27
A. Lyashenko Alkali-antimonide PCs for GPM PC workshop, Chicago 09 Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers ecent review on GPMs: Chechik & Breskin NIM A595 (2008) 116 ummary article visible-light GPM: Lyashenko et al. JINST 4 (2009) P07005 A. Lyashenko, R. Chechik and A. Breskin Weizmann Institute of Science, Rehovot, Israel

Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

  • Upload
    lanza

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers. Lyashenko, R. Chechik and A. Breskin Weizmann Institute of Science, Rehovot, Israel. Recent review on GPMs: Chechik & Breskin NIM A595 (2008) 116 Summary article visible-light GPM: Lyashenko et al. JINST 4 (2009) P07005. - PowerPoint PPT Presentation

Citation preview

Page 1: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

Recent review on GPMs: Chechik & Breskin NIM A595 (2008) 116Summary article visible-light GPM: Lyashenko et al. JINST 4 (2009) P07005

A. Lyashenko, R. Chechik and A. BreskinWeizmann Institute of Science, Rehovot, Israel

Page 2: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

UV-exist:UV-exist:ALICE, HADES,COMPASS, J-LAB, PHENIX

Visible-in courseVisible-in courseMotivation: • large areas, flat geometry• operation in magnetic fields• sensitivity to single photons• visible spectral range• fast (ns range)• high localization accuracy (sub-mm range)

Gaseous Photo-Multipliers (GPM)Gaseous Photo-Multipliers (GPM)

Page 3: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Principles of GPM operation

Photoelectron emission fromphotocathode

Avalanche chargemultiplication in gas

Signal recording

Page 4: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

• Alkali-antimonide pc production (QE 20-50% @ 350-400nm in vacuum for semi-transparent PC)• Hot Indium sealing to package @130-150ºC => critical for pc

Multi-chamber UHV setupMulti-chamber UHV setup

Page 5: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

•PC substrate treatment in air •PC substrate treatment in vacuum (usually baking at 270-3000C )• Evaporation of alkali-metals

PC sensitivity Long term stability

PC fabrication process:

Page 6: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

100 200 300 400 500 600 700 8000,1

1

10

100

Na-K-Sb:Cs (S-20)

Spec

tral R

espo

nsivi

ty [m

A/W

]

Wavelength [nm]

Cs3Sb (S-11)

Na2KSbRb2CsSb

K2Cs-Sb

Photocathodes: Cs3Sb

Activation steps:

1. Evaporation of Sb at 180-2000C onto a substrate until it looses ~20% of its transparency

2. Exposure to Cs at 150-1800C until the maximum of photocurrent is reached.

3. Post-treatment if needed (removing of excess of Cs by baking at ~2000C)

Activation time: 30-60 minPC characteristics (typical):

• Wavelength of max response: λmax=370-400nm• Luminous sensitivity: 100-120μA/lm• Responsivity at λmax : 65-75mA/W• QE at λmax: 20-25%• Dark emission current at 250C: ≤0.1fA/cm2

• Surface resistance at 250C: 3*107Ohm/square

Designation: S-11

Large area: YES

Burle

Page 7: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Photocathodes: K2CsSb

PC characteristics (typical): • Wavelength of max response: λmax=380-420nm• Luminous sensitivity: 70-100 μA/lm• Responsivity at λmax : 100mA/W• QE at λmax: >30%• Dark emission current at 250C: ≤0.01fA/cm2

• Surface resistance at 250C: 6*109Ohm/square Features: Very high surface resistance

Activation steps:One possibility:1. Evaporation of Sb at 180-2000C onto a

substrate until 20% of transparency is lost

2. Exposure to K at 160-2000C until the maximum of photocurrent is reached (formation of K3Sb PC).

3. Repetitive (yo-yo) exposure to Cs & Sb at 180-2250C until the maximum of photocurrent is reached.

Another possibility: So called co evaporation

Large area: YES, needs a conductive layer100 200 300 400 500 600 700 800

0,1

1

10

100

Na-K-Sb:Cs (S-20)

Spec

tral R

espo

nsivi

ty [m

A/W

]

Wavelength [nm]

Cs3Sb (S-11)

Na2KSbRb2CsSb

K2Cs-Sb

Burle

Page 8: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Photocathodes: Na2KSbActivation steps:1. Evaporation of Sb at 180-2000C on

substrate until it looses 20% of its transparency

2. Exposure to K at 160-2000C until maximum photocurrent reached (K3Sb).

3. Exposure to Na at ~2200C until the raise of PC current start slowing down*.

4. Alternating addition of Sb and K at ~160-1800C until maximum photocurrent reached.

* Simultaneous evaporation of K and Na is possiblePC characteristics (typical):

