Alternative Fuels for Marine Application

  • Upload
    amirlng

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 8/13/2019 Alternative Fuels for Marine Application

    1/108

    Alternative Fuels forMarine Applications

    Annex 41

    Ralph McGill

    Fuels, Engines, and Emissions Consulting

    William (Bill) Remley

    Alion Science and Technology

    Kim Winther

    Danish Technological Institute

    A Report from the IEA Advanced Motor Fuels Implementing Agreement

    May 2013

  • 8/13/2019 Alternative Fuels for Marine Application

    2/108

  • 8/13/2019 Alternative Fuels for Marine Application

    3/108

    Alternative Fuels forMarine Applications

    Annex 41

    Ralph McGill

    Fuels, Engines, and Emissions Consulting

    William (Bill) Remley

    Alion Science and Technology

    Kim Winther

    Danish Technological Institute

    A Report from the IEA Advanced Motor Fuels Implementing Agreement

    May 2013

  • 8/13/2019 Alternative Fuels for Marine Application

    4/108

  • 8/13/2019 Alternative Fuels for Marine Application

    5/108

    i

    Acknowledgment

    TheIEAAMFOrganizationisgratefultothefollowingcountriesandtheir

    representativesfortheirsupportinprovidingfundingfortheresearchtodevelopthisreport.Theworkhasbeenmostinterestingandinformative.

    DenmarkJesperSchramm,TechnicalUniversityofDenmark(DTU)FinlandNilsOlofNylund,TheTechnicalResearchCentreofFinland(VTT)GermanyBirgerKerckow,FachagenturNachwachsendeRohstoffe(FNR)

  • 8/13/2019 Alternative Fuels for Marine Application

    6/108

    ii

    Thispageintentionallyblank.

  • 8/13/2019 Alternative Fuels for Marine Application

    7/108

    iii

    TableofContents

    Acknowledgment................................................................................................. i

    Acronymsand

    Abbreviations

    ................................................................................

    vii

    ExecutiveSummaryAnnex41............................................................................ xi

    1. Introduction.................................................................................................. 1

    2. Background................................................................................................... 3

    3. CurrentSituation........................................................................................... 9

    3.1 LegislationforMarineSOxReduction......................................................... 93.2 LegislationforMarineNOxReduction........................................................ 93.3 CompliancewithMarineSOxandNOxLegislation..................................... 11

    4. FuelPricesandAvailability............................................................................ 13

    4.1 CurrentMarineFuels.................................................................................. 134.2 GlobalFuelConsumptionbyVesselType................................................... 154.3 FuelCost...................................................................................................... 16

    5. AlternativeMarineFuelIncentives................................................................. 19

    6. AlternativeMarineFuelsandEngines............................................................ 21

    6.1 LiquidorCrudeBasedFossilFuels.............................................................. 226.2 LiquidBiofuels............................................................................................. 24

    6.2.1 Methanol......................................................................................... 256.2.2 Biocrude.......................................................................................... 26

    6.3 GaseousFuels.............................................................................................. 276.4 ExhaustGasTreatmentSystems................................................................. 297. AssessingAlternativeFuelsforMarineUse.................................................... 33

    7.1 LiquidFossilFuelsAdvantages.................................................................... 337.1.1 FuelSystemandEngineCompatibility............................................ 337.1.2 LowerSOxEmissions....................................................................... 347.1.3 Safety............................................................................................... 347.1.4 Availability....................................................................................... 34

    7.2 LiquidFossilFuelsDrawbacks..................................................................... 34

    7.2.1 Price................................................................................................. 347.2.2 Characteristics................................................................................. 357.2.3 FutureAvailability........................................................................... 35

    7.3 LiquidBiofuelsCharacteristics.................................................................... 367.3.1 BiodieselAdvantages...................................................................... 367.3.2 BiodieselDrawbacks........................................................................ 367.3.3 AlgaeFuelsAdvantages................................................................... 377.3.4 AlgaeFuelDrawbacks...................................................................... 397.3.5 HydrogenationDerivedRenewableDieselAdvantages.................. 39

    7.3.6 HDRDDrawbacks............................................................................. 407.4 GaseousFuels:NaturalGas......................................................................... 407.4.1 NaturalGasAdvantages.................................................................. 407.4.2 NaturalGasDrawbacks................................................................... 42

    7.5 FutureMarineFuelUse............................................................................... 55

  • 8/13/2019 Alternative Fuels for Marine Application

    8/108

    iv

    8. VesselsUsingAlternativeFuels...................................................................... 57

    8.1 VesselsUsingULSDandLSRF...................................................................... 578.2 VesselsUsingNaturalGas........................................................................... 57

    8.2.1 LargeShips....................................................................................... 63

    8.3 VesselsUsingLiquidBiofuels....................................................................... 649. TheWayForwardforFutureMarineFuels..................................................... 679.1 BreakEvenPoints....................................................................................... 68

    10. Conclusions................................................................................................... 71

    11. Recommendations......................................................................................... 75

    References........................................................................................................... 77

    AppendixAMarineAfterExhaustTreatmentSystems....................................... 83

    A.1 SelectiveCatalyticReductionandExhaustGasRecirculationSystems....... 83A.2 ScrubberSystems........................................................................................ 85

  • 8/13/2019 Alternative Fuels for Marine Application

    9/108

    v

    ListofFigures

    1. CurrentandPossibleFutureECAs........................................................................ 4

    2. NorthEuropeanSECAEffectiveasofAugust11,2007......................................... 53. ShipOperatorsChallenges................................................................................... 64. IMODieselEngineNOxEmissionLimits............................................................... 105. GlobalMarineFuelConsumptionEstimates,IMO2009....................................... 136. TypicalHeavyMarineFuelTypeDistribution....................................................... 147. TheTotalWorldMarineFleetAccordingtoIMO................................................. 158. WorldBunkerFuelDemand................................................................................. 159. BunkerworldIndexPricesofHFSO380andMDO................................................ 1610. CostofLighterLowSulphurFuelsComparedtoHighSulphurBunkerFuel........ 17

    11. SulfurContentofConventionalMarineFuels...................................................... 2212. WrtsilDirectInjectionDualFuelConceptforMethanolinLargeFourStrokeEngines.............................................................................................. 26

    13. WrtsilPortInjectionDualFuelConceptforGasUseinLargeFourStrokeEngines.............................................................................................. 29

    14. CostsofScrubberSystems[CoupleSystems,AlfaLaval]...................................... 3115. ProjectedPricesofMarineFuels.......................................................................... 4116. WeightsandVolumesofMarineFuels................................................................. 4417. LNGBunkeringShipSeagasalongsidetheVikingGrace................................... 46

    18. ExistingandPlannedProductionPlantsandLNGTerminalsintheSECA............. 5319. LNGBunkeringBarge............................................................................................ 5520. BitVikingwithLNGFuelTanksontheMainDeck............................................. 6121. LNGTanksonTopDeckofWSFIssaquahClassFerry........................................... 6222. ConceptIllustrationofTOTEContainerShip........................................................ 6423. FuelSelectionProcessisResponsibilityoftheChartererand

    IsInfluencedbyManyFactors.............................................................................. 6824. BreakEvenAnalysisforScrubberInstallationon38,500dwtTankers................ 69A1.SCRSolutionbyMAN............................................................................................ 83

    A2.AdvancedEGRSystembyMAN............................................................................ 84A3.ScrubberSystembyAlfaLaval.............................................................................. 85A4.FicariaSeawaysEquippedwithPresumablyWorldsLargest

    RetrofitScrubberin2009..................................................................................... 86A5.ClosedLoopScrubberbyWrtsil........................................................................ 86A6.DryScrubberSystembyCoupleSystems,Germany............................................. 87

  • 8/13/2019 Alternative Fuels for Marine Application

    10/108

    vi

    ListofTables

    1. MARPOLAnnexVIMarineSOxEmissionReductionAreaswith

    FuelSulfurLimits.................................................................................................. 92. MARPOLAnnexVINOxEmissionLimits............................................................... 103. GlobalMarineFuelUseEstimatedfromIMOandSingaporePort

    BunkeringStatistics2009...................................................................................... 144. FeedstocksandDerivedFuels............................................................................... 215. MarineFuelPricesinJuly2012inUSD/MetricTonbyPort................................. 356. Comparisonof50/50BlendofAlgaeandF76PetroleumFuelwith

    PetroleumF76..................................................................................................... 387. CostsAssociatedwithConvertingMarineVesselstoLNGOperation.................. 43

    8. FuelUsageandStorageVolumesforThreeTypesofVessels.............................. 449. BarrierstoIntroductionofLNGandPossibleActions.......................................... 5210. 2020MarineFuelMix........................................................................................... 5611. LNGUsageLevelsfortheBase,High,andLowCasesPredictedby

    LoydsRegister...................................................................................................... 5612. CurrentOrderBookforNewLNGFueledVessels................................................ 5913. SummaryofEvaluationofPropellantSystems..................................................... 72

  • 8/13/2019 Alternative Fuels for Marine Application

    11/108

    vii

    AcronymsandAbbreviations

    ABS AmericanBureauofShipping

    ASTM AmericanSocietyforTestingandMaterials

    BN basenumberBTL biomasstoliquidBV BureauVeritas

    CCS ChineseClassificationSocietyCCW CaliforniaCoastalWatersCO2 carbondioxide

    CNG compressednaturalgasCNOOC ChinaNationalOffshoreOilCorporationDFDS DetForenedeDampskibsSelskabDME dimethyletherDNV DetNorskeVeritasDSME DaewooShipbuilding&MarineEngineering

    ECA EmissionsControlAreaEEDI EnergyEfficiencyDesignIndex

    EGCS exhaustgascleaningsystemEGR exhaustgasrecirculationEU EuropeanUnion

    FAME fattyacidmethylester

    GATE GasAccesstoEuropeGHG greenhousegasGL GermanischerLloyd

    GTL gastoliquidGTM GreenTechMarine

    HDRD hydrogenationderivedrenewabledieselHFO heavyfueloilHRD hydrotreatedrenewablediesel

    ICS InternationalChamberofShippingIF intermediatefuel

    IFO intermediatefueloilIMO InternationalMaritimeOrganizationISO InternationalStandardsOrganization

    JIV jointindustryproject

  • 8/13/2019 Alternative Fuels for Marine Application

    12/108

    viii

    JV jointventure

    LBG liquefiedbiogasLNG liquefiednaturalgas

    LOA lengthoverallLPG liquidpropanegasLR LloydsRegisterLS lowsulfurLSFO lowsulfurfueloilLSRF lowsulfurresidualfuel

    MARPOL marinepollution;thus,theInternationalConventionforthePreventionofPollutionfromShips

    MBM marketbasedmeasureMDO marinedieseloilMEGI mainenginegasinjectionMGO marinegasoilMnT milliontonnesMSAR2 MulPhaseSuperfineAtomizedResidue

    NaOH sodiumhydroxideNOx nitrogenoxides

    PM particulatematter

    OSV offshoresupplyvessel

    REM RemOffshoreRFO residualfueloilRFS RenewableFuelsStandardRMG residualmarinegas

    RO/RO rollon,rolloff

    S sulfurSABIC SaudiBasicIndustriesCorporationSCR selectivecatalyticreductionSECA SOxEmissionControlAreasSI sparkignitionSOx sulfuroxideSTQ SocietedestraversiersduQuebec

    TENT TransEuropeanTransportNetworkTOTE TotemOceanTrailerExpress

    ULSD ultralowsulfurdiesel

  • 8/13/2019 Alternative Fuels for Marine Application

    13/108

    ix

    USD U.S.dollar(s)

    WSF WashingtonStateFerries

    UnitsofMeasure

    cSt centistokes

    dwt deadweightton(s)

    g gram(s)

    HP horsepower

    kg kilogram(s)km kilometer(s)kW kilowatt(s)kWh kilowatthour(s)

    m meter(s)MJ megajoule

    MT Megaton;MetricTonMW megawatt(s)

    nm nauticalmiles

    ppm partspermillionpsi poundspersquareinch

    rpm rotationsperminute

    TEU twentyfootequivalentunit

  • 8/13/2019 Alternative Fuels for Marine Application

    14/108

    x

    Thispageintentionallyblank.

