9.9 JobsCreation

To assess the implications for Job Creation for each scenario we applied themethodology used by the Climate Institute of Australia. The methodology issummarisedinAppendixC.Thenumbersofjobscreatedforeachofthescenariosare shown in Figure 144, Figure 145 and Figure 146. The job categories showninclude:manufacturing,construction,operationsandmaintenanceandfuelsupplymanagement.Figure147providesacomparisonoftotaljobscreatedforBAU,SESandASES.Thekeyobservationsare:

• Across all scenarios,manufacturing and construction account formost of thejobswithamuchsmallershareattributabletoO&Mandfuelsupply.

• TheBAUjobcreationprofilepeaksataround450,000jobscomparedtoSESjobcreationpeakingtowards1millionormorethantwotimesthatintheBAU.Thisisentirelydrivenbyrenewableenergydevelopmentsthatrequiremorejobsinthemanufacturingandconstructionphases.SeeAppendixCforassumptions.

• TheASES jobcreationpeaksat1.5million jobs,morethanthreetimesthatoftheBAUdrivenbyevenmorerenewableenergyprojectsrequiredastheregionmovestowardsa100%renewablegenerationtargetby2050.

• Differentskillsarerequiredbetweenthescenarios,BAUhaspeopleworkingonconventional coal and hydro, whereas the SES and ASES has people mainlyworkingonsolar&batterystoragesystems.

• Notethatthemanufacturingandfuelsupplyjobsshowntobecreatedmaynotbe created within the region if manufacturing of equipment and fuelmanagement(forimportedfuels)occursinothercountries.

40

50

60

70

80

90

100

110

1202015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

BAU.BASE BAU.RETech-20% BAU.RETech-40%SES.BASE SES.RETech-20% SES.RETech-40%

Page 192: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 193

Figure144 JobCreationbyCategory(BAU)

Figure145 JobCreationbyCategory(SES)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Num

bero

fJob

s

Manufacturing ConstrucTon O&M FuelSupply

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Num

bero

fJob

s

Manufacturing ConstrucTon O&M FuelSupply

Page 193: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 194

Figure146 JobCreationbyCategory(ASES)

Figure147 TotalJobCreationComparisonBAU,SESandASES

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Num

bero

fJob

s

Manufacturing ConstrucTon O&M FuelSupply

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Num

bero

fJob

s

BAU SES ASES

Page 194: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 195

10 Conclusions

10.1 ComparisonofScenarios

Thefollowingarethekeyconclusionsthathavebeendrawnfromtheanalysis:

• TheSESdeliversanenergyefficiencygainbeyond theBAUcaseofabout30%comparedtotheBAU.TheASESdeliversefficiencygainsof31%afterdoublingtransportelectricitydemand;

• The SES and ASES are able to achieve a power system that delivers 86% and100% of generation from renewable energy resources (including large-scalehydro)by2050.Incontrast,only32%ofthegenerationintheBAUisprovidedbyrenewableenergyresourcesby205094;

• By2050,theSESandASESavoidaround569and771milliontonsofgreenhousegasemissionsperyearcomparedtotheBAU.

• Basedonsomesimplemeasuresforenergysecurity:- Under the ASES and SES, GMS benefits from a more diverse mix of

technologiesandisnotasdependentonasinglesourceofprimaryenergyastheBAU;forexample,theBAUishighlydependentonlarge-scalehydroand coal, while the SES and ASES diversifies supply across a range ofrenewable energy technologies with no generation type accounting formorethan25%and30%ofthegenerationshare,respectively;

- TheASESandSESachieveareliablepowersystemthroughcoordinationonboth the supply and demand side of the industry, with similar energyreservemarginsastheBAU.Thoughasameasureofenergysupplystorageand flexibility theASES and SES overall are lower than theBAUdrivenbyhigher levelsofnonandsemi-dispatchablegeneration.TheBAUwouldbemoreresilientagainstextremeeventsbuttheASESandSESbenefitfromamore integrated regional power system through cross-border trading.Modellinghas shown that theSES isoperationally feasible (evenwith lessdirectlydispatchableresourcesintheSEScomparedtotheBAU),butstresstestingoftheSESscenariosagainstmoresignificantthreatstotheoperationof the power system would help to understand and develop appropriatemitigation measures if required. A key condition for this scenario to beoperationally feasible in practice is real-time monitoring and controlsystems for all elements of the power system, near real-time andautomated dispatch operations, and high quality forecasting systems forsolarandwindenergy.

94Large-scalehydroisincluded

Page 195: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 196

10.2 EconomicImplications

10.2.1 ElectricityCostsBased on the outcomes of modelling the BAU, SES and ASES scenarios, we alsoexamined the following issues in relation to electricity costs: (1) levelised cost ofelectricity, (2) investment requirements, (3) sensitivity of electricity prices to fuelpriceshocks,and(4)theimplicationsofapriceoncarbonequivalentemissionsforelectricityprices.Basedonthisanalysiswedrawthefollowingconclusions:

• TheBAUrequireslowerlevelsofcapitalinvestmentthantheSESandASES,andin relation to generation costs, the SES andASES across themodelling perioddeliveraloweroverallgenerationcost;

• Under theSESandASESsignificantbenefitsaregained in the formofavoidedfuel costs and this contributes to achieving a lower overall dollar cost for theGMS.TheobservationismadethatthecompositionofLCOEundertheSESandASES is largely driven by investment costs, hence exposure to fuel shocks issignificantlyreduced;and

• TheLCOEundertheSESandASESisalsolargelyinsensitivetoacarbonprice,ascouldbereasonablyanticipatedforapowersystemthat isentirelydominatedbyrenewableenergy.

10.2.2 InvestmentImplications

From 2015 to 2050, the overall investment for each scenario varies significantly:$660billionintheBAUcomparedto$835billionintheSESand$958billionintheASES (Real 2014 USD). However, the composition of the investments is quitedifferent.TheBAUdirectsmostinvestment(65%)tocoalandhydroprojects,whilein theSES (andASES) investmentsarespreadoverawider rangeof technologies:50%isdirectedtosolar95andbatterysystemtechnologiesacrosstheSESandASES,withothersignificantinvestmentsinenergyefficiencymeasures(17%SESand18%ASES), wind (12% in SES and ASES) and less than 1% in off-grid supply. Clearly,compared to the BAU, the SES and ASES will require investments across amorediverserangeoftechnologiesandalsotechnologiesthatareofasmallerscaleandmoredistributedratherthanasmallernumberoflargescaledevelopmentsaspertheBAU.ThishighlightstheimportancetotheSESandASESofhavinginvestmentframeworks for energy infrastructure that can accommodate a larger number ofsmallerinvestments.

10.2.3 JobsCreationThe SES and ASES scenarios both result in quite different technology mixescomparedtotheBAU.Eachhasquitedifferentimplicationsfortheworkforcethat

95PVandCSPtechnologies.