• Wavelength of max response: λmax=380-410nm• Luminous sensitivity: 65-80μA/lm• Responsivity at λmax : 64mA/W• QE at λmax: 19-21%• Dark emission current at 250C: ≤0.0001fA/cm2

• Surface resistance at 250C: 2*106Ohm/squareFeatures: Outstanding temperature stability (up to 2000C), lowest dark currentLarge area: YES, but production is rather complicated, QE< other Bi-alkali.

100 200 300 400 500 600 700 8000,1

1

10

100

Na-K-Sb:Cs (S-20)

Spec

tral R

espo

nsivi

ty [m

A/W

]

Wavelength [nm]

Cs3Sb (S-11)

Na2KSbRb2CsSb

K2Cs-Sb

Burle

Page 9: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

)()()()(

)()()()(

)()()(

PMTWdarkPDPD

darkPDtransPDtrans

darkPMTtransPMTtrans

darkPCPC QET

IIII

IIIIQE

PC characterization

Page 10: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

0 10 20 30 40 50 600123456789

10

Num

ber o

f K2Cs

Sb P

Cs

QE at max

[%]

N=28Mean QE=28.3%

QE of alkali-antimonide photocathodes

200 300 400 500 60005

10152025303540

a)

QE

[%]

Wavelength [nm]

Cs3Sb

200 300 400 500 6000

5

10

15

20

25

30

QE

[%]

Wavelength [nm]

Na2KSb c)

300 400 500 6000

10

20

30

40

50

60

QE

[%]

Wavelength [nm]

K2CsSb PCs

QE~48%

RECENT PHOTOCATHODES

Page 11: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

300 400 500 6000

10

20

30

40

50

700 Torr Ar/CH4 (95/5)

Edrift

~500 V/cm

Vacuum

QE

[%]

Wavelength [nm]

SbK2Cs

0.0

0.2

0.4

0.6

0.8

1.0

extr

0,0 0,5 1,0 1,5 2,0 2,50,0

0,2

0,4

0,6

0,8

1,0

312 nm 365 nm 405 nm 436 nm 546 nm

K-Cs-Sb 700 Torr Ar/CH4 (95/5)

Tran

smis

sion

Electric field [kV/cm]

Photoelectron extraction from bi-alkali PC into gas

Optimal field for GPMHigher transmission in other gases, e.g. CH4

Page 12: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

PC is stable in gas in the large vacuum chamber

Expected even better stability for sealed devices

Long-term photocathode stability in gasLong-term photocathode stability in gas

0 10 20 300

5

10

15

20

file:

200

8-02

-04_

PC

_sta

bilit

y_G

AS

312nm 365nm 405nm 436nm 546nm

QE

[%]

Time [days]

Cs3Sb PC, initial vacuum QE~25%@ 365 nm700 Torr Ar/CH

4 (95/5)

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

file:

200

8-02

-04_

PC

_sta

bilit

y_G

AS

312nm 365nm 405nm 436nm 546nm

QE

[%]

Time [days]

K2CsSb PC initial vacuum QE~48%@365 nm700 Torr Ar/CH4 (95/5)

Page 13: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Secondary effects in visible-sensitive GPMs Secondary effects in visible-sensitive GPMs Gaseous Photo-Multiplier (GPM)

PChn

readout plane

+++ avalanche

photonsions

incident photon

+secondaryemission

secondaryemission

GAS

Main problem: Ions & photons secondary e emission ion/photon feedback pulses gain & performance limitations

Photon feedback is largely reduced

PC masked by electrode*GEM: Gas Electron Multiplier - Sauli, NIM A 386, (1997) 531.