  • 8/13/2019 Alternative Fuels for Marine Application

    15/108

    xi

    ExecutiveSummaryAnnex41

    Themarine shipping industry is facing challenges to reduceengineexhaustemissions

    and greenhouse gases (GHGs) in particular, carbon dioxide (CO2) from their ships.International regulatorybodiessuchas the InternationalMaritimeOrganization (IMO)and national environmental agencies of many countries have issued rules andregulationsthatdrasticallyreduceGHGandemissionsemanatingfrommarinesources.Thesenewrulesare impactingships thatengage in internationalandcoastalshippingtrade, the cruise industry, and ship owners and operators. Of particular note areregulations inEmissionsControlAreas (ECAs) suchas theNorthAmericanECA,whichcameintobeingin2012,andtheSOxEmissionControlAreas(SECAs),whichhavebeenin effect in the Baltic Sea and North Sea and English Channel since 2006 and 2007,

    respectively. Ships operating in the ECAs and SECAs are required to use lower sulfurfuelsoraddsulfuroxide (SOx)exhaustscrubbers. It isalsoexpected that futureECAswillbecoming intoeffect incountries that seeheavy ship traffic.Effectingneartermlocal(SECA/ECAdriven)nitrogenoxide(NOx)andSOxreductions isthemostpressingissue as a result of these regulations. Over the longer term, addressing GHG andparticulatematter(PM)emissionswillprovidefurtherenvironmentalchallenges.

    Manyshipoperators,withpresentdaypropulsionplantsandmarinefuels,cannotmeetthesenew regulationswithout installingexpensiveexhaustaftertreatmentequipment

    orswitchingtolowsulfurdiesel,lowsulfurresidual,oralternativefuelswithpropertiesthat reduceengineemissionsbelowmandated limits,allofwhich impactbottomlineprofits.Theimpactofthesenewnationalandinternationalregulationsontheshippingindustries worldwide has brought alternative fuels to the forefront as a means forrealizing compliance. The alternative fuels industry has grown dramatically for bothliquid and gaseous fuels. Each of these alternative fuels has advantages anddisadvantagesfromthestandpointoftheshippingindustry.

    Thisreportexaminestheuseofalternativefuelsforusebythemarineshippingindustry

    to satisfy or partially satisfy the new emissions and fuel sulfur limits. It also looks atexhaustaftertreatmentdevicesthatcanbeusedtolowertheengineexhaustemissions.

    Alargepartofthemarinefuelconsumption(approximately77%)isoflowquality,lowpriceresidual fuelreferredtoasheavyfueloil(HFO),whichtendstobehigh insulfurand isalmostentirelyconsumedby largecargocarryingships.Theaverage fuelsulfurcontentofHFOusedtodayformarinedieselenginesis2.7%withamaximumallowablelimitof4.5%,whichpresentschallengesastherequiredfuelsulfurlevelsforuseintheECAsandglobally are lower.Almost90%of theworlds marine fuel isusedby cargo

    ships.Thisreportdealsonlywithfuelssuitableforheavydutydieselenginesprovidingpropulsionandauxiliaryenergyon commercial shipswhich is thebulkofmarine fuelconsumption.

  • 8/13/2019 Alternative Fuels for Marine Application

    16/108

    xii

    Currently,themostpracticalsolutionistouselowsulfurfuelswheninanECAandothersituationsrequiringuseoflowsulfurfuels.Thereareliquidbiofuelsandfossilfuelsthatare low insulfurandcansatisfythefuelsulfurrequirementsoftheECAsandMARPOL(InternationalConventionforthePreventionofPollutionfromShips)AnnexVI.Inlieuof

    usinglowsulfurliquidfuels,anotheroptionistheuseofscrubbersfittedintheengineexhausttoremovetheSOx.

    This report examines a variety of liquid fossil and biofuels. Liquid biofuels that areavailable for marine use are biodiesel; fatty acid methyl ester (FAME); algae fuels;methanol; hydrogenationderived renewable diesel (HDRD), which is also known assecondgeneration biodiesel; and pyrolysis oil. The advantages and disadvantages ofthesefuelsformarineusearediscussed.

    TheaftertreatmentapproachformeetingtheNOxandSOxlimitsistoinstallemissioncompliantenginesor selective catalytic reduction (SCR)equipment forNOx reductionandexhaustaftertreatmentdevicesknowasscrubbersforSOxreduction.Whenlookingat these technologies, the cost tradeoffs for their installation, operation, andmaintenanceversus thecostsof thealternative fuelsmustbeconsidered.The reportdiscussestheeconomicsandbreakevenpointforusingscrubbersversusconventionalfossilfuelsbasedonoperationswithinanECA.

    Gaseousfuelsareanotheroptionbutrequireadifferenttypeof fuelhandlingsystem,

    fuel tanks and gas burning engines that are not currently in use on most ships. Thegaseous fuels that are available for marine use are natural gas and propane (liquidpropanegas [LPG]).Notonlyare these fuelsvery low insulfurcontent, theycombustsuch that NOx, PM, and CO2 are also reduced. Natural gas can be carried as acompressedfuelcalledcompressednaturalgas(CNG)orinaliquidstatecalledliquefiednaturalgas(LNG).

    Currently,thepriceofnaturalgasisveryattractiveandassuchisagoodcandidateforservingasashipsfuel.Thereareanumberofshipsthathavebeenbuilttousenatural

    gasasfuel,mostlyinthecoastwisetradeoronfixedroutessuchasferries.

    Atpresent,vesselsusingnaturalgasasa fuelare in the small tomediumsize rangewithlargershipsbeingbuiltorconvertedforoperationonLNGfuel.TheonlylargeshipscurrentlyusingLNGasafueloninternationalvoyagesareLNGcargocarriers.

    ForLNGtobecomeanattractivefuelforthemajorityofships,aglobalnetworkofLNGbunkeringterminalsmustbeestablishedorLNGfueledshipswillbe limitedtocoastaltradeswherethereisanLNGbunkeringnetwork.Thesituationissometimesdescribed

    asachickenandeggdilemma.Untilthebunkeringinfrastructureisinplace,theshipownersmaynotcommittooperatingnaturalgasfueledshipsandvisaversa.Currently,LNGbunkeringismoreexpensiveandcomplicatedthanfossilfuelbunkeringandisonlyavailableinalimitednumberofplaces.TheportofStockholm,Sweden,hasestablished

  • 8/13/2019 Alternative Fuels for Marine Application

    17/108

    xiii

    anLNGbunkeringportwithdocksidefuelingandaspecialpurposeshipthatperformsshiptoshipLNGfueling.

    As the shipping industry considers alternatives to HFO, part of the market will shift

    towardmarinegasoil (MGO)andpart towardLNGorotheralternative fuels.Marinevesselsequippedwith scrubberswill retain theadvantageofusing lowerpricedHFO.Shipping that takes place outside ECA areas might choose HFO or lowsulfur fuel oil(LSFO)dependingonfutureglobalregulations.Shipsoperatingpartly inECAareaswillprobablychooseMGOasacompliancefuel.HeavyshippingwithinECAareas,however,mightbeincentiveenoughforacompleteshifttoLNG.

    Compliance with the new emission requirements will raise operating costs for shipowners and operators in terms of new construction ships that will have more

    complicatedfuelsystemsandperhapsaftertreatmentdevicesandmoreexpensivelowsulfurfuelswhenintheECAsandotherlowsulfurcomplianceportsandcoastalwaters.ExistingshipsthatdonothavedualtanksmayhavetoberetrofittedwithdualfossilfuelsystemssotheycanperformfuelswitchingwhentheyenteranECA.

  • 8/13/2019 Alternative Fuels for Marine Application

    18/108

    xiv

    Thispageintentionallyblank.

  • 8/13/2019 Alternative Fuels for Marine Application

    19/108

    1

    1. Introduction

    Recent sulfur and emissionsrelated limits imposed on fuels used in the shipping

    industryarecausingtheindustrytolookatalternativefuelsasawayofcomplyingwiththenewlimits.Thisstudyfocusesonthedetailsofthesenewemissionsrequirements,theirimplementationtimeframes,thetypesofalternativefuelsavailableforcomplyingwiththeserequirements,thecostsofcompliancedependingonthepathwaytaken,andalternativemethods(suchasexhaustgasscrubbers)forloweringtheexhaustemissions.

    The report discusses in detail the advantages and disadvantages of liquid fossil andgaseous fuelsandbiofuelsthatareavailable formarineuseandcanhelpshipownersandoperatorscomplywiththefuelsulfurandexhaustemissionlimits.

    Also discussed are marine vessels currently using alternative fuels and vessels beingconvertedtouseorbeingbuiltwithonboardpowerpropulsionplantsusingalternativefuels.

    Last,thisreportassessesthefutureofalternativemarinefuelsanddrawsconclusions.

  • 8/13/2019 Alternative Fuels for Marine Application

    20/108

    2

    Thispageintentionallyblank.

  • 8/13/2019 Alternative Fuels for Marine Application

    21/108

    3

    2. Background

    Theworlds total liquid fuelsupplycurrentlystandsatapproximately4,000Megatons

    (MT)peryear.Marineliquidfuelsconstituteasignificantproportionat300400MTperyear.Almost90%oftheworldsmarinefuel isusedbycargoships.Passengervessels,fishing boats, tug boats, navy ships, and other miscellaneous vessels consume theremaining10%.

    Thevastmajorityofshipstodayusedieselenginessimilar inprincipletothose incars,trucks,andlocomotives.However,marinefuelsdifferinmanyaspectsfromautomotiveenginefuels.

    Thequalityofmarinefuelsisgenerallymuchlowerandthequalitybandismuchwiderthan are those of landbased fuels. Marine engines must accept many different fuelgradesoftenwithlevelsofhighsulfurcontentthatwouldseriouslyharmthefunctionofexhaust gas recirculation (EGR) and catalyst systems on automotive engines. Theviscosityofmarinefuels isgenerallymuchhigherupto700cSt,whereasroaddieselfuelrarelyexceeds5cSt.Mostmarine fuels thus requirepreheating toenter the fuelsystem.

    This finding also means that traditional emissions abatement technologies for road

    based transportsuchasdieselparticulate filters,exhaustgasrecirculationsystems,andoxidationcatalystscannoteasilybeusedonships.Therisksofsulfurcorrosionandveryhigh sootemissions call fordifferent solutions suchas scrubbersoralkalinesorptionsystemsasseparatesolutionsorincombinationwithtechnologiesknownfromroadbasedemissionsabatementtechnologies.

    Recent domestic and international efforts to reduce the impact of greenhouse gases(GHGs)onclimatechangeandengineemissionsthataffectthehealthofmanyhasledinternational regulatorybodiessuchas the InternationalMaritimeOrganization (IMO)

    andnationalenvironmentalagenciestoissuenewrulesandregulationsthatdrasticallyreduceGHGsandemissionsemanatingfrommarinesources.Thesenewruleshavefarreaching implicationsforthe internationalshippingtrade,thecruise industry,andshipowners and operators in particular. Of particular note are regulations in EmissionsControlAreas(ECAs)suchastheNorthAmericanECA,whichwent intoeffect in2012,andtheSOxEmissionControlAreas(SECAs),whichhavebeenineffectontheBalticSeaand North Sea and English Channel since 2006 and 2007, respectively. On August1,2012,enforcementof theNorthAmericanECAcommenced.TheNorthAmericanECAcovers the coastal watersof the UnitedStatesandCanada out to200 nauticalmiles.