Page 196: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 197

wouldberequiredtosupporteachscenario.Basedonanalysisoftherequiredjobsweestimatethat96:

• TheBAUfrom2015to2050wouldbeaccompaniedbythecreationofsome13million jobyears97(20%manufacturing,46%construction,22%operationsandmaintenance,and12%fuelsupply);

• The SES would involve the creation of some 21 million job years (25% inmanufacturing, 56% in construction, 18% in operations andmaintenance and0.8%infuelsupply);and

• The ASES would involve the creation of 28 million job years (24% inmanufacturing, 53% in construction, 23% in operations andmaintenance andlessthan0.1%infuelsupply).

10.3 BarriersfortheSESandASESinGMS

The GMS has abundant renewable energy resources. However, non-hydrorenewable energy resources, particularlywind and solar energy in this region arecurrentlyunderexploiteddue toanumberof social,economic, financial, technicalandinstitutionalbarriers.Thefollowingbarrierspotentiallydeternewinvestmentinrenewableenergyandtheimplementationofenergyefficiencymeasures:

10.3.1 Socialbarriers• Alackofpublicawarenessandunderstandingontheimportanceofrenewable

energyandenergyefficiencyinaddressingenvironmentalconcerns.Thisisdueto insufficient information fromrelevantgovernmentagencieson thebenefitsandpotentialsofrenewableenergyandenergysavings.ThismayalsorelatetothebroadereducationlevelsandprogramsinsomeoftheGMScountries.Thelackofpublicawarenessisalsoduetoinadequatedatamonitoringandanalysisforperformancereportingtoproperlyquantifythebenefit.

• A lack of effective and considered measures relating to adverse social andenvironmentalimpactsoflargescalerenewableprojectssuchashydropower.

10.3.2 Economicandfinancialbarriers

• The main economic barrier to promoting renewable energy and energyefficiency in the GMS is their high investment costs, which are significantlyhigherthanconventionalgenerationtechnologiesatpresent.

• Inallof theGMScountries,projectdevelopershaveexperienceddifficulties insecuringfinancetoinvestinrenewableenergyprojects.

96BasedontheemploymentfactorspresentedinAppendixC.97Ajobyearisonejobforonepersonforoneyear.Weusethismeasuretomakecomparisonseasieracrosseachscenarioasthenumberofjobscreatedfluctuatesfromyeartoyear.

Page 197: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 198

• Fossil fuel price subsidies, particularly in Myanmar, Viet Nam and Thailand,represent another significant barrier in new investment in renewable energy.Subsidiesalsodiscourageenergy conservationandenergyefficiencymeasuresasthetruecostsoffossilfuelsarenotreflected.

10.3.3 Technicalbarriers• The overall knowledge on renewable energy technology in the GMS is

somewhatlimited.Thereappearstobeashortageoftechnical,operationalandmaintenance expertise within the government and the local private sectorwhich limits development opportunities. This is due to a lack of trainingorganisations and facilities leading to a lack of qualified experts and skilledtechnicians.

• Inadequate transmission and distribution networks to support an increase inrenewableenergyprojects,particularlyinremoteareas.

• InsufficientresearchanddevelopmenteffortintherenewableenergysectorintheGMScountries.Thisincludesalackofdetailedstudiesontheimpactofhighrenewablepenetrationontheoperationofpowergridsandconventionalpowerplants.

• Thereisalackofmeasurements,reportingandverificationsystemstofollowupontheoutcomesofenergysavingprograms.Thismakesitdifficulttoassesstheeffectivenessoftheprograms.

10.3.4 Policyandinstitutionalbarriers• Duetothehighcostsofrenewabletechnologiesatpresent,thesetechnologies

relyonincentiveschemestocompetewithconventionaltechnologies.However,thereisalackofsufficientsupportingschemes,strategiesandplanstopromoterenewableenergyandenergyefficiency,particularlyinCambodia,LaoPDRandMyanmar.

• AlthoughThailandand,tosomeextent,VietNamhaveputinplacepoliciesandsupporting schemes to promote renewable energy, there is still a lack ofcoordination between different governmental agencies which are responsiblefor policy decision-making resulting in uncoordinated and incoherent policies.This barrier is found in government agencies which usually work in verticalhierarchy ofmanagement. There are also significant uncertainties over futurepoliciesandregulatoryframeworkswhichrepresentriskstopotentialinvestors.

• Difficulties and long waiting times in obtaining licenses and connectingrenewable plants to the grid due to a lack of well-defined operational andtechnicalstandards.

Page 198: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 199

10.4 Recommendations

ThefollowingarekeyrecommendationsthatpotentiallyreducethebarrierstotheSESandASESintheGMS.

10.4.1 Overcomingsocialbarriers

• Disseminate information on the benefits of renewable energy and energyefficiencythrougheffectivecommunicationmethodsandeducationalprograms.

• Conductdetailedassessmentsoftheimpactsofrenewableenergyprojectsandmeasures to alleviate social and environmental impacts andmake the resultspubliclyavailable.

10.4.2 Overcomingeconomicandfinancialbarriers

• Develop energy policies and schemes to increase the cost competitiveness ofrenewabletechnologies.Theaimistocreateanenvironmentthatisconduciveforinvestmentinrenewableenergytechnologies.

• Conduct detailed assessments of renewable energy potential to enableprospective investors to understand the potential, identify the bestopportunities and subsequently take steps to explore investment anddeployment.

• Consider removing or replacing fossil fuel subsidies with other supportingschemes.

10.4.3 Overcomingtechnicalbarriers

• Knowledge transfer and capability building in the renewable energytechnologies and energy efficiency for policymakers and staffworking in theenergy industrytoensurethehumancapacity isbeingdevelopedtosupportanational power system that has a high share of generation from renewableenergy. As we have shown the SES and ASES will require a large number ofskilled workers to support a technology mix with a significant share ofrenewableenergy.

• Investments in ICT systems to allow for greater real-timemonitoring, controlandforecastingofthenationalpowersystem,includingSCADA/EMS,andsmart-gridtechnologyandrenewableenergyforecastingsystemsandtools. Thiswillenable efficient real-time dispatch and control of all resources in the systemwhich will facilitate high levels of renewable energy as well as cross-borderpowertrading.

• The SES and ASES depend on power import and export among the GMScountriesthereforeitisimportanttotakemeasurestoencouragecross-borderpowertradeintheregion,asthisworkstotheadvantageofexploitingscatteredrenewableenergyresourcepotentialsanddiversityinelectricitydemand.Thesemeasuresinclude:

Page 199: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 200

- Develop an overarching transmission plan that has been informed bydetailedassessments andplans to leverage renewableenergypotential intheregionanddiversityindemandandhydrologicalconditions;

- Enhance technical standards and transmission codes in each country toallowforbetterinteroperationofnationalpowersystems;

- Develop a framework to encourage energy trade in the region, and inparticulartowardsamodelthatcansupportmultilateralpowertradingviaaregionalpowermarket.