    Ships operating in the ECAs and SECAs are required to use lowersulfur fuels or addsulfuroxide(SOx)exhaustscrubbers.RegulationsforaCaribbeanECAwillgointoeffectforPuertoRicoand theU.S.Virgin Islands.Allowing for the lead timeassociatedwiththe IMOprocess, theU.S.CaribbeanECAwillbeenforceable in January2014 (Ref.1).ThereisthepotentialthatECAswillbeestablishedfortheNorwegianandBarentsSea,

  • 8/13/2019 Alternative Fuels for Marine Application

    22/108

    4

    MediterraneanSea,Japan,Australia,MexicoandPanama,theArctic,andAntarctica inthe future (Ref.2).The rules for theseareaswillmandate reductions inemissions ofsulfur (S), nitrogen oxides (NOx) and particulate matter (PM). Current and possibleFutureECAsareshowninFigure1.

    Figure1. CurrentandPossibleFutureECAs(Source:Ref.2)

    Approximately10%oftheworldsshippingoccurswithintheBalticSearegion(Ref.3),whichisshowninFigure2.

  • 8/13/2019 Alternative Fuels for Marine Application

    23/108

    5

    Figure2. NorthEuropeanSECA

    EffectiveasofAugust11,2007(Source:Ref.4)

    Someoftheregulatoryandcompetitivechallenges facingshipoperatorsareshown in

    Figure3.

    Elements in Figure 3 are sometimes competing against each other, especially

    considering the reduction of NOx, sulfur, and carbon dioxide (CO2). As an example,

    achievingareductionofsulfurbyusingawetscrubbermeans increasingpowerusage

    significantlytopumpwater,which,intheend,willleadtoanincreaseinCO2emissions,

    aswellasotherpollutantsassociatedwithpowerproduction.Similarly,althoughNOx

    could be reduced by lowering the combustion temperature, that adjustment reduces

    the efficiency of the main engine and hence increases CO2 and sulfur emissions. A

    selectivecatalyticreduction(SCR)installationtoreduceNOxuseschemicals,whichalso

    deliverapenalty

    in

    terms

    of

    CO2emissionsandtheenvironmentandshouldbetaken

    intoconsideration.

    Possibilitiestoreduceemissionsareinfluencedbythefreightratesthatshipownerscan

    obtain and the fuel prices and taxes of the market. The dilemma therefore lies in

    devisinganincentivetoincreaseefficiencyandtherebylowershipsfuelconsumption.

    Shorttermlocal(SECA/ECA)NOxandSOxreductionsarethemostpressingissues.Over

    the longerterm,addressingGHGandPMemissionswillprovidefurtherenvironmental

    challenges.

    Theshippingindustryalsofacesdiminishingshippingratesandasignificantrise infuel

    prices, includingtaxes in the formofmarketbasedmeasures (MBMs)topromote the

    reduction of GHG emissions. Another relevant factor is that acquisitions or takeovers

  • 8/13/2019 Alternative Fuels for Marine Application

    24/108

    6

    are common in the marine sector. Ship operators face the risk of takeover by

    competitorsiftheyarenotsufficientlystrong.Thereisariskthatoperatorsfocusingtoo

    muchonenvironmentalissueswillbetakenoverbystrongercompetitors(Ref.5).

    In

    particular,

    freight

    rates

    in

    2011

    and

    at

    the

    beginning

    of

    2012

    were

    often

    atunprofitable levels for ship owners. Substantial freightrate reductions were reported

    within the dry bulk, liquid bulk, and containerized cargo segments. Vessel oversupply

    continued to be a driving factor behind reductions in freight rates. Ship operators

    attempted torealizesavingsthroughgreatereconomiesofscaleby investing in large

    capacityshipsinthetankeranddrybulkmarketsegments(Ref.6).

    Incentives in the formofMBMs to reduceGHGemissions from internationalshipping

    could result in a fuel levy (tax). The international shipping industry has indicated a

    preferencefor

    the

    fuel

    levy

    rather

    than

    an

    emissions

    trading

    scheme

    (Ref.

    6).

    Figure3. ShipOperatorsChallenges

    Ship

    OperatorsChallenges

    NOxReduction

    CO2Reduction

    FreightRates

    FutureFuel Taxes

    SulphurReduction

    Policing

    New Vessels

  • 8/13/2019 Alternative Fuels for Marine Application

    25/108

    7

    Manyshipoperatorswithpresentdaypropulsionplantsandmarinefuelscannotmeetthesenew regulationswithout installingexpensiveexhaustaftertreatmentequipmentorswitchingtolowsulfurdiesel,lowsulfurresidual,oralternativefuelswithpropertiesthat reduceengineemissionsbelowmandated limits,allofwhich impactbottomline

    profits.Theimpactofthesenewnationalandinternationalregulationsontheshippingindustries worldwide has brought alternative fuels to the forefront as a means forachieving compliance. The alternative fuels industry has grown dramatically for bothliquid and gaseous fuels. Each of these alternative fuels has advantages anddisadvantagesfromthestandpointoftheshipping industry. It isvitally importantthatthe nations recognize the impact that the new marine regulations will have on theirmarineindustriesandimplementpoliciesthatwillminimizetheseimpactsandpavethewayforsmoothtransitionstouseofalternativemarinefuelsandoperatingproceduresthat will meet GHG and emissions limits withoutjeopardizing international maritime

    trade.

  • 8/13/2019 Alternative Fuels for Marine Application

    26/108

    8

    Thispageintentionallyblank.

  • 8/13/2019 Alternative Fuels for Marine Application

    27/108

    9

    3. CurrentSituation

    Worldwide,marinefuelaccountsfor20%oftotalfueloildemand(Ref.7),notingthat

    fueloilisexcludinggasoline.Currently,annualglobaldemandformarinefuelisgreaterthan300MTandconsistsofbothdistillateandresidualfuels.Alargepartofthemarinefuel consumption (approximately 77%) is of lowquality, lowprice residual fuel alsoknownas (a.k.a.)heavy fueloil (HFO),which tends tobehigh in sulfurand isalmostentirelyconsumedbylarge,cargocarryingships.TheaveragefuelsulfurcontentoftheHFO formulations used today for marine diesel engines is 2.7% with a maximumallowable limitof4.5% (Ref.8). (SeeFigure11 foraverage fuelsulfur limits.)The fuelmust alsobe heated to lower the viscosity so it flows easilyand then isput throughpurifiersandfilterstoremovecontaminantsbeforeitispumpedtothedieselengines.

    3.1 LegislationforMarineSOxReduction

    New and existing regulations derived from the International Convention for thePreventionofPollutionfromShips(MARPOL)affectingtheSOxemissionsfromshipsaresummarizedinTable1.

    Table1.

    MARPOL

    Annex

    VI

    Marine

    SOx

    Emission

    Reduction

    Areas

    with

    Fuel

    Sulfur

    Limits

    Year FuelSulfur(ppm) FuelSulfur(%)

    EuropeanSECAs

    NorthSea,EnglishChannel

    CurrentLimits 10,000 1

    2015 1,000 0.1BalticSea CurrentLimits 10,000 1

    2015 1,000 0.1NorthAmericanECAsUnitedStates,Canada 2012 10,000 1

    2015 1,000 0.1Global 2012 35,000 3.5

    2020a 5,000 0.5a Alternativedateis2025,tobedecidedbyareviewin2018.

    3.2

    Legislationfor

    Marine

    NOx

    Reduction

    InadditiontohavingtomeetthefuelsulfurlimitsinTable1,shipsoperatingintheECAsmustmeettheMARPOLAnnexVIMarineTierIIINOxlimitsin2016.

  • 8/13/2019 Alternative Fuels for Marine Application

    28/108

    10

    Table 2 (Ref. 9) shows the applicable NOx limits for ships and the dates that they

    becameorwillbecomeeffective.

    Table2. MARPOLAnnexVINOxEmissionLimits(Source:Ref.9)

    Tier Date

    NOxLimit,g/kWh

    n

  • 8/13/2019 Alternative Fuels for Marine Application

    29/108

    11

    3.3 CompliancewithMarineSOxandNOxLegislation

    Given theproliferationof theECAsand thepossibility thatmoreECAs,suchas in theMediterraneanSeaandthecoastofMexico,maycomeintobeinginthefuture,thereis

    astrongincentiveforshipownersandoperatorstoexploretheuseofalternativefuelstosatisfythelowerfuelsulfurandNOxlimits.

    AnotherapproachformeetingtheNOxandSOx limits istoinstallemissionscompliantenginesorSCRequipmentforNOxreductionandexhaustaftertreatmentdevicesknownasscrubbers forSOxreduction.When lookingatthese technologies,thecosttradeofffortheirinstallation,operation,andmaintenanceversusthecostofthealternativefuelmustbeconsidered.

    This report deals only with fuels that are suitable for heavyduty diesel enginesproviding propulsion and auxiliary energy on commercial ships, which is the bulk ofmarinefuelconsumption.

    Turbine engines are rarely used on commercial ships. Part of the reason is that gasturbinesaregenerallycostlyandlessefficientthandieselenginesandthereforearelesssuitedforcommercialuse.Thesamegoesforsparkignition(SI)engines.Steamturbinesare extremely fuel flexible but are also slow starting. Furthermore, they require arathersteadyloadinthehighband,whichiswhytheyarenotcommon.

    Otherfuelsnotincludedforpractical,economical,orsafetyrelatedlimitationsofshipsarethefollowing:

    Nuclearfuelso Thoriumo Uraniumo Plutoniumo H3

    Windorsolarpowero Sailso Kiteso Windturbineso Photovoltaiccells

    Solidboilerfuelso Coalo Cokeo Peato Lignite

    GasturbineorSIenginespecificfuelso Keroseneo Ethanolo Gasoline

  • 8/13/2019 Alternative Fuels for Marine Application

    30/108

    12

    Gasificationfuelso Woodandothercellulosicbiomasso Sludgeandotherorganicwastes

    Electrochemicalfuelso Hydrogeno Batteries

    Adistinctionshouldbemadebetweendropinfuelsasdefined inSection5,whichcanbe distributed through existing channels, and non dropinfuels, which require acompletely new infrastructure. Marine fuels in particular should be availableeverywhere in the world. For this reason, particularly rare and exotic fuels are notincludedinthisdiscussionoffuturemarinefuels.

  • 8/13/2019 Alternative Fuels for Marine Application

    31/108

    13

    4. FuelPricesandAvailability

    Thissectionexaminesthecostandavailabilityofmarinefuels.

    4.1 CurrentMarineFuels(WorldMarket)

    Thereissomeuncertaintyastoglobalmarinefuelconsumption.Thevariationbetweenstudies suggests a possible range between 279400MT/year. On thebasis of severalstudies,IMOestimatesthetotal2007fuelconsumptionat333MT/year(Figure5).

    Figure5.

    Global

    Marine

    Fuel

    Consumption

    Estimates,

    IMO

    2009

    (Source:Ref.11)

    MarinefuelstandardsaresetinISO(InternationalStandardsOrganization)8217.Thereare10gradesofresidualfuelofwhich380and180arethemostcommon.

    TheIMOestimatesthat77%ofallmarinefuel(257MT/year) isresidualfueloil(RFO).HighsulfurRFOuseisconcentratedonthelargestlonghaulvessels(Ref.10).

    Figure 6 shows a typical fuel mix sold in Singapore one of the worlds busiestseaports.