• Takemeasurestoimprovepowerplanningintheregionto:- Explicitlyaccountforprojectexternalitiesandrisks,- Evaluateamorediverserangeofscenariosincludingthosewithhighlevels

ofrenewableenergyandenergyefficiencyplans,- Take into consideration overarching plans to have tighter power system

integrationwithintheregion,and- Carefullyevaluatetheeconomicsofoff-gridagainstgridconnectionwhere

thisisrelevant.

10.4.4 Overcomingpolicyandinstitutionalbarriers

• Formation of more comprehensive energy policies to create an environmentthat is appropriate for investment in renewable energy technologies andencourage energy efficiency. Investor confidence in renewable energyinvestmentwillbeenhancedbyhavingatransparentregulatoryframeworkthatprovidescertaintytoinvestorsandappropriatelyconsiderstheramificationsofhighlevelsofrenewableenergyinthegenerationmix.

• Implement regulatory frameworks and well-defined technical codes tostreamline procedures for providing licenses and avoiding delay in gridconnection.

Page 200: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 201

AppendixA TechnologyCostsTable 44 sets out the technology cost assumptions that were used in the modellingpresented inthisreport fortheBAUandSESscenarios. Table45setsoutthetechnologycosts used in the ASES. The technology costs of coal and gas do not include overheadsassociated with infrastructure to develop facilities for storing / managing fuel supplies.Thesecostswerehoweveraccountedforinthemodelling.Figure 148 and Figure 149 present the levelised cost of new entry generation based onassumed capacity factors. LCOE levels presented in Section 9 are based on weightedaverage LCOEs andmodelled output andwill differ from the LCOEs presented here. TheLCOEforbatterystorageiscombinedwithsolarPVtechnologyassuming75%ofgenerationisstoredforoff-peakgeneration.

Table44 TechnologyCostsAssumptionsforBAUandSESScenarios

TechnologyCapitalCost(Unit:Real2014USD/kW)Technology 2015 2030 2040 2050GenericCoal 2,492 2,474 2,462 2,450CoalwithCCS 5,756 5,180 4,893 4,605CCGT 942 935 930 926GT 778 772 768 764WindOnshore 1,450 1,305 1,240 1,175WindOffshore 2,900 2,610 2,480 2,349HydroLarge 2,100 2,200 2,275 2,350HydroSmall 2,300 2,350 2,400 2,450PumpedStorage 3,340 3,499 3,618 3,738PVNoTracking 2,243 1,250 1,050 850PVwithTracking 2,630 1,466 1,231 997PVThinFilm 1,523 1,175 1,131 1,086BatteryStorage-Small 600 375 338 300Battery-UtilityScale 500 225 213 200SolarThermalwithStorage 8,513 5,500 4,750 4,000SolarThermalNoStorage 5,226 4,170 3,937 3,703Biomass 1,800 1,765 1,745 1,725Geothermal 4,216 4,216 4,216 4,216Ocean 9,887 8,500 7,188 5,875Biogas(AD) 4,548 4,460 4,409 4,359*Batterytechnologyquotedona$/kWhbasis

Page 201: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 202

Figure148 LevelisedCostofNewEntry(BAU&SES,$/MWh)

0

50

100

150

200

250

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Levelised

Costo

fGen

eraT

on($

/MWh)

Hydro Wind CoalGas Bio SolarCSP PV+Baoery[75%] HydroRORGeothermal PumpStorage

Page 202: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 203

Table45 TechnologyCostsAssumptionsforASESScenario

TechnologyCapitalCost(Unit:Real2014USD/kW)Technology 2015 2030 2040 2050GenericCoal 2,492 2,462 2,450 2,437CoalwithCCS 5,756 4,893 4,605 4,334CCGT 942 930 926 921GT 778 768 764 761WindOnshore 1,450 1,240 1,175 1,113WindOffshore 2,900 2,480 2,349 2,225HydroLarge 2,100 2,275 2,350 2,427HydroSmall 2,300 2,400 2,450 2,501PumpedStorage 3,340 3,618 3,738 3,861PVNoTracking 2,243 1,050 850 688PVwithTracking 2,630 1,231 997 807PVThinFilm 1,523 1,131 1,086 1,043BatteryStorage-Small 600 338 300 267Battery-UtilityScale 500 213 200 188SolarThermalwithStorage 8,513 4,750 4,000 3,368SolarThermalNoStorage 5,226 3,937 3,703 3,483Biomass 1,800 1,745 1,725 1,705Geothermal 4,216 4,216 4,216 4,216Wave 9,887 7,188 5,875 4,802Biogas(AD) 4,548 4,359 4,309 4,259*Batterytechnologyquotedona$/kWhbasis

Page 203: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 204

Figure149 LevelisedCostofNewEntry(ASES,$/MWh)

0

50

100

150

200

250

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

Levelised

Costo

fGen

eraT

on($

/MWh)

Hydro Wind Coal

Gas Bio Solar

CSP PV+Baoery[75%] HydroROR

Geothermal PumpStorage

Page 204: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 205

AppendixB FuelPricesTable 46 sets out the Free on board (FOB) fuel price assumptions thatwere used in themodellingpresentedinthisreport.Thisfuelpricesetwascommontoallthreescenarios.

Table46 FuelPriceAssumptions(Real2014USD/GJ)

Year Coal Gas Diesel Uranium FuelOil Biomass Biogas2015 2.39 10.08 13.34 0.72 9.13 2.57 1.002016 2.51 11.88 15.24 0.76 10.49 2.62 1.002017 2.63 12.91 15.28 0.80 11.68 2.67 1.002018 2.74 13.72 16.41 0.80 12.43 2.72 1.002019 2.86 14.47 17.53 0.80 13.18 2.78 1.002020 2.98 15.16 18.64 0.80 13.93 2.83 1.002021 3.10 15.81 19.73 0.80 14.65 2.89 1.002022 3.21 16.46 20.80 0.80 15.36 2.95 1.002023 3.33 17.10 21.86 0.80 16.06 3.01 1.002024 3.45 17.72 22.90 0.80 16.76 3.07 1.002025 3.56 18.34 23.93 0.80 17.44 3.13 1.002026 3.56 18.29 23.86 0.80 17.39 3.19 1.002027 3.56 18.24 23.79 0.80 17.34 3.25 1.002028 3.56 18.19 23.72 0.80 17.29 3.32 1.002029 3.56 18.14 23.65 0.80 17.24 3.39 1.002030 3.56 18.09 23.58 0.80 17.19 3.45 1.002031 3.56 18.06 23.53 0.80 17.15 3.52 1.002032 3.56 18.02 23.49 0.80 17.12 3.59 1.002033 3.56 17.99 23.44 0.80 17.08 3.67 1.002034 3.56 17.96 23.40 0.80 17.05 3.74 1.002035 3.56 17.92 23.35 0.80 17.02 3.81 1.002036 3.56 17.89 23.30 0.80 16.98 3.89 1.002037 3.56 17.86 23.26 0.80 16.95 3.97 1.002038 3.56 17.83 23.21 0.80 16.92 4.05 1.002039 3.56 17.79 23.16 0.80 16.88 4.13 1.002040 3.56 17.76 23.12 0.80 16.85 4.21 1.002041 3.56 17.76 23.12 0.80 16.85 4.29 1.002042 3.56 17.76 23.12 0.80 16.85 4.38 1.002043 3.56 17.76 23.12 0.80 16.85 4.47 1.002044 3.56 17.76 23.12 0.80 16.85 4.56 1.002045 3.56 17.76 23.12 0.80 16.85 4.65 1.002046 3.56 17.76 23.12 0.80 16.85 4.74 1.002047 3.56 17.76 23.12 0.80 16.85 4.84 1.002048 3.56 17.76 23.12 0.80 16.85 4.93 1.002049 3.56 17.76 23.12 0.80 16.85 5.03 1.002050 3.56 17.76 23.12 0.80 16.85 5.13 1.00