  • 8/13/2019 Alternative Fuels for Marine Application

    32/108

    14

    Figure6. TypicalHeavyMarineFuelTypeDistribution

    (Source:SingaporePortBunkeringStatistics2009,

    http://www.mpa.gov.sg/sites/port_and_shipping/port/bunkering/

    bunkering_statistics/bunker_sales_volume_in_port.page)

    BecausetheSingaporePortsellspracticallynoMGOormarinedieseloil(MDO), itwill

    beassumedthatthedistributionisvalidforheavyfuelsonly(i.e.,77.2%ofthemarket).

    Distillate fuelswill thusaddup to22.8%.The resulting fuelstatistics, including lighter

    fueltypesnotsoldinSingapore,areshowninTable3.

    Table3. GlobalMarineFuelUseEstimatedfromIMOandSingaporePortBunkering

    Statistics2009

    FuelType OtherNames

    MarketPercent

    (%)

    Megatons

    perYear

    Heavyfuel500CSt HSFO500CSt,RFO,RMG 500a,

    IFO500,MFO500 10 33

    Heavyfuel380CSt HSFO380CSt,RFO,RMG 380,

    IFO380,MFO380 60 200

    Heavyfuel180CSt HSFO180CSt,RFO,RMG 180,

    IFO180,MFO180 6 20

    Distillatefuels

    Diesel,

    Marine

    diesel,

    MGO,

    MDO,LFO 23 77

    Others 1 3

    Total 100 333a RMG=residualmarinegas;IFO=intermediatefueloil.

  • 8/13/2019 Alternative Fuels for Marine Application

    33/108

    15

    4.2 GlobalFuelConsumptionbyVesselType

    TheIMOestimatesthetotalworldfleetasof2007tobe100,243vesselsabove100GT

    (Ref.11). The fleet consists of approximately 40% cargo ships, 20% tankers, and 25%

    containerships,

    according

    to

    Det

    Norske

    Veritas

    (DNV)

    (Ref.

    12);

    see

    Figures

    7and

    8.

    Figure7. TheTotalWorldMarineFleetAccordingtoIMO(Source:Ref.11).

    Only25%of thevessels runonRFO;however, theyaccount for77%ofglobalmarine

    fuelconsumption.

    Figure8. WorldBunkerFuelDemand(Source:Ref.10)

    Service,passenger,

    fishing

    Cargoships

  • 8/13/2019 Alternative Fuels for Marine Application

    34/108

    16

    4.3 FuelCost

    Highviscosity, highsulfur fuel oil (HSFO) is the least costly fuel, whereas prices forlighter fuels with less sulfur generally have higher costs. The baseline for HSF380 is

    about $700 USD/ton. Marine diesel MDO (or MGO) fuels are about $1,000 USD/ton.Figure9showsindexpricesfromBunkerworld.

    Figure9. BunkerworldIndexPricesofHFSO380(top)andMDO(bottom)

    (Source:Ref37)

  • 8/13/2019 Alternative Fuels for Marine Application

    35/108

    17

    Theoncostsofdifferentlightfuelsaresomewherebetween$100and$400USD/ton,asshowninFigure10.Thedifferencevarieswithtime.

    Figure10. CostofLighterLowSulphurFuelsCompared

    toHighSulphurBunkerFuel(Purvin&Gertz)(Source:Ref.10)

    World LNG prices are in the range of 0.05 EUR/kWh, which corresponds to about$1,000USD/ton, which is comparable to light fuel (MGO or MDO). However, LNGtypically holds 2025% more energy per ton compared to MDO, so the price isattractive.

  • 8/13/2019 Alternative Fuels for Marine Application

    36/108

    18

    Thispageintentionallyblank.

  • 8/13/2019 Alternative Fuels for Marine Application

    37/108

    19

    5. AlternativeMarineFuelIncentives

    Currently,thereareanumberofincentivesforusingalternativefuels.Theseincludethe

    following:

    TheMARPOLAnnexVISOxandNOxlegislationdiscussedinSection2. Thepricefluctuationsoffossilfuels. ThepredictionofadieselfuelshortageinEurope(Ref.13). Possible scarcity of lowersulfur distillate fuel in 2015 when the switch from

    1.0%to0.1%sulfurrequirementtakeseffect(Ref.2).

    CurrentECAswiththeirSOxandNOxlimits. TheproliferationofECAs,withthepossibilitythatfutureECAsmaycome into

    force in the Mediterranean Sea and off the coasts of Mexico and Singapore(whichhas,infact,requestedanECA).

    In the United States, the Renewable Fuels Standard (RFS), which requires acertainamountofrenewablefuelsaspartoftheavailablefuelinventory.

    The introductionby IMO inMARPOLAnnexVIoftheEnergyEfficiencyDesignIndex (EEDI), which would make mandatory some measures to reduceemissions of GHGs, such as CO2 from international shipping. The EEDIstandardsphasein from2013to2025.TheEEDIcreatesacommonmetrictomeasureandimprovenewshipefficiency.ThismetriciscalculatedastherateofCO2emissionsfromaship.

    Alternative fuels that can help satisfy the above requirements and having certainattributes can possibly be substituted for the fossil fuels currently in use. Thesealternativefuelsneedtohavethefollowingcharacteristics:

    Ideally,thefuelsshouldnothaveamajorimpactontheengineandshipboardfuelsystemssuchthatthesesystemsmustbeextensivelymodifiedorreplaced.

    No degradation of engine performance occurs with their use that wouldrequireenginereplacementorextensivemodification.

    ThefuelslowertheengineSOxandNOxemissions. The fuels are competitively priced with the current Heavy Residual Fuel Oil

    priceofapproximately$700(USD)/ton(Ref.14).

  • 8/13/2019 Alternative Fuels for Marine Application

    38/108

    20

    The alternative fuels are available in sufficient quantities worldwide orregionallyforbunkering.

    Thefuelscanbemixedwithcurrentfossilfuels. Thefuelsaresafetouseanddonotpresentanymajorenvironmentalrisks.

    Afuelsatisfyingtheserequirementsiscalledadropinfuel.

    In addition to regulatory and monetary incentives for alternative fuels, the TransEuropean Transport Network Executive Agency has taken action through its2011EU92079S Project to identify and minimize the barriers when building andoperatinganLNGfueledvessel(Ref.15).

    Theprojectwasselectedforfundingunderthe2011TENT(TransEuropeanTransportNetwork) Annual Call, and will examine the technical requirements, regulations, andenvironmentaloperationpermitsthatneedtobemetinordertoshiftfromtraditionallyfueledenginestoLNG.LNGisrapidlyemergingasacheaperandmoreenvironmentallyfriendly fuel for the maritime sector, and its uptake is encouraged by the EuropeanUnion.

    Specificaspects related to themanufacturing,conversion,certification,andoperation

    phasesofanLNGfueledvesselwillbeanalyzed.Theseresultswillbeexchangedwithother ongoing LNGrelated projects, as well as with the European Maritime SafetyAgency.Theprojectwillbe implemented inapartnershipwithstakeholdersconsistingof shipowners, cargo owners, LNG suppliers, ports, and marine equipmentmanufacturers. Among participating shipowners will be Viking Line, operator of the2,800passenger,dualfuelcruiseferrytheVikingGrace.

    The project will receive 1.2 million in funding from the European Union under theTENTprogram.Thiscontributionconstitutes50%oftheoverallbudget.

    The projectwill be managed by the TransEuropean Transport Network ExecutiveAgencyandissettobecompletedbytheendof2014(Ref.16).

  • 8/13/2019 Alternative Fuels for Marine Application

    39/108

    21

    6. AlternativeMarineFuelsandEngines

    Currently,thereareliquidfossilfuels, liquidbiofuels,andgaseousfuelsthatare inuse

    orcanbeusedbyshipsforcompliancewiththeexistingandforthcomingenvironmentalairpollutionrequirements.

    The feedstocks for current and future marine fuels are shown in Table 4. Of these;biodiesel(FAME),methanol,algae,andHDRDareconsideredviablealternativemarinefuelsandarediscussedindetailinSection6.3.

    Table4. FeedstocksandDerivedFuels

    Feedstock

    Naturalgas,biogas

    CrudeoilVegetableoils,

    animalfats,algaelipids

    Biomass

    Fuels

    CNG,LNG IFO,

    LSFO,

    LPG,

    MGO

    Biodiesel(FAME),

    HDRD(secondgenerationbiodiesel)

    BTL,

    a

    GTL,

    methanol,

    DME,pyrolysisoil,LBG

    a CNG=compressednaturalgas;BTL=biomasstoliquid;GTL=gastoliquid;DME=dimethyl

    ether;andLBG=liquefiedbiogas.

    Thereare liquidbiofuelsand fossil fuels thatare low insulfurandcansatisfy the fuelsulfurrequirementsoftheECAsandMARPOLAnnexVI.Inlieuofusinglowsulfurfuels,anotheroptionistousescrubbersfittedintheengineexhausttoremovetheSOx.

    TheEffshipProjectinvestigatesmethanolanddimethylether(DME)asalternativefuelsinWorkPackage2(Ref.17).ThefueloptionsmentionedareLNG,methanol,DME,andgastoliquids(GTL)formulations.However,noconclusionhasyetbeenreached.

    MANDiesel&Turboselectronicallycontrolled,gasinjected,lowspeedmainenginegasinjection (MEGI) engine types are available in dualfuel versions with the LPGfueledversion designated MELGI (Ref. 18). The liquid MEGI engines performance isequivalent intermsofoutput,efficiency,andrpmtoMANDiesel&TurbosMECand

    MEBseriesofengines.AstheliquidMEGIenginesfuelsystemhasfewmovingparts,itisalsomoretolerantofdifferentfueltypesandaccordinglycanrunonDME.Itcanburngasorfueloilatanyratiodependingonthefuelaboardandtherelativefuelcost,anditoperateswithnomethaneslip.

  • 8/13/2019 Alternative Fuels for Marine Application

    40/108

    22

    DualfuelsystemsareavailablebothformethanolandLPG(propanedualfuel[Ref.19]).

    6.1 LiquidorCrudeBasedFossilFuels(IFO,LSFO,MGO,

    andMSAR2

    Bunker

    Oil)

    Accordingtothe IMO(Ref.20),about77%oftotalmarinefuelsusedonaglobalbasisare residual fuels (e.g., IFOs). LSFOs and MGOs are used as secondary fuels forcompliancewithECAandSECArestrictions.

    Along with global warming, potential sulfur content remains the main concern withconventionalmarinefuels.Thesulfurcontentisgenerallyhighcomparedtoroadfuels,as shown inFigure11. According to DNV, the totalSO2 emission from ships is about130kilotonsperyear.

    Figure11. SulfurContentofConventionalMarineFuels(Source:Ref.4)

    The emissions of both sulfur and other pollutants can also be reduced effectively byboosting the efficiency of the propulsion system. It is worth mentioning that marinetransportonlargecontainershipsonlyrequires2to3gramsoffuelperton*km(MaerskLineaverage).Roadtransportbytruckrequiresabout15g/ton*km(globalaverage).

  • 8/13/2019 Alternative Fuels for Marine Application

    41/108

    23

    Someconventionalmeansofefficiencyboostingmaybeveryeffective.Forinstance,theanticipatedMrskTripleEshipsoffer50%CO2reductionbymeansofa16%increaseincontainer capacity, a 19% reduction in engine power, and a design speed that is2knotslower(Ref.21).

    Existing ships such as the Emma Maersk have turbocompounding and othertechnologiestoincreasetotalefficiency.

    Fossil fuels that are available for marine use are ultralow sulfur diesel (ULSD) fuel,which isthetermusedtodescribedieselfuelswithsubstantially lowersulfurcontent,andlowsulfurresidualfuel(LSRF).ForULSDtheamountofsulfurcanvaryfromcountryto country. For example in the United States and Canada it is 15 ppm and in othercountriesitcanbeaslowas10ppmandhighas50ppm.Notallcountriesrequirethat

    marinedieselbeULSDbutintheUSandCanadaULSDisrequiredformarinedieselfuelaswellasovertheroadandoffroaddieselpoweredvehicles.Asof2006,almostallofthe petroleumbased diesel fuel available in Europe and North America is of a ULSDtype.

    LSRF isanother fossil fuelthatcansatisfythecurrentrequirements for low fuelsulfurcontent.LSRFcanbeproducedby(1)therefineryprocessesthatremovesulfurfromtheoil (hydrodesulphurization), (2)theblendingofhighsulfurresidualoilswith lowsulfurdistillateoils,or(3)acombinationofthesemethods.

    Itisconceivablethatthesefuelswillsufficeforthemarineindustryforlowsulfurfuelsuntil2016whentheNOxrequirementsareeffective.Atthistime,theuseofthesefuelswill require the installation of NOx aftertreatment devices such as SCR, EGR, or theinstallationofemissionscomplaintenginestosatisfytheNOxlimitswithintheECAs.

    Itispossiblethatconventionalfossilbasedfuelswillremainthefuelofchoiceforalongtime. In different scenarios, the IMO projects a rather low penetration of alternativefuels,rangingfrom510%(tankshipstocoastwise,respectively)in2020toamaximum

    2050% (tankships tocoastwise, respectively) in2050 (Ref.20).Thus, fossil fuelsarepredictedtobepredominantintheforeseeablefuture.

    Maersk successfully tested a lowcost alternative to heavy fuel oil called MSAR2(MulPhaseSuperfineAtomizedResidue)bunkeroilusinga2strokemarinedieselengineofaMaerskLinecontainership,anenginefairlytypicalofatypetobefoundonmodernships.Thetestswerecarriedoutinlate2012.

    Quadrise,theinnovatorsofthisMarineMSAR2bunkeroil,anticipatethatcommercial

    volumeswillbeproducedprogressivelyfrommid2013,withafullcommercialrolloutthefollowingyear.

    Quadrisewas formed inthe1990sbyagroupofformerBPspecialistswhodevelopednewtechnologytoproduceMSARfromavarietyofheavyhydrocarbonswithsuperior

  • 8/13/2019 Alternative Fuels for Marine Application

    42/108

    24

    combustion characteristics. In 2004, a longterm alliance agreement was establishedwithAkzoNobel,aworldleaderinsurfacechemistry.

    MSARFuelTechnologyrendersheavyhydrocarbonseasiertousebyproducingalow

    viscosityfueloilusingwaterinsteadofexpensiveoilbaseddiluents,andalsoproducesasuperiorfuelwithenhancedcombustionfeatures.

    The process involves injecting smaller fuel droplets in a stable waterbased emulsionintothecylinder,resultinginacompletecombustionthatproduceslowerNOxandPMexhaustgasemissions.

    Besidesthelowcostbenefitsitofferstoshipownersasaheavyoilbunkerfuel,thenewtechnologyhelpsoilrefinersasitfreesupvaluabledistillatestraditionallyusedforHFO

    manufacture, providing a viable alternative process for handling the bottom of thecrudeoilbarrelwithoutsignificantexpenditureandresultinginincreasedprofitability.

    TheMSARprocesstransformshydrocarbonsthataresolidatroomtemperatures(andhavetobeheatedtotemperaturesover100Cinordertoflow)intoaproductthatcan,dependingonclientrequirements,bestoredandtransportedatambienttemperaturesof1530C.Asaresult,theenergyrequirementsforhandlingandtransportingMSARare lower than thoseofHFO,which isgenerallyhandledat temperatures inexcessof50C.

    MSAR fuel can be handled using the same equipment and vessels used forconventionalHFO.OperatingproceduresandcontingencyplansdevelopedforHFOaregenerallysuitable,andwherenecessaryadapted,forMSARpurposes(Ref.22).

    6.2 LiquidBiofuels(FuelsfromVegetableOilsandAnimal

    Fats,Straight,Hydrogenated,orEsterified)

    Liquid biofuels available for marine use are biodiesel, FAME, algae fuels, methanol,hydrogenationderived renewable diesel (HDRD), which is also known as secondgenerationbiodiesel,andpyrolysisoil.

    SoybeanoilhasbeenusedbytheMolsLinien(Ferryline)inDenmark.Fishandchickenoilshavealsobeentested.

    Thepotentialforoilsandfatshasbeenexploitedbytheautomotivesectorforyears,soit isquestionablehowmuchpotentialactually remains.Drawbacksof these fuelsare

    limitedmiscibilitywithIFOfuel,sensitivitytofrost,andtheproblemofconservation.

    Biodiesel(FAME),algaefuel,methanol,HDRD,andpyrolysisoilarevirtuallysulfurfree.The algae and HDRD fuels are compatible with diesel engines and their associatedshipboardfuelsystems.Biodiesel(FAME)isnotcompatiblewithcertainnonmetallicand

  • 8/13/2019 Alternative Fuels for Marine Application

    43/108

    25

    metallicmaterialsandusually requiresmodificationofcurrentenginesand shipboardfuelsystems.Pyrolysisoilishighinacidity,hasalowcetanenumber,ispracticallysulfurfree,andisnotmixablewithdieselfuelsomustbemodifiedformarineuse(Ref.23).

    FAMEisawellknownandprovenblendingcomponentforroadbaseddieselmachinesbuthasnotfounditswayintouseasamarinefuel.

    Within the ISO 8217 framework, FAME is currently being adapted as a blendingcomponent forheavymarine fuel. It is foreseen thatavolumeconcentrationofup to7%willbeallowedinthenearfuture.

    Fattyacidmethylestersarearefinedversionofvegetableoilsoranimalfats.TheyarecommoninroadtransportandwerealsousedinDenmarkbyM/FBittenClausenuntil

    March2011.Theprojectwassuccessfulwithablendof25%animalbasedFAME.

    FAME ingeneraldoesnotcauseanyproblems intheengine itself.Longtermstorage,however,canbeproblematic.Tankpaintandenginegaskets,hoses,nonmetallic,andsomemetallicfuelwettedpartsmayneedtobeadaptedtoFAME.

    ThemainproblemwithFAME issustainabilitybecauseFAMEproductionreliesheavilyonpalmoilproduction,which isoften inconflictwiththepreservationofnaturalrainforests.Therefore,FAMEisgenerallynotseenasaviablelongtermoption.

    In addition to the sustainability problem, the use of FAME in some U.S. marineapplicationshasnotbeensuccessful.TheU.S.NavyprohibitstheuseofFAMEbiodieselgiventhattheNavyuseswatertodisplacethefuelinitsshipboardtanksforballastandhascentrifugalpurifiersonboardtoseparatethefuelandwater.FAMEcausesahugeemulsionanddoesnotallowthefueltobeseparatedfromthewater.FAMEiscorrosivetometalsurfacesonceitmixeswithwaterandthemixturefallsout.TheUnitedStatesCoastGuardhadmicrobialgrowthproblemsononeofitscuttersinDuluth,Minnesota,when it lifteda2%blendofFAMEbiodiesel.Theproblemprevented thevessel from

    sailing.ThetankshadtobeemptiedandcleanedandthevesselhadtoberefueledwithFAMEfreedieselfuel.Thecutternowprocuresthefuelbeforethemandatoryblendtoavoidfuelqualityissues(Ref.24).

    6.2.1 Methanol

    Methanol as a general fuel has been recommended by CEESA, an interdisciplinaryresearch cooperation fromDenmark. The reason is thatbiomasstomethanol/DME is

    foreseen to be the most energyefficient pathway to procuring transport energy by2050.

    ConversionsofmarinevesselstomethanolaresignificantlylesscostlythanconversionstoLNGbecauseofthesimplicityofthestoragesystemformethanol.Althoughmethanol

  • 8/13/2019 Alternative Fuels for Marine Application

    44/108

    26

    itselfisslightlymorecostlythanLNG,thetradeoffbetweenmethanolandLNGinvolves

    thecomplexityofthefuelsystemversusthecostofthefuel.

    Methanol increasestheriskofcorrosion,whichmustbemetwithsufficientupgrading

    offuel

    tanks,

    etc.,

    and

    the

    low

    energy

    content

    per

    cubic

    meter

    (m

    3

    )of

    methanol

    means

    thatittakesupcargospaceontheship.

    Methanolhaspropertiesthataresimilartothoseofmethanewhenitisinjectedintoan

    engine.Itcanbeusedinadualfuelconcept,asproposedbyWrtsil(Figure12).

    Figure12. WrtsilDirectInjectionDualFuelConcept

    forMethanolinLargeFourStrokeEngines

    6.2.2 Biocrude(PyrolysisOil)

    Biocrude,suchastheGermanbioliqSynCrude,isanintermediarypyrolysisoilproduced

    from, forexample,theCatLiqTM

    process.The feedstockcanbeeithersolidbiomassor

    sludge. Like fossil crude, biocrude can also be refined into gasoline or diesellike

    products. However, biocrude in its initial form is perhaps the cheapest liquid biofuel

    possible.

  • 8/13/2019 Alternative Fuels for Marine Application

    45/108

    27

    Themainchallengesareits:

    Lowcetanenumber Highwatercontent Poorlubricity

    However,theuseofbiocrudeasafeasiblemarinefuelisyettobeproven.

    6.3 GaseousFuels

    Gaseous fuelsavailable formarineusearenaturalgasandpropane (i.e., LPG).ThesefuelsarenotonlyverylowinsulfurcontentbuttheyalsocombustsuchthatNOx,PM,

    and CO2 are reduced. Natural gas can be carried in a compressed state calledcompressednaturalgas(CNG)orinaliquidstatecalledliquefiednaturalgas(LNG).

    PropaneorLPG ismentionedfromtimetotimeasapotentialmarinefuelscandidate.However,thereseemstobeverylimitedmaterialavailableonLPGsviabilityasamarinefuel.ThegeneralviewaroundtheglobeseemstobethatLPGisapremiumproductand,assuch, ispricedaccordinglyand is tooexpensivecompared tootheralternative fueloptions. So, although the supply is there, its current markets are in automotivetransportationanddomesticheatingandcooking,markets thathaveadifferentprice

    referencethanshipping.

    In terms of safety, propane is heavier than air and thus presents an explosive safetyhazard if itweretoaccumulate inthebilgesor lowsectionsofashipsengineroom intheeventofaleakinthefuelsystem;thus,itisnotconsideredsafeforshipboarduse.

    CNG ismadebycompressingnaturalgas to less than1%of thevolume itoccupiesatstandardatmosphericpressure.Itisstoredanddistributedincontainersatapressureof200248bar(29003600psi),usuallyincylindricalorsphericalshapes.

    LNG achieves a higher reduction in volume than CNG. The liquefaction processcondensesthenaturalgasintoaliquidatclosetoatmosphericpressurebycoolingittoapproximately162C(260F).TheenergydensityofLNG is2.4timesthatofCNGor60% of that of diesel fuel. This makes LNG attractive for use in marine applicationswherestoragespaceandendurancearecritical.

    The natural gas for CNG and LNG can also be derived from renewable biogas and issometimescalledbiomethane.

    LNGisoneofthemostpromisingalternativemarinefuels.Ittakesupabout1/600thofthevolumeofnaturalgasinthegaseousstate.Hazardsincludeitsflammabilityandlowfreezing temperature (163C (260F), such that marine regulations require extrasafetyprecautionslikedoublewallpiping,gasdetectionssystems,etc.,inenginerooms.