Page 205: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 206

AppendixC MethodologyforJobsCreationThis sectionbriefly summarises themethodology thatweadopted for jobscreation. Themethodology that we have adopted has been based on an approach developed by theInstitute forSustainableFuturesat theUniversityofTechnology,Sydneyandusedby theClimate InstituteofAustralia98. Inessencethe jobscreated indifferenteconomicsectors(manufacturing, construction, operations & maintenance and fuel sourcing andmanagement) can be determined by the following with the information based on thenumbersprovidedinTable47.

Figure150 JobCreationCalculations

Wehaveappliedthismethodologytotheresultsineachscenariodiscussedinthisreport in order to make estimates of the jobs creation impacts and allowcomparisonstobemade99.

98Adescriptionofthemethodologycanbefoundinthefollowingreference:TheClimateInstitute,“CleanEnergyJobsinRegionalAustraliaMethodology”,2011,available:http://www.climateinstitute.org.au/verve/_resources/cleanenergyjobs_methodology.pdf.99Thepercentageoflocalmanufacturingandlocalfuelsupplyisassumedtobe1toreflectthetotaljobcreationpotentialintotal.

Page 206: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 207

Table47 EmploymentFactorsforDifferentTechnologies

Annual declineapplied toemploymentmultiplier

Construction

tim

e

Construction

Man

ufacturing

Ope

ration

s&

mainten

ance

Fuel

Technology 2010-20 2020-30 years perMW perMW perMW perGWh

Blackcoal 0.5% 0.5% 5 6.2 1.5 0.2 0.04(includeinO&M)Browncoal 0.5% 0.5% 5 6.2 1.5 0.4

Gas 0.5% 0.5% 2 1.4 0.1 0.1 0.04

Hydro 0.2% 0.2% 5 3.0 3.5 0.2

Wind 0.5% 0.5% 2 2.5 12.5 0.2

Bioenergy 0.5% 0.5% 2 2.0 0.1 1.0

Geothermal 1.5% 0.5% 5 3.1 3.3 0.7

Solar thermalgeneration

1.5% 1.0% 5 6.0 4.0 0.3

SWH 1.0% 1.0% 1 10.9 3.0 0.0

PV 1.0% 1.0% 1 29.0 9.0 0.4

Page 207: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 208

AppendixD CommittedPowerProjectsComplete lists of the power projects thatwere assumed to be committed in themodelling are provided in Table 48, Table 49, Table 50, Table 51 and Table 52respectivelyforCambodia,LaoPDR,Myanmar,ThailandandVietNam.

Table48 Cambodia:CommittedNewEntryAssumptions

No. Country Capacity(MW)100 Type COD101

1 RusseiChrumHydroelectric 338 Hydro 20152 StungTatayHydroelectric 246 Hydro 20153 StungAtayHydroplant 120 Hydro 20154 C.I.I.D.GErdosHongjunElectricPowerCo.,Ltd#2&3 240 Coal 20165 C.I.I.D.GErdosHongjunElectricPowerCo.,Ltd#4 135 Coal 20186 SihanoukvilleImportedCoal#1 300 Coal 20187 SihanoukvilleImportedCoal#2 300 Coal 2020

8 SihanoukvilleImportedCoal#3 300 Coal 2022

9 SihanoukvilleImportedCoal#4 300 Coal 2024

Table49 LaoPDR:CommittedNewEntryAssumptions

No. Project ExportsTo Capacity(MW) Technology COD1 NamNgiep2 180 Hydro 20152 HongSa Thailand 405 Coal 20153 NamOu2 120 Hydro 20154 NamOu5 240 Hydro 20155 NamOu6 180 Hydro 20156 NamKong2 66 Hydro 20157 Xekaman1 VietNam 64 Hydro 20168 NamSim 8 Hydro 20169 NamMang1 64 Hydro 201610 NamBeng 34 Hydro 201611 NamSane3A 69 Hydro 201612 NamSane3B 45 Hydro 201613 NamLik1 61 Hydro 201714 NamPhay 86 Hydro 201815 NamTha1(NamPha) 168 Hydro 201816 Xekaman4 VietNam 16 Hydro 2018

100Capacityfigurespresentedherearepro-ratedbasedontheintendedpowerflowsbetweenthecountriesasoftheyearofcommissioning.101CommercialOperationDate.

Page 208: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 209

Table50 Myanmar:CommittedNewEntryAssumptions

No. Unit Capacity(MW) GenerationType COD1 MawlamyineMPLP(1st) 98 Gas 20152 ThatonGT(W-B) 106 Gas 20153 MyinchanAggrego 103 Gas 20154 APREnergy 100 Gas 20155 V-Power 50 Gas 20156 UpperNamHtwan 3.2 Hydro 20167 MongWa 60 Hydro 20168 Thilawa(1) 25 Gas 20169 ShwedaungIPP 70 Gas 201610 KanbaukGEG 6 Gas 201611 Thilawa(2) 25 Gas 201712 MyinchanIPP 250 Gas 201713 Thahtay 111 Hydro 201814 UpperKengTong 51 Hydro 201815 UpperBaluchaung 30.4 Hydro 201816 TharkaytaUREC1st 115 Gas 201817 KanbaukGTCC 200 Gas 2018

Table51 Thailand:CommittedNewEntryAssumptions

No. ProjectCapacity(MW)

GenerationType

COD102

1 GulfJPUT 800 Gas 20152 RatchaburiWorldCogenerationCo.Ltd.(project2) 90 Gas 20153 B.GrimmPower 90 Gas 20154 KwaeNoiDam#1-2 30 Hydro 20155 SakaeSolarCell 5 Solar 20156 PrakarnchonDam 10 Hydro 20157 ChulabhornHydropower 10 Hydro 20158 OtherHydro 6.7 Hydro 20159 MaeHydro 12 Hydro 201510 VerySmallPowerProducers(VSPPs) 271 Gas 201611 BangLangDam(upgrade) 12 Hydro 201612 SirindhornDamSolarCell 0.3 Solar 201613 EGATSolarProject 10 Solar 201614 OtherVSPPs 283 Gas 2017

102Commercialoperationdate.

Page 209: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 210

15 Hydropower 5.5 Hydro 201716 LamtakongPhase2 24 Wind 201717 GulfJPUTCo.,Ltd.#1-2(Jun,Dec) 1600 Gas 201818 OtherVSPPs 288 Gas 201819 LamtakongPumpStorage#3-4 500 Hydro 201820 Maw#4-7Replacement 600 Coal 201821 TronDamHydropower 2.5 Hydro 201822 ChulabhornDamHydropower 1.3 Hydro 201823 EGATBiomass 4 Bio 201824 EGATBiogas 5 Bio 2018

Table52 VietNam:CommittedNewEntryAssumptions

No. Region Project CapacityMW GenerationType COD1 North NgoiPhat 72 Hydro 20152 North SongBac 42 Hydro 20153 Central SongBung4 156 Hydro 20154 Central Srepok4A 64 Hydro 20155 North BaThuoc1 60 Hydro 20156 North BacMe 45 Hydro 20157 South DongNai5 150 Hydro 20158 North HuoiQuang1 260 Hydro 20159 North LaiChau1-1 400 Hydro 201510 North NậmMức 44 Hydro 201511 North NamNa2 66 Hydro 201512 North NậmNa3 84 Hydro 201513 North NamToong 34 Hydro 201514 North NgoiHut2 48 Hydro 201515 Central NhanHac 45 Hydro 201516 North NhoQue 32 Hydro 201517 North NhoQue2 48 Hydro 201518 Central Xekaman3 200 Hydro 201519 Central SongBung2 108 Hydro 201520 South SôngGiang2 37 Hydro 201521 Central SongTranh3 62 Hydro 201522 South FormosaHT 600 Coal 201523 North AnKhanh2-1 50 Coal 201524 North AnKhanh2-2 50 Coal 201525 South DuyenHai1-1 600 Coal 201526 South FormosaHaTinh1-1 150 Coal 2015

Page 210: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 211

No. Region Project CapacityMW GenerationType COD27 South FormosaHaTinh1-2 150 Coal 201528 South FormosaHaTinh1-3 100 Coal 201529 South FormosaHaTinh1-4 100 Coal 201530 South FormosaHaTinh1-5 150 Coal 201531 North MongDuong1-1 540 Coal 201532 North MongDuong1-2 540 Coal 201533 North MongDuong2-1 622 Coal 201534 North MongDuong2-2 622 Coal 201535 Central NongSon 30 Coal 201536 North ThaiBinh2-2 600 Coal 201537 North UongBiExt2 330 Coal 201538 Central DakMi2 98 Hydro 201639 Central DakMi3 45 Hydro 201640 North HuoiQuang2 260 Hydro 201641 North LaiChau1-2 800 Hydro 201642 Central Xekaman180% 232 Hydro 201643 Central SongTranh4 48 Hydro 201644 North TrungSon 260 Hydro 201645 North YenSon 70 Hydro 201646 South DuyenHai1-2 600 Coal 201647 South DuyenHai3-1 600 Coal 201648 South FormosaDongNai 150 Coal 201649 Central ChiKhe 41 Hydro 201750 South DaNhimMR 80 Hydro 201751 North LongTao 42 Hydro 201752 Central XekamanXanay 26 Hydro 201753 South ThacMoMR 75 Hydro 201754 Central TraKhuc 36 Hydro 201755 South DuyenHai3-2 600 Coal 201756 South LongSon1-1 75 Coal 201757 North LucNam1-1 50 Coal 201758 North ThaiBinh1-1 300 Coal 201759 North ThaiBinh2-1 600 Coal 201760 North ALin 62 Hydro 201861 Central DakMi1 54 Hydro 201862 South HoiXuan 102 Hydro 201863 South LaNgau 36 Hydro 201864 Central Xekaman480% 64 Hydro 201865 North SongLo6 44 Hydro 201866 North SongMien4 38 Hydro 2018

Page 211: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 212

No. Region Project CapacityMW GenerationType COD67 South DuyenHai3-Ext 660 Coal 201868 South LongSon1-2 150 Coal 201869 South LongPhu1-1 600 Coal 201870 North LucNam1-2 50 Coal 201871 North ThaiBinh1-2 300 Coal 201872 North ThaiBinh2-2 600 Coal 201873 North ThangLong1-1 300 Coal 201874 South VinhTan4-1 600 Coal 201875 South VinhTan4-2 600 Coal 2018

Page 212: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 213

AppendixE HydroPowerDevelopmentTable 53 lists the hydro generation projects and commissioning year under thethree scenarios. Hydro projects are assumed to be refurbished as required tomaintain operations throughout the modelling horizon. As discussed earlier,projects such as Xekaman 4 dedicated to exports are split into projects in thedomestic and exportmarkets (with capacities adjusted accordingly). Up to 2,500MW of non-committed large-scale hydro projects in Myanmar and Lao PDR aredevelopedtosupportrenewableenergytechnologiesintheSESandASES103.

Table53 HydroProjectDevelopments

Country HydroProjectInstalledCapacity(MW)

YearCommissioned

BAU SES ASES

Cambodia

RusseiChrumHydroelectric 338 2015 2015 2015StungTatayHydroelectric 246 2015 2015 2015StungAtayHydroplant 120 2015 2015 2015HydroPowerLowerSesan2Co.,Ltd 400 2023

Notcommissionedin the SES andASES

StungCheayarengHydroelectricProject 108 2025SesanHydro 400 2025PrekLaangHydroelectricProject 90 2026StungSenHydro 40 2026LowerSrePok2 66.6 2027StungTreng 1000 2027SamborDam 780 2037

LaoPDR

NamNgiep2 180 2015 2015 2015NamOu2 120 2015 2015 2015NamOu5 240 2015 2015 2015NamOu6 180 2015 2015 2015NamKong2 66 2015 2015 2015Xekaman1 64.4 2016 2016 2016NamSim 8 2016 2016 2016NamMang1 64 2016 2016 2016NamBeng 34 2016 2016 2016NamSane3A 69 2016 2016 2016NamSane3B 45 2016 2016 2016NamLik1 61 2017 2017 2017

103Theselectedlargehydroprojectsforfutureconstructionareexamplehydroprojectsanddonotmeanthatwehaveaparticularpreferenceforthehydroprojectsthatwebringonlineascomparedtotheothers.