  • 8/13/2019 Alternative Fuels for Marine Application

    46/108

    28

    NorwayalreadyhasanestablishedLNGinfrastructure(forshortseashipping).Inthefallof2011,26LNGshipswerereportedinoperationinNorway(Ref.25),ofwhich15wereferries.Another15LNGshipsareunderconstruction.InPoland,twodualfuelLNGshipsarebeingbuiltfortheferrycompanyFjordline.

    It issometimessuggestedthatabouthalfthecommercialfleetofmarinevesselscouldbe converted to LNG. However, these would not be the largest vessels, because therange would probably not satisfy oceangoing ships. Thus, in terms of amount ofconvertedfueluse,thepercentagewouldbemuchlowerthanhalfthefleet.Ithasbeenestimated that there will be a consumption of2.4MT of LNG in 2020 (Ref. 26). Thisprojectedamountcorrespondstolessthan1%ofglobalshipping.

    Foreconomicreasons,LNGconversionsgenerallyrequirethat3040%oftheoperation

    is located within ECA areas. Otherwise, the capital investment will be too heavy(Ref.19).

    A major concern with LNG is the possibility for debunkering (or emptying the fueltanks).Thisstep isnecessarywhenaship istobeanchoredforanextendedperiodoftime.UnlessspecialLNGdebunkeringfacilitiesareavailableintheport,thegaswouldboil off, causing huge methane losses to the atmosphere. In case of groundingaccidents, a technique fordebunkering would also be necessary. Another concern ispressure increasewhenconsumptionoccursbelowthenaturalboiloffrate,whichwill

    happen ifthere isnoreliquefactionplanavailableonboard.Reliquefactionofboiloffgasrequiresabout0.8kWh/kggas.OnelargeLNGcarrier,suchasQatarQmax,requires56MWofreliquefactionpower,correspondingtoaboiloffrateof8tons/hour.

    Athirdconcerntobeaddressedismethaneslipfromlargermarineenginesburninggas.Methane slip will be present, especially on fourstroke, dualfuel engines (Figure13),partlyfromthescavengingprocessinthecylinderandpartlyfromtheventilationfromthe crank case, which is being led to the atmosphere. In addition, there is someuncertaintyastowhetherfutureregulationswillallowLNGtankstobesituateddirectly

    below the outfitting/accommodation of the ship. If not, this constraint could causedifficultiesinretrofittingcertainships.

    LNG is chemically identical to biomethane. Biomethane is generally known to be themostCO2friendlyfuelofall(Ref.27).RecentactivitiesintheareabelongtotheHollandInnovationTeamandAngloDutchBioLNG;see(Ref.28).

    Biogasrequiresdualfueltechnologyforthemarineengineandextrastoragefacilities,either as pressure tanks or cryogenic tanks for LBG. Biogas is usually produced from

    inland biowaste and thus presents challenges in terms of costs to transport LBG tomarinevessels.

  • 8/13/2019 Alternative Fuels for Marine Application

    47/108

    29

    Figure13. WrtsilPortInjectionDualFuelConcept

    forGasUseinLargeFourStrokeEngines

    6.4 ExhaustGasTreatmentSystems(EGTSs)

    AnalternativetousinglowsulfurfuelsforreducingtheSOxemittedintheexhaustisto

    clean theexhaustgasusingscrubber technology.This technology isproven foruseat

    shoresidepowerstationsworldwide.Thesesystemscanclean theexhaust to theSOx

    levelthat isequivalenttotherequiredfuelsulfurcontent.UsingaSOxscrubberoffers

    shippers the flexibility of using either a lowsulfur fuel or highersulfur fuel. The

    scrubbingefficienciesofSOxscrubberspresentedin(Ref.8)areasfollows:

    PMtrappinggreaterthan80% SOxremovalgreaterthan98%

    SOxscrubbersareclassifiedaswetordry,asfollows:

    Wetsystemuseswater(seawaterorfresh)asthescrubbingmedium Drysystemusesadrychemical,suchascalciumhydroxide.

    Wetsystems

    are

    further

    divided

    into

    the

    following:

    Openloopsystemsthatuseseawater.

    Port Gas Injectors

    Diesel main injector

    Diesel pilot injector

  • 8/13/2019 Alternative Fuels for Marine Application

    48/108

    30

    Closedloop systems that use freshwater with the addition of an alkalinechemical.

    Hybridsystemsthatcanoperateinbothopenloopandclosedloopmodes.Foracomparisonofthesystems,seeSection6.8andTable3oftheLloydsRegister(LR)publication,UnderstandingExhaustGasTreatmentSystems,GuidanceforShipownersandOperators, from Juneof2012 (Ref.29).ThispublicationalsoprovidesadetaileddiscussionofSOx scrubbingandNOxabatement systems,aswellas twocase studiesperformedontwoferries,thePrideofKentandtheFicariaSeaways.

    Basedona2009planusingaSOxexhaustscrubberthatwasinstalledonaDetForenedeDampskibsSelskab(DFDS)passengercarferry,itwasestimatedthatthepaybackperiod

    couldbeaslowastwoyears.Theplanistooperatethescrubberinthehighlyefficientsodiumhydroxide(NaOH)modeincoastalwatersandinthesaltwatermodeintheopenseawherealowersulfurscrubbingefficiencyissufficient(Ref.8).

    OnlyafewshipsareoperatingwithSOxscrubbersorhaveorderedthem,andmanyofthese are on a trial basis. Royal Caribbean Cruise Lines has contracted with WrtsilHamworthyfortheinstallationoffourhybridscrubbersforitstwonewSunshineclassvesselsafteranearlierpilotinstallationaboarditsLibertyoftheSeas.Thefirstvesselisduetoreceivedeliveryinautumn2014,andthesecondinthespringof2015(Ref.30).

    ExhaustgasSOxscrubbersbyGreenTechMarine (GTMR15Scrubber)were recentlyinstalled by Norwegian Cruise Lines (NCL) in their Pride of America. The scrubberswereinstalledinMarch2013duringtheshipsdrydocking.Thesmallfootprintandlowweightof theGreenTechsystem iscompact,and thusnopassengerorcrewspace islost,theinstallationneedsnosteelworkmodification,andthescrubbertakesupaboutthesameamountofspaceastheexhaustsilenceritreplaces.Thesystemcanoperateinclosedoropenmode(Ref.31).KoreasSTXOffshore&ShipbuildingawardedWrtsilacontracttosupplyexhaustgascleaningsystemsforfournewcontainerrollon,rolloff(RO/RO, or ConRo) vessels being built for Italys Ignazio Messina & Co. The Wrtsil

    systems tobesuppliedwillcleanbothSOxandparticulatematteremissions from themainengines,auxiliaryengines,and theboiler.Deliveriesarescheduled to takeplaceduring2013and2014,and thevesselsare tobedeliveredby the shipyard to IgnazioMessina & Co during the second half of 2014 (Ref.32). Great Lakes Seaway shippingline,AlgomaCentralMarine, isbuildingsixnew225mlongEquinoxclass lakersthatwillbe45%morefuelefficientthanexistinglakers.TheywillbeequippedwithcompleteWrtsil propulsion packages that come with fully integrated, freshwater scrubbersystems(Ref.33).

    Exhaust gas treatment systems for NOx, (NOx reducing devices) will provide theflexibility to operate ships built after January 1, 2016, in ECAs designated for NOxemissioncontrol.

  • 8/13/2019 Alternative Fuels for Marine Application

    49/108

    31

    Tier IIINOx limitswillapply toallshipsconstructedonorafter January1,2016,withengines over130kW thatoperate insideanECANOxarea. Unlike the sulfur limits inRegulation14ofMARPOLAnnexVI,theTierIIINOxlimitswillnotretroactivelyapplytoships constructed before January1, 2016 (except in the case of additional or

    nonidenticalreplacementenginesinstalledonorafterJanuary1,2016[Ref.29]).

    For compliance with Tier II NOx emission limits, shippers can implement onengineadjustmentsandmodificationsthatwillbeabletosatisfythese limits.ForTier IIINOxcompliance,thecurrentthinkingisthateitherSCRorEGRtechnologieswillbenecessaryfor meeting the Tier III limits. For a detailed discussion of NOx emission reductiontechnologies, consult the Lloyds Register publication, Understanding Exhaust GasTreatment Systems, Guidance for Shipowners and Operators, from June of 2012 athttp://www.lr.org/eca(Ref.8).

    Scrubbersystemsarepricedatabout$3millionUSD.ThepricedifferencebetweenHFO380andLSFOisroughly$40USD/ton,whereasthepricepremiumofMGOcomparedtoHFO380 isabout$330USD/ton.Thepaybackofscrubbersystemstypicallyreliesonapricedifferenceof$200600USD/ton.ScrubbersystemcostsareshowninFigure14.

    Figure14. CostsofScrubberSystems[CoupleSystems,

    AlfaLaval](seeRef.34forcostcalculations)

    Theproblemswithscrubbershavetodowiththelossofcargocapacityduetothelargephysicalsizeofthesystems.Winteroperationcanalsobeachallenge(Ref.35).

    SeeAppendixAforillustrationsandoperationaldetailsofsomeexhaustaftertreatment

    systemsprovidedbyvariousvendors.

    0

    1

    2

    3

    0 5 10 15 20 25

    M

    MW

    Cost of scrubber system

    MEUR

  • 8/13/2019 Alternative Fuels for Marine Application

    50/108

    32

    Thispageintentionallyblank.

  • 8/13/2019 Alternative Fuels for Marine Application

    51/108

    33

    7. AssessingAlternativeFuelsforMarineUse

    When assessing fuels, it is necessary to evaluate several parameters related to the

    technical,economic,andenvironmentalimplicationsoftheuseofeachfuel.

    Theconsiderationshavebeengroupedintofivemaincriteriawithsubcriteria.

    Engineandfuelsystemcost,includingo Newvesseloncosto Retrofitinvestmentso Increasedmaintenancecost

    Projectedfuelcost,includingo Projectedfuelpricepermegajoule(MJ)o Availabilityandcostofinfrastructureo Longtermworldsupplyo Fuelconsumptionpenalty(e.g.,becauseoflesserefficiency,boiloff)

    Emissionabatementcost,includingo PMportcompliance(e.g.,fuelchange)o SOxSECA(e.g.,scrubber)o NOxSECA(e.g.,SCR,EGR)o CO2EEDI(e.g.,slowsteaming,heatrecovery)

    Safetyrelatedcost,includingo Approvals(classification)o Additionalinsurancecosto Crewtrainingandeducation

    Indirectcost,includingo Reducedrangebetweenbunkeringo Reducedcargocapacityo Increasedwaitingtimeinports

    The following paragraphs discuss the favorable attributes and drawbacks of thealternativemarinefuelswithregardtotheirpracticalityandaffordabilityformarineuse.

    7.1 LiquidFossilFuels(ULSD,LSRF)Advantages

    7.1.1 FuelSystemandEngineCompatibility

    These fuelsarecurrently inuse inmanymarineengine installationsorcanbeused incurrentmarineenginesbecauseoftheirsimilaritytothefuelsthatareinusetoday.ThelighterULSDor lowsulfurdiesel (LSD) issimilar todistillatediesel fuel that isused inmedium and highspeed shipboard diesels and on ships burning residual fuel whenenteringa fuelsulfurrestrictionzone.Forshipsnormallyburningresidual fuel,special

  • 8/13/2019 Alternative Fuels for Marine Application

    52/108

    34

    proceduresmustbeobservedwhentransitioningtothe lowerviscositydistillatefuels.The diesel engine manufacturers have developed a Smart Switch to facilitate thisoperation, and there are publications and bulletins available for switching to andoperatingonlowsulfurfuels.

    Thesefuelsarecompatiblewithcurrentshipboarddieselenginesandfuelsystems.Forships that do not operate for a substantial amount of time in an ECA, theowners/operators may choose to use lowersulfur fuels only when transiting an ECA.Thisscenariorequirestheinstallationofadditionalfueltankswithassociatedpipingandpumpsforthelowsulfurfuel.