Page 213: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 214

Country HydroProjectInstalledCapacity(MW)

YearCommissioned

BAU SES ASES

NamPhay 86 2018 2018 2018NamTha1(NamPha) 168 2018 2018 2018Xekaman4 16 2018 2018 2018Xayabouly(Mekong) 65 2020

NotCommissioned inthe SES or ASESscenarios

Sepian-Xenamnoy 56 2021NamNgiep1 21 2021NamPha 130 2021NamPhak 45 2021

Myanmar

UpperNamHtwan 3.2 2016 2016 2016MongWa 60 2016 2016 2016Thahtay 111 2018 2018 2018UpperKengTong 51 2018 2018 2018UpperBaluchaung 30.4 2018 2018 2018UpperYeywa 280 2022 Notcommissioned

inSESorASES Shweli(3) 1050 2026MiddlePaunglaung 100 2027 2020 2020Deedoke 66 2028 Notcommissioned Dapein-2 140 2028 2020 2020UpperThanlwin(kunlong) 1400 2028 Notcommissioned Shweli-2 520 2037 2022 2022MiddleYeywa 320 2038 2023 2023Bawgata 160 2038 2023 2023Naopha 1200 2038 NotcommissionedMangtong 225 2040 2025 2025WanTaPin 33 2040 Notcommissioned Solue 160 2040 2025 2025KengWang 40 2041 Notcommissioned Manipur 380 2048 2026 2026Gawlan 120 2048 2026 2026HkanKawn 140 2048 2026 2026Lawngdin 600 2049 Notcommissioned Tongxinqiao 340 2050 2026 2026NanTu(Hsipaw) 100 2050 Notcommissioned

Thailand

KwaeNoiDam#1-2 30 2015 2015 2015PrakarnchonDam 10 2015 2015 2015ChulabhornHydropower 10 2015 2015 2015OtherHydro 6.7 2015 2015 2015MaeHydro 12 2015 2015 2015

Page 214: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 215

Country HydroProjectInstalledCapacity(MW)

YearCommissioned

BAU SES ASES

BangLangDam(upgrade) 12 2016 2016 2016LamtakongPumpStorage#3-4 500 2018 2018 2018TronDamHydropower 2.5 2018 2018 2018Xe-PianXe-Namoi 354 2025

NotCommissioned inthe SES or ASESscenarios

NamNgiep1 269 2021Xayaburi 1220 2026HydroPower 18 2027PhaDam 14 2028LamtakongDam 1.5 2029LamPaoDam 1 2032YasothonHydropower 4 2032PranburiDam 1.5 2033MahaSarakhamHydropower 3 2033ManPhayaHydropower 2 2034NoidaHydropower 2 2034LamtapearnHydropower 1.2 2034VillageHydropower 1.5 2035ChulabhornPumStorage 800 2035ThapSalaoDam 1.5 2035SriNakarinPumpStorage 801 2036FaiLamDomeYaiHydropower 2 2037KamalasaiHydropower 1 2037SamongDam 1 2037DamHydropower 16 2037LuangDamHydropower 1 2038

VietNam

NgoiPhat 72 2015 2015 2015SongBung4 156 2015 2015 2015Srepok4A 64 2015 2015 2015BaThuoc1 60 2015 2015 2015BacMe 45 2015 2015 2015DongNai5 150 2015 2015 2015HuoiQuang1 260 2015 2015 2015LaiChau1-1 400 2015 2015 2015NậmMức 44 2015 2015 2015NamNa2 66 2015 2015 2015NậmNa3 84 2015 2015 2015NamToong 34 2015 2015 2015NgoiHut2 48 2015 2015 2015

Page 215: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 216

Country HydroProjectInstalledCapacity(MW)

YearCommissioned

BAU SES ASES

NhanHac 45 2015 2015 2015NhoQue 32 2015 2015 2015NhoQue2 48 2015 2015 2015Xekaman3 200 2015 2015 2015SongBung2 108 2015 2015 2015SôngGiang2 37 2015 2015 2015SongTranh3 62 2015 2015 2015DakMi2 98 2016 2016 2016DakMi3 45 2016 2016 2016HuoiQuang2 260 2016 2016 2016LaiChau1-2 800 2016 2016 2016Xekaman1 232 2016 2016 2016SongTranh4 48 2016 2016 2016TrungSon 260 2016 2016 2016YenSon 70 2016 2016 2016ChiKhe 41 2017 2017 2017DaNhimMR 80 2017 2017 2017LongTao 42 2017 2017 2017XekamanXanay 26 2017 2017 2017ThacMoMR 75 2017 2017 2017TraKhuc 36 2017 2017 2017ALin 62 2018 2018 2018DakMi1 54 2018 2018 2018HoiXuan 102 2018 2018 2018LaNgau 36 2018 2018 2018Xekaman4 64 2018 2018 2018SongLo6 44 2018 2018 2018SongMien4 38 2018 2018 2018BaoLam 46 2044

NotCommissioned inthe SES or ASESscenarios

PacMa 140 2024ThuongKonTum1-1 220 2044NamPan5 35 2024MyLy 250 2027BanMong 60 2028TichNangBacAi1-1 300 2028TichNangBacAi1-2 300 2029TichNangBacAi1-3 300 2030TichNangDongPhuYen1-1 300 2030

Page 216: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 217

Country HydroProjectInstalledCapacity(MW)

YearCommissioned

BAU SES ASES

PaMa 80 2032TichNangBacAi1-4 300 2033TichNangDongPhuYen1-2 300 2033HuoiTao 180 2034TichNangDongPhuYen1-3 300 2036LowerSrePok2 155.4 2027SamborDam 1820 2037

Page 217: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 225

AppendixH GMSTransitionStatistics

Table60 GenerationSnapshotStatistics(GWh)

2015 2030 2050

Country /Region Type Actual BAU SES ASES BAU SES ASES

GMS

Hydro 96,976 172,976 137,751 137,564 263,057 133,996 139,769

FossilFuel 90,035 360,398 194,770 156,993 855,169 98,889 0

Gas 165,885 287,935 136,320 43,986 292,121 70,693 0

Wind 624 29,263 65,434 80,071 73,346 172,514 220,678

Solar 170 43,456 130,565 164,485 90,787 440,530 506,571

Bio 2,059 30,275 96,010 125,435 85,270 234,086 233,391

OtherRE 0 12,047 21,675 23,097 29,169 56,493 71,796

VietNam

Hydro 58,491 75,271 68,177 66,334 87,782 68,177 69,443

FossilFuel 41,755 280,640 160,405 109,205 565,713 84,675 0

Gas 44,932 97,164 21,564 16,576 97,170 14,783 0

Wind 125 21,605 22,296 28,029 48,256 69,710 99,409

Solar 0 18,985 50,399 62,326 40,885 181,054 216,185

Bio 0 9,557 48,741 57,142 22,697 86,436 95,099

OtherRE 0 3,673 6,272 6,272 7,432 18,860 25,038

Thailand

Hydro 22,137 37,997 23,795 24,146 67,702 20,259 24,146

FossilFuel 46,807 42,836 20,841 39,189 146,792 5,622 0

Gas 115,720 177,954 108,582 18,682 183,068 55,910 0

Wind 500 4,755 24,629 33,533 17,322 58,517 68,386

Solar 170 17,723 47,681 68,308 31,384 136,904 161,172

Bio 2,059 17,564 32,745 53,769 56,984 92,919 105,652

OtherRE 0 5,782 6,272 6,272 16,517 18,504 19,799

LaoPDR

Hydro 4,211 21,229 16,020 15,786 38,569 15,902 16,408

FossilFuel 887 8,219 3,342 3,077 15,585 1,745 0

Gas 0 0 0 0 0 0 0

Wind 0 958 7,117 7,117 1,716 14,707 18,510

Solar 0 392 4,542 4,542 928 23,191 23,191

Bio 0 1,332 3,119 3,118 2,120 16,294 6,764

OtherRE 0 385 2,698 2,698 1,541 5,342 5,342

Myanmar

Hydro 8,099 24,075 23,125 25,280 40,036 23,362 23,287

FossilFuel 0 13,062 0 0 83,529 0 0

Gas 5,233 12,161 6,174 8,728 9,255 0 0

Wind 0 1,808 10,980 10,980 5,641 27,800 32,593

Solar 0 3,733 20,882 21,107 11,547 74,725 78,515

Bio 0 1,349 8,445 8,445 2,663 27,187 15,923

OtherRE 0 2,207 6,015 7,089 3,679 11,221 17,419

Cambodia

Hydro 4,038 14,404 6,633 6,018 28,968 6,295 6,485

FossilFuel 587 15,642 10,182 5,522 43,551 6,847 0

Gas 0 657 0 0 2,628 0 0

Wind 0 137 412 412 411 1,780 1,780

Solar 0 2,623 7,061 8,202 6,043 24,657 27,507

Bio 0 473 2,961 2,961 806 11,250 9,954

Page 218: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 226

2015 2030 2050

Country /Region Type Actual BAU SES ASES BAU SES ASES

OtherRE 0 0 417 765 0 2,567 4,199

Page 219: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 218

AppendixF SourcesofInformationforRenewableEnergyPotentialTable54summarisesthemainsourcesofinformationthatwereusedforassessmentofrenewableenergypotential,whichwerecombinedwithotherIESestimatesofrenewableenergypotential.

Table54 SourcesofInformationforRenewableEnergyPotential

Resource SourcesofInformationVietNam Thailand Myanmar LaoPDR Cambodia

Hydro(Large)

Refertopowersectorstatusreport.

K.AroonatandS.Wongwises,“CurrentstatusandpotentialofhydroenergyinThailand:aReview”,RenewableandSustainableEnergyReviews,Vol.36,June2016,pp.70-78

InformationpublishedbyMOEP.

LaoPDRhydropowerpotentialandpolicyintheGMScontext(EDL)

Variouspubliclyavailablereports.

Hydro(Small)

Refertopowersectorstatusreport.

Lackofdata Variouspubliclyavailablereports.

TheNeedforSustainableRenewableEnergyinLaoPDR(Vongchanh)

Variouspubliclyavailablereports.

PumpStorage

PrimeMinister’sDecisionNo.2068/QD-TTg(Nov2015)capacitytarget

TheSmallHydropowerProjectastheImportantRenewableEnergyResourceinThailand(Chamamahattana,Kongtahworn,Pan-aram,2005)

Nopubliclyavailablefeasibilitystudies

Nopubliclyavailablefeasibilitystudies

Nopubliclyavailablefeasibilitystudies

Solar PrimeMinister’sDecisionNo.2068/QD-TTg(Nov2015)productiontarget

Seeresourcemaps.IESanalysisofIRENAGlobalAtlasinformation.

Seeresourcemaps.IESanalysisofIRENAGlobalAtlasinformation.

RenewableEnergyDevelopmentsandPotentialintheGreater

Seeresourcemaps.IESanalysisofIRENAGlobalAtlasinformation.

Page 220: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 219

Resource SourcesofInformationVietNam Thailand Myanmar LaoPDR CambodiaconvertedtoMWequivalent.IESanalysisofIRENAGlobalAtlasinformation.StudyconductedbySpanishConsortiumforMOIT.

MekongSubregion(ADB,2015).IESanalysisofIRENAGlobalAtlasinformation.

WindOnshore

RenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

Potentialresourceabove6m/s.WindEnergyResourceAtlasofSoutheastAsia(TrueWindSolutions,2001),RenewableEnergyDevelopmentsintheGreaterMekongSubregion(ADB,2015).ItisunderstoodthattherearedifficultiesinThailandintermsofmountainousandremoteareasforthelocationsthathavehighwindpotential,buthaveassumedthatthesearenotinsurmountableintheSESandASES.

RenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

Potentialresourceabove7m/s.WindEnergyResourceAtlasofSoutheastAsia(TrueWindSolutions,2001)

PowerSectorVisionfortheMekongRegion(TheBlueCircle,2015)

WindOffshore

SeeWorldBankGroup,viaIRENAresourcemaps(Figure23,Figure24)

OffshorewindpowerpotentialoftheGulfofThailand(Waewsak,Landry,Gagnon,2015)

Lackofpubliclyavailablestudies

Notapplicable Lackofpubliclyavailablestudies

Biomass IESprojectionsbasedondatafromRenewable

IESprojectionsbasedondatafromRenewable

IESprojectionsbasedondatafromRenewable

IESprojectionsbasedondatafromRenewable

IESprojectionsbasedondatafromRenewable

Page 221: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 220

Resource SourcesofInformationVietNam Thailand Myanmar LaoPDR CambodiaEnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

EnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

EnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

EnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

EnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

Biogas IESprojectionsbasedondatafromRenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

IESprojectionsbasedondatafromRenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

IESprojectionsbasedondatafromRenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

IESprojectionsbasedondatafromRenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

IESprojectionsbasedondatafromRenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015)

Geothermal Refertopowersectorstatusreport.

Notsignificantenough,withGeothermaltargetsremovedfromAEDP2015

RefertodiscussioninMyanmarcountryreport.

LaoPDREnergySectorAssessment,Strategy,andRoadMap(ADB,2013)

Lackofstudiesavailable

Ocean OceanrenewableenergyinSoutheastAsia:Areview(2014),basedon40kW/mwavepotential,3200kmcoastline,10%efficiency

Lackofstudiesavailable OceanrenewableenergyinSoutheastAsia:Areview(2014),basedon5kW/mwavepotential,2300kmcoastline,10%efficiency

Notapplicable Lackofstudiesavailable

Page 222: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 221

AppendixG EconomicIndicatorsForreference,thisappendixsetsoutasummaryofeconomicindicatorsfortheGMScountriesdiscussedinthebodyofthereport.ThesearepresentedforeachcountryinTable55,Table56,Table57,Table58andTable59.