    7.1.2 LowerSOxEmissions

    ThelowersulfurlevelsinthesefuelsensurethattheshipwillbeincompliancewiththelowersulfurlimitsrequiredintheECAsandbytheIMO.

    7.1.3 Safety

    Thefuelsaresafetousehavingsimilarcharacteristicstocurrentdistillateandresidualdieselfuels.

    7.1.4 Availability

    They are commercially available for ship bunkering. Most of the ports that currentlyofferhighsulfurfueloilsalsohaveavailablethelowsulfurfueloilofthesamegrade.

    7.2 LiquidFossilFuels(ULSD,LSRF)Drawbacks

    7.2.1 Price

    The cleaner, lowersulfur distillate and residual fuels are more expensive than thecurrent fuels. The lowsulfur residual fuels have a higher price than the highsulfurresidualfuelsbecauseofthecostofthedesulfurizationprocessandincreasingdemand.Theexistingpricedifference(basedonavailablepublicbunkerprices)betweendistillate(0.10.5%sulfur)andresidualfuel(2.03.5%sulfur)isabout$300USDmorepertonfordistillate.Basedonapreliminaryreporton lowsulfur (1%)marine fuels,thepremiumcostof the lowersulfurHFOcouldbeasmuchas$100USD/metric ton (Ref.36).Thepricesof marine fuels at twoEuropeanports in July 2012are summarized inTable5(Ref.37).

  • 8/13/2019 Alternative Fuels for Marine Application

    53/108

    35

    Table5shows that the lowersulfur fuelsaremoreexpensive than theheavyresidualfuels.Thedistillatefuels(lowsulfurMGO[LSMGO]andMDO)havepricepremiumswellabovethoseoftheresidualfuels.

    Table5. MarineFuelPricesinJuly2012inUSD/MetricTon(MT)byPort

    Port

    HighSulfur

    HeavyFuel

    (IF380)

    LowSulfur

    HeavyFuel

    (LS380)

    (1%S)

    HighSulfur

    HeavyFuel

    (IF180)

    LowSulfur

    HeavyFuel

    (LS180)

    (1%S)

    LSMGO

    (0.1%S) MDO

    Copenhagen $597.50 $658.50 $630.00 $683.50 $907.50 $865.50

    Rotterdam $580.00 $631.50 $602.00 $653.00 $865.00

    7.2.2 Characteristics

    Thecleaner fuels,especially ifdistillate isused,havedifferentcharacteristics, suchaslowerviscosity,thatcancausefuelsystemandengineoperationproblems.Theenginescanoperatesatisfactorilyonthelowerviscosityandlowersulfurfuelswhentheproperchangeover precautions are followed. When switching from a heavy fuel to distillatefuel, therecouldbe incompatibilityproblems that result in filterclogging; inaddition,theproperbasenumber(BN)lubeoilmustbemaintainedwhenoperatingonthehighor lowsulfurfuel,andtheviscositymustbemaintainedattheproper leveltopreventfuelpumpdamage.ThefuelsystemmodificationsnecessaryforoperationonbothHFOandthe lowsulfurdistillateaddcomplexitytothealreadycomplex fuelsystem.Therearealsomodificationsrequiredtothe lubeoilsystemsothattheproperBN lubeoil isused, depending on the fuels sulfur level, to avoid engine damage. MAN B&W haspublishedadetailedmanualtitledOperationonLowSulfurFuels(Ref.8)thatexplainsthestepsthatshouldbetakenfordesigningormodifyinganexistingHFOfueloilsystemfor operation on lowsulfur fuels. When California enacted the lowsulfur fuelsrequirement forships inCaliforniaCoastalWaters (CCW),shipsexperiencedproblemswithenginestallingandlossofpropulsionwhenshiftingfromresidualtodistillatefuel.

    7.2.3 FutureAvailability

    There isaconcernthatwhenthe0.1%ECAfuelsulfur limittakeseffect in2015,therecouldbeaEuropeanshortageofMGO.Europe iscurrently inanetshortageofmiddle

    distillates

    and

    has

    to

    import

    them

    (Ref.

    38).

    Thus,

    there

    could

    be

    a

    supply

    challenge

    in

    2015.

  • 8/13/2019 Alternative Fuels for Marine Application

    54/108

    36

    7.3 LiquidBiofuelsCharacteristics

    7.3.1 Biodiesel(FAME)Advantages

    Fuel System and Engine CompatibilityMany marineengine manufacturershavecertifiedtheirengines foroperationonbiodieselorablendofbiodieselanddiesel fuel.Theoriginalenginemanufacturershouldbeconsultedfortheamountofbiodiesel theirengines canburn (i.e.,B20, etc.).B20 represents afuel of 80% diesel fuel and 20% biodiesel. Likewise, B100 represents a fueltotallymadeuptotallywithbiodiesel.

    Lower SOx Emissions Neat biodiesel contains almost no sulfur, so SOxexhaustemissionsarepracticallyzero.Blendingwithregulardiesel lowersthesulfurcontentproportionally.

    SafetyBiodieselisassafeasdieselfuel.Ithasahigherflashpointthandiesel,is biodegradable, and degrades quickly in water. The flash point of B100 isapproximately300F(149C),comparedto120170F(4977C)forpetroleumdiesel.

    AvailabilityBiodieseliscommerciallyavailableatpricescomparabletothoseofmarinedieselfuel.Forqualitycontrol,itisproducedtospecificationssetbytheAmericanSocietyforTestingandMaterials(ASTM)andtheEuropeanUnion(EU).Ithasbeenclassifiedasanadvancedbiofuel.

    7.3.2 Biodiesel(FAME)Drawbacks

    LowTemperatureOperationBiodieselhasahighcloudpointcomparedwithpetroleum diesel that can result in filter clogging and poor fuel flow at lowtemperatures(i.e.,32Fandlower).Thefeedstockusedforthemanufactureofthebiodieselhasastrong influenceon thecloudpoint.Additivescanalsobeusedtolowerthecloudpoint.

    Fuel System and Engine Compatibility Biodiesel, especially in higherconcentrations,candissolvecertainnonmetallicmaterialssuchasseals,rubberhoses,andgaskets.Itcanalso interactwithcertainmetallicmaterials,suchascopperandbrass.Foranexistingship,thefuelsystemandenginesmayhavetobe modified by changing out susceptible parts with biodieselcompatiblecomponentsforsatisfactoryoperation.

    Cleaning Effect Biodiesel especially in higher concentrations has asolvent/scrubbing action that cleans/removes deposits from the fuel system,

  • 8/13/2019 Alternative Fuels for Marine Application

    55/108

    37

    resulting incloggedfuelfilters.Thefuelsystemshouldbethoroughlycleaned,removingalldepositsandresidualmoisturebeforeusingbiodieselortherewillbeinordinatehighuseoffuelfilters.

    LongTerm Storage Stability Biodiesel can degrade over time, formingcontaminantsofperoxides,acids,andotherinsolubles.Ifbiodieselisstoredformorethantwomonths,thefuelshouldbecloselymonitoredandtestedtoseethatitremainswithinspecification.Anantioxidantcanalsobeused(Ref.39).

    7.3.3 AlgaeFuelsAdvantages

    Potential Algae can grow at amazing rates compared to farmland crops.These growth rates potentially translate to a very high biomass yield perhectare.However,muchresearchisstillneededtofullyutilizethepotentialofalgaefuel.

    FuelSystemandEngineCompatibilityWhenhydrotreated,itisadropinfuelintermsofcompatibilitywiththefuelsystemandenginecomponents.Testingto date by the U.S.Navy has shown no adverse effects from using a50/50blendofalgaefuelandpetroleumdieselfuelonengineandfuelsystemcomponents.

    LowerSOxEmissionsAlgaefuelcontainsalmostnosulfur,sotheSOxexhaustemissions are practically zero. Blending with regular diesel lowers the sulfurcontentproportionally.

    SafetyAlgaefuelisassafeasdieselfuel. Performance Algae fuels have slightly lower heating values than those of

    petroleumdieselandloweraromatics.Blendingwithpetroleumdieselnegates

    thesedrawbacks so theblended fuelsperformancecompares favorablywithpetroleum diesel. Algae fuel is produced to a hydrotreated renewable diesel(HRD)76 specificationand,whenblendedwith50%petroleumdiesel,meetstherequirementsforpetroleumdieselF76.Table6showsthecomparisonofthe 50/50 blend with the petroleum F76 fuel and the F76 specification(Ref.40).

  • 8/13/2019 Alternative Fuels for Marine Application

    56/108

    38

    Table6. Comparisonof50/50BlendofAlgaeandF76PetroleumFuel

    withPetroleumF76

    Characteristic

    MILDTL16884L

    Requirements

    PetroleumF76

    (Typical)

    50/50Blend

    (Actual)

    AcidNumber(mgKOH/g) 0.30(max) 0.08

  • 8/13/2019 Alternative Fuels for Marine Application

    57/108

    39

    7.3.4 AlgaeFuelDrawbacks

    AvailabilityCommercialavailability is limited. The U.S.Navy is the primaryuseranddeveloperofthefuelformarineuse.TheNavysplansaretoreduce

    petroleum fueluseasmuchaspossible intheir fleet.Ademonstrationof theGreen Strike Force took place in 2012 using a 5050 algae/petroleum fuelblend,andthereareplanstobesailingthegreenfleetby2016.

    Cost The current cost isprohibitive forgeneral commercialuseother thanexperimentallyorforperformancebaseddemonstrations.

    Performance The neat algae fuel has lower heating value and aromaticsthanthatofpetroleumdiesel;whenblendedwithregulardieselfuel,however,

    thesedrawbacksarenegated.

    7.3.5 HydrogenationDerivedRenewableDiesel(HDRD)Advantages

    FuelSystemandEngineCompatibilityHDRD isproducedbyrefining fatsorvegetable oils in a process known as fatty acidstohydrocarbonhydrotreatment.Dieselproducedusingthisprocess iscalledrenewabledieseltodifferentiateitfrombiodiesel,whichisaproductofthetransesterficationof

    animal fats and vegetable oils. Renewable diesel and biodiesel use similarfeedstocks but have different processing methods that create chemicallydifferentproducts.

    HDRDhasan identicalchemicalstructurewithpetroleumbaseddieselas it isfreeofestercompoundsand,whenproducedfromanimalfatwastes,haslowcarbon intensity and is referred to as advanced renewable diesel. It has alower production cost because it uses existing hydrotreatment processequipment inapetroleum refinery. Ithasbetter lowtemperatureoperability

    than biodiesel; thus, it can be used in colder climates without gelling orcloggingfuelfilters.

    HDRD is similar to petroleum diesel fuel and is compatible with new andexistingdieselenginesandfuelsystems. It isproducedtomeetcurrentdieselfuelspecificationASTMD975.

    LowerSOxEmissionsHDRDfuelcontainsalmostnosulfursotheSOxexhaustemissions are practically zero. Blending with regular diesel lowers the sulfur

    contentproportionally.

    SafetyHDRD fuelmeetsthedieselfuelspecificationand isassafeasdieselfuel.

  • 8/13/2019 Alternative Fuels for Marine Application

    58/108

    40

    7.3.6 HDRDDrawbacks

    Availability Current availability is limited. There are only a few companiesthathaveinvestedtoproducehydrogenationderivedrenewablediesel.

    ConocoPhillips produces renewable diesel from vegetable oil and crude oil.Nestes plant in Porvoo, Finland, processes vegetable and animal fats intorenewable diesel. Neste also has plants in Singapore and Rotterdam for theproductionofHDRD.BrazilianPetrobrasusescoprocessingofvegetableoilstomakeHDRD.