Table55 Cambodia:EconomicIndicators

Parameter Unit Source 2000 2005 2010 2011 2012 2013 2014RealGDP(2014) Real2014Riel(Billions) IMF 23,902 37,355 51,669 55,326 59,374 63,783 68,364RealGDP(2014) Real2014USD(Billions) IMF 6 9 13 14 15 16 17RealGDPGrowth(%) % IMF 8.8% 13.3% 6.1% 7.1% 7.3% 7.4% 7.2%Agriculture % ADB -1.2% 15.7% 4.0% 3.1% 4.3% 1.7% -2.5%Industry % ADB 31.2% 12.7% 13.0% 13.4% 10.4% 11.0% 13.0%Services % ADB 8.9% 13.1% 3.3% 5.7% 7.4% 8.7% 11.2%

Inflation(Average) Index IMF 83 92 136 144 148 152 159Inflation(Average)(%) %YoY IMF -0.8% 6.3% 4.0% 5.5% 2.9% 3.0% 4.5%Population People(Millions) IMF 12.2 13.4 14.4 14.6 14.9 15.1 15.3PopulationGrowthRate %YoY IMF 1.6% 1.6% 1.7% 1.8% 1.5% 1.5%GDPperCapita Real2014USD/Person IMF 483 691 889 936 987 1,045 1,104

Page 223: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 222

Table56 LaoPDR:EconomicIndicators

Parameter Unit Source 2000 2005 2010 2011 2012 2013 2014RealGDP(2014) Real2014Kip(Billions) IMF 35,463 48,118 70,637 76,317 82,344 88,957 95,511RealGDP(2014) Real2014USD(Billions) IMF 4 6 9 9 10 11 12RealGDPGrowth(%) % IMF 6.3% 6.8% 8.1% 8.0% 7.9% 8.0% 7.4%Agriculture % ADB 4.2% 0.7% 3.2% 2.7% 3.3% 2.9% 6.9%Industry % ADB 9.3% 10.6% 17.5% 14.6% 11.4% 8.9% 5.8%Services % ADB 6.9% 9.9% 7.0% 8.1% 9.2% 7.6% 9.6%

Inflation(Average) Index IMF 92 150 191 205 214 228 240Inflation(Average)(%) %YoY IMF 23.2% 7.2% 6.0% 7.6% 4.3% 6.4% 5.5%Population People(Millions) IMF 5.4 5.8 6.4 6.5 6.6 6.8 6.9PopulationGrowthRate %YoY IMF 1.6% 2.0% 2.0% 1.9% 1.9% 1.9%GDPperCapita Real2014USD/Person IMF 807 1,018 1,354 1,434 1,519 1,611 1,697

Table57 Myanmar:EconomicIndicators

Parameter Unit Source 2000 2005 2010 2011 2012 2013 2014RealGDP(2014) Real2014Kyat(Billions) IMF 17,826 32,648 47,443 50,246 53,914 58,362 63,323RealGDP(2014) Real2014USD(Billions) IMF 18 34 49 52 56 60 65RealGDPGrowth(%) % IMF 13.7% 13.6% 5.3% 5.9% 7.3% 8.3% 8.5%Agriculture % ADB 11.0% 12.1% 4.7% -0.7% 2.0% 4.5% 2.8%Industry % ADB 21.3% 19.9% 18.6% 10.2% 8.0% 8.4% 15.4%Services % ADB 13.4% 13.1% 9.5% 8.6% 12.6% 11.7% 7.6%

Inflation(Average) Index IMF 261 797 1627 1672 1720 1818 1938Inflation(Average)(%) %YoY IMF -1.7% 10.7% 8.2% 2.8% 2.8% 5.7% 6.6%Population People(Millions) IMF 46.4 48.0 49.7 50.1 50.5 51.0 51.4

Page 224: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 223

PopulationGrowthRate %YoY IMF 0.6% 0.8% 0.8% 0.9% 0.9% 0.9%GDPperCapita Real2014USD/Person IMF 396 701 984 1,034 1,100 1,180 1,270

Table58 Thailand:EconomicIndicators

Parameter Unit Source 2000 2005 2010 2011 2012 2013 2014RealGDP(2014) Real2014Baht(Billions) IMF 7,242 9,287 11,063 11,072 11,791 12,131 12,248RealGDP(2014) Real2014USD(Billions) IMF 225 288 344 344 366 377 380RealGDPGrowth(%) % IMF 4.8% 4.6% 7.8% 0.1% 6.5% 2.9% 1.0%Agriculture % ADB 6.8% -0.1% -0.4% 6.2% 1.9% 0.4% -6.4%Industry % ADB 2.6% 5.2% 10.3% -4.2% 7.5% 1.5% 0.5%Services % ADB 5.3% 4.1% 6.8% 3.3% 7.9% 4.3% 2.7%

Inflation(Average) Index IMF 75 83 96 100 103 105 107Inflation(Average)(%) %YoY IMF 1.6% 4.5% 3.3% 3.8% 3.0% 2.2% 2.1%Population People(Millions) IMF 61.9 65.1 67.3 67.6 67.9 68.2 68.6PopulationGrowthRate %YoY IMF 0.1% 0.6% 0.5% 0.5% 0.5% 0.5%GDPperCapita Real2014USD/Person IMF 3,636 4,429 5,109 5,089 5,395 5,524 5,550

Table59 VietNam:EconomicIndicators

Parameter Unit Source 2000 2005 2010 2011 2012 2013 2014RealGDP(2014) Real2014VND(Trillions) IMF 1,673 2,382 3,236 3,438 3,618 3,814 4,024RealGDP(2014) Real2014USD(Billions) IMF 78 111 151 160 169 178 188RealGDPGrowth(%) % IMF 6.8% 7.5% 6.4% 6.2% 5.2% 5.4% 5.5%Agriculture % ADB 4.6% 4.2% 3.3% 4.0% 2.7% 2.6% 4.5%Industry % ADB 10.1% 8.4% 7.2% 6.7% 5.7% 5.4% 6.5%Services % ADB 5.3% 8.6% 7.2% 6.8% 5.9% 6.6% 6.1%

Inflation(Average) Index IMF 80 100 167 198 216 231 243Inflation(Average)(%) %YoY IMF -1.8% 8.4% 9.2% 18.7% 9.1% 6.6% 5.2%

Page 225: ALTERNATIVES FOR POWER GENERATION IN THE ...awsassets.panda.org/downloads/regional.pdfGreater Mekong Subregion The Greater Mekong Subregion (GMS) is defined to be a set of countries

FINAL

IntelligentEnergySystems IESREF:5973 224

Population People(Millions) IMF 77.64 82.39 86.93 87.84 88.76 89.69 90.63PopulationGrowthRate %YoY IMF 0.4% 1.1% 1.0% 1.0% 1.0% 1.0%GDPperCapita Real2014USD/Person IMF 1,006 1,350 1,738 1,827 1,903 1,985 2,073