    CetaneEnergyLLC inCarlsbad,NewMexico,produces renewablediesel fromvegetableoilsandwastes.Accordingtothecompany,itstechnologycanwork

    withawiderangeof feedstocks, includinganimal fatandalgaloils.UKbasedRenewableDieselEurope istheexclusiveagent inEurope forthestandalonerenewabledieseltechnologydevelopedbyCetaneEnergy.

    Othercompaniesthathaveplanstoproduceorareproducingrenewabledieselfuel through hydrogenation include Nippon Oil in Japan, BP in Australia,SyntroleumandTysonFoodsintheUnitedStates(DynamicFuels),andUOPEniinItalyandtheUnitedStates(Ref.41).

    7.4 GaseousFuels:NaturalGas(Compressed[CNG]or

    Liquefied[LNG])

    NaturalgasstoredasLNG isaviable futuremarine fuelmainly forshortseashipping.Stored in itscompressed formasCNG,however, it isnotconsideredviable foruseonlonger routesbecauseof its long fueling times,extra space requirements for the fueltanks,andthe limitedvolumesthatcanbecarriedthatresult ina limitedrange.Thus,otherthanforvesselsonshortvoyagesthathavesufficientturnaroundtimeforfueling,theCNGconcept isnotconsidered thebestoptionwhenusingnaturalgasasashipspropulsionfuel.

    7.4.1 NaturalGasAdvantages

    Availability With the new methods for extracting natural gas from shaleformationsusing thefrackingmethod, therateofdevelopmentofnewgas

    fields

    should

    assure

    an

    abundant

    supply

    for

    years.

    In

    the

    past

    couple

    of

    years,

    the growing global surplus of natural gas has become increasingly apparent.WhilemuchofthefocusintheUnitedStateshasbeenontherecoveryofshalegas,thediscoveryofenormousgasreservesoverseasinareaslikeoffshoreEastAfricaandtheCaspianSeahasmadeitobviousthatfearsaboutscarcitywere

  • 8/13/2019 Alternative Fuels for Marine Application

    59/108

    41

    notwell founded (Ref.42).Availability isgood inmostpartsof theworld towhichshipssailfrequently.

    Cost Natural gas is expected to be cost competitive with residual anddistillatefuelsthrough2035.Currently,itis70%lessthanresidualfueland85%less than distillate fuel; furthermore, the Energy Information Administrationexpectsittoholdthispriceadvantagethrough2035(Ref.43).Figure15showsthispriceadvantagethatnaturalgasisprojectedtomaintainoverresidualanddistillatefuelsthrough2035.

    Figure15. ProjectedPricesofMarineFuels(Ref.43)

    Lower Exhaust Emissions The use of natural gas results in the followingreductionsofSOx,NOx,PM,andCO2fromengineexhaustemissions(Ref.44):

    o Carbonemissionsbyapproximately25%o SOxbyalmost100%o NOxby85%o PMby95%ItshouldbenotedthatwhileemissionsofCO2,SOx,NOxandPMarereducedsignificantly through theuseofnaturalgasasa fuel, there isaconcernover

  • 8/13/2019 Alternative Fuels for Marine Application

    60/108

    42

    methaneslip.MethaneslipwillbeincludedintheGHGpicture,andtherebylead tohighpenaltyon futureCO2 taxation,etc.Methane slipwillalwaysbepresentwiththeknowndualfueltechnologies(e.g.,Ottocycle).

    ShipConstructionRulesRulesforthesafeconstructionofshipsusingnaturalgasbasednaturalfuelhavebeendevelopedandpublishedbytheclassificationsocieties. There are rules, for example, by Det Norske Veritas (DNV), LloydsRegister(LR),andothers.

    AvailabilityofMarineGasEnginesGasburningordualfuelmarineenginesin both slow and mediumspeed configurations are available from enginemanufacturessuchasWrtsil,MANB&W,andRollsRoyce(BergenEngines).Wrtsildevelopedaslowspeed,dualfuelenginein1973formarineuseand

    followedwithahighpressure, twostrokegasengine formarineuse in1986.Currently,Wrtsiloffersaseriesofdualfuel,mediumspeedmarineengines.MAN B&W offers a slowspeed marine gas engine, and Rolls Royce has amediumspeed marinegas engine that meets theTier IIINOx limits thatwillbecomeeffectivein2016.MitsubishiHeavyIndustries,Ltd.,plansacombustionengine that efficiently burns highpressure gas through direct injection. Theenginewillbemarketedtocustomersafteremissionslevelsandfueleconomyaretestedthroughatrialrunthatstartsinlate2013atMitsubishiHeavysKobeshipyard. It is intended for LNG carriers, large tankers, and containerships

    (Ref.45).

    ExperiencewithNaturalGasasMarineFuelAhistoryspanningmanyyearsofexperienceexistsduringwhichshipshavesafelyoperatedwithLNGas theprimaryfuel.Section8.2describestheoperationofshipswithnaturalgasasafuel.

    7.4.2 NaturalGasDrawbacks

    Not Compatible with Existing Engines and Fuel SystemsNaturalgas isnotcompatiblewithexisting liquid fuel systemsand requires themodificationofexisting engines and changes or additions to the existing shipboard fuelsystems,aswellasotherchanges forsafetyreasons.Table7 is fromareportprepared by M.J. Bradley for the American Clean Skies Foundation (ACSF)(Ref.46) and shows the costs associated with converting three vessels ofdifferentsizestoaccommodatenaturalgasservice.

  • 8/13/2019 Alternative Fuels for Marine Application

    61/108

    43

    Table7. CostsAssociatedwithConvertingMarineVesselstoLNGOperation

    Type

    Size

    (tons) Engines

    Engine

    Cost

    FuelSystem

    Cost

    TOTAL

    CONVERSION

    COST

    Tug 150 21,500HP $1.2million $6.0 million $7.2millionFerry 1,000 23,000HP $1.8million $9.0million $10.8millionGreatLakesBulkCarrier

    19,000 25,000HP $4.0million $20million $24million

    Incomparison, theconversionof theBitViking,a177meterlongchemicalproducttanker,torunonLNGwasestimatedtocostabout$10millionUSD.Up

    to

    75%

    of

    the

    conversion

    cost

    was

    covered

    by

    the

    Norwegian

    NOx

    fund,

    which

    awarded$7millionUSDtowardtheproject(Ref.47).

    NewShipConstructionPremiumThecostofbuildinganewshippoweredbynaturalgashasapremiumover the construction costofa conventional shipwithfossilfuel.Thereisacostincreaseforthegasenginesandanotherforthegaseous fuelsystemandassociatedLNGstorage tanks.AGermanischerLloyd(GL)studyin2009notedanadditionalinvestmentof25%overthatofthecostfor constructing a typical new container ship (Ref.48). According to a DNV

    report,ifashipspendsmorethan30%ofitsoperatingtimeinanECA,thecostofgasfueledenginescanbejustified(Ref.43).

    Increased Fuel Storage Space Increased fuel storage space is required tocarrythenecessaryvolumeofgas forendurancesimilartoashipusing liquidfossilfuel.AgivenweightofnaturalgasstoredasLNGtakesuponlyabout40%of thevolumeof the sameweightofnaturalgas storedasCNGat3,600psi.Because LNGoccupiesmuch less space thanCNG, it is thepreferred storagemethod.WhenstoredasLNG,however,thefueltakesuptwiceasmuchspace

    asliquidfossilfuel,andifstoredasCNG,ittakesuptofivetimesasmuchspace(Ref.46).Table8showsthevolumeoftheonboardfuelstoragerequirementsforthreetypesofmarinevessels.

  • 8/13/2019 Alternative Fuels for Marine Application

    62/108

    44

    Table8. FuelUsageandStorageVolumesforThreeTypesofVessels

    Vessel

    Fuel

    Type HP

    DailyFuel

    Use(gal)

    TypicalMinimum

    OnboardFuel

    Storage

    VolumeofOnboard

    FuelStorage

    [days] [gal]

    Dist.or

    Residual

    [ft3]

    LNG

    [ft3]

    CNG

    [ft3]

    TowingTug

    Distillate 3,000 1,417 14 20,000 2,674 4,830 12,178

    100carFerry

    Distillate 6,000 2,268 7 16,000 2,139 3,864 9,742

    GreatLakesOreCarrier

    Residual 10,000 6,934 21 145,000 19,385 38,183 96,264

    Figure 16 from Reference46 shows the relative weights and volumes of themarinefuels.

    Figure16.

    Weights

    and

    Volumes

    of

    Marine

    Fuels

    IncreasedFuelingTimeStoredasCNG,itisnotconsideredviablebecauseoflongfuelingtimes,extraspacerequirementsforthefueltanks,andthelimitedvolume thatcanbecarried that results ina limited range.So,other than forvesselsonshortvoyages thathavesufficient turnaroundtime for fueling, theCNG concept isnot considered thebestoptionwhenusingnaturalgas forashipspropulsionfuel.

    IncreasedSafetyRequirementsThecarriageofnaturalgasasa fuelentailsadditional safety requirements over fossil fuels and results in constructionfeatures that are reflected in the higher construction cost. (See New ShipConstructionPremiumonpage33fortheincreasedcosts.)

  • 8/13/2019 Alternative Fuels for Marine Application

    63/108

    45

    Limited Bunkering InfrastructureFor LNG tobecomeanattractive fuel forthe majority of ships, a global network of LNG bunkering terminals must beestablishedorLNGfueledshipswillbelimitedtocoastaltradeswhereanLNGbunkering network already exists. The situation is sometimes described as a

    chickenandeggdilemma.Untilthebunkeringinfrastructureisinplace,shipownersmaynotcommittonaturalgasfueledshipsandvisaversa.Currently,LNGbunkering ismoreexpensiveandcomplicatedascompared towhat is inplaceforfossilfuelandisonlyavailableinalimitednumberofplaces.

    AGLarticlecalledLNGSupplyChain(Ref.49)madethefollowingobservation:

    o Attheendof2011,nosupplychainforLNGasshipfuelexists,withtheexception of that serving Norwegian coastal waters. The primary reason

    forthisisthatLNGsuppliershaveyettobeconvincedthatthistechnologywilltakeoff.Moreover,LNGusershavetobeconvincedthatLNGwillbemadeavailableatattractivepricelevelsandtherightlocations.

    o In principle, Europe is well prepared for this future as local LNGproduction is up and running in Norway.A number of large LNG importterminalsalreadyexist,withsomeof thesehavingorplanninganexportfacility,which isanecessarysteptowardssmallscaleLNGdistribution.Atpresent,however,largeLNGterminalsarenotyetequippedforexporting

    smallerquantitiesofLNG.

    Since these statements were issued, studies have been undertaken to equipLNGbunkeringfacilitieswithintheEuropeanECAstohaveLNGsupplycapacityby2015;andprojectshavebeenstartedtoprovideLNGbunkeringcapabilitiesat some ports. Major 0il and gas producers are showing an interest indeveloping an LNG marine fuel supply infrastructure. Shell has acquiredNorwegianLNGproduceranddistributorGasnor for$74millionwithplans totarget European marine customers. The purchase of Gasnor will give the oil

    majora foothold intheemergentmarket forLNGbunkering.GasnorsuppliesLNG to Norway primarily by truck and is in the process of establishing LNGquayside bunkering at the German Port of Brunsbuttel (Ref.50). A plan hasbeendevelopedand land setaside foran LNGbunkeringport inRotterdam.AlthoughalargeGasAccesstoEurope(GATE)LNGimportterminalopenedattheendoflastyear,thisLNGisdestinedmostlyforpowerplants.Theprincipalcompanies involved want to build a smaller outbound terminal next to theGATE so the LNG can be supplied as fuel for ships (Ref. 51). The Port ofRotterdam and the Port