GEM*

70μm50μm

GEM+

++

DV

1e in

>1000e out

Ehole

Edrift

Eind

Page 14: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

IBF: Ion Back-Flow Fraction

Major efforts to limit ion backflow1 .GATING operation in “gated-mode” deadtime,

trigger2 .NEW e- - - - MULTIPLIERS operation in continuous mode

)cascaded-GEM, MICROMEGAS…&: OTHERS(

Challenge: BLOCK IONS WITHOUT AFFECTING ELECTRON COLLECTION

IBF: The average fraction of avalanche-generated ions back-flowing to the photocathode

Page 15: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Visible-sensitive GPM: Ion-feedback developmentVisible-sensitive GPM: Ion-feedback development

Visible-sensitive gas photomultiplier review: M. Balcerzyk et al., IEEE Trans. Nucl. Sci. Vol. 50 no. 4 (2003) 847

1 GIBFeff stable operation of visible sensitive GPMif

200 220 240 260 280 300 320 340100

101

102

103

104

700 Torr Ar/CH4 (95/5)

Edrift

=0.5kV/cm

Tota

l gai

n

VGEM

[V]

K-Cs-Sb QE=22%@375nm

CsI

K-Cs-Sb

K-Cs-Sb, Na-K-Sb, Cs-Sb : Current deviates from

exponential Max Gain ~ few 100, IBF~10%

G~105, γ+eff - ?, IBF - ?

Page 16: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Calculation of ion induced secondary emission probability from bi-alkali PCs γ+eff=γ+·εextr

Auger neutralization + Backscattering

PC K-Cs-Sb Na-K-Sbγ+

eff 0.027 0.029

PC

GAS

3 4 5 6 7 8 9 100,0

0,1

0,2

0,3

0,4

0,5

K-Cs-Sb

CH4+

N 0(Ek) [

elec

trons

per

ion

per e

V]

Ek [eV]

Na-K-Sb

4 6 8 10 12 14 16 18 200,0

0,1

0,2

0,3

0,4

0,5

0,6

+ [el

ectro

ns p

er io

n]E'

i [eV]

K-Cs-Sb PC

A.Lyashenko et al., J. Appl. Phys. (2009) accepted, arXiv:0904.4881

Most gases

Page 17: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Measurements of γ+eff=γ+·εextr

PC K-Cs-Sb Na-K-Sbγ+

eff (experiment) 0.03±0.01 0.02±0.006

200 220 240 260 280 300 320 340100

101

102

103

104

700 Torr Ar/CH4 (95/5)

Edrift

=0.5kV/cm

Tota

l gai

n

VGEM

[V]

K-Cs-Sb QE=22%@375nm

CsI

K-Cs-Sb

effmeas IBFGGG

1

Page 18: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Effective IISEE from K-Cs-Sb and Na-K-Sb PCs

PC K-Cs-Sb Na-K-SbIon CH4

+ CH4+

γ+eff (exp) 0.03±0.01 0.02±0.006

γ+eff(theory) ~0.03 ~0. 03

PC

extreff

Ar/CH4 (95/5), γeff+ ~0.03, Gain ~ 105 => IBF < 3.3*10-4

1 GIBFeff stable operation of visible sensitive GPMif

Page 19: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

The Microhole & Strip plate (MHSP)Two multiplication stages on a single, double-sided, foil

R&D: Weizmann/Coimbra

30mm

100mm

100mm

70mm

140mm

210mm

Veloso et al. Rev. Sci. Inst. A 71 (2000) 237.

7 times lower IBF than with cascaded GEMs

Strips: multiply charges

Page 20: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Reverse-biased MHSP (R-MHSP) conceptReverse-biased MHSP (R-MHSP) concept

410V 70VAC

+++++ions

electrons Flipped-R-MHSPR-MHSP

Can trap its own ions

Ions are trapped by negatively biased cathode strips

Lyashenko et al., JINST (2006) 1 P10004 Lyashenko et al., JINST (2007) 2 P08004

Roth, NIM A535 (2004) 330Breskin et al. NIM A553 (2005) 46Veloso et al. NIM A548 (2005) 375

Can trap only ions from successive stages

Strips: collect ions

Page 21: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

103 104 105 2x10510-4

10-3

10-2

F-R-MHSP/GEM/MHSP R-MHSP/GEM/MHSP

Edrift

=0.5kV/cm

Ar/CH4 (95/5), 760 Torr

IBF

Total gain

Lyashenko et al., JINST (2007) 2 P08004

IBF measured with 100% e-collection efficiency

IBF=3*10-4 @ Gain=105 is 100 times lower than with 3GEMs

1st R-MHSP or F-R-MHSP: ion defocusing (no gain!)Mid GEMs: gainLast MHSP: extra gain & ion blocking

BEST ION BLOCKING:BEST ION BLOCKING:““COMPOSITE” CASCADED MULTIPLIERSCOMPOSITE” CASCADED MULTIPLIERS::

IBF=3*10-

4

Page 22: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

• 20% QE drop @ 2 μC/mm2 ion charge on photocathode: • only ~ 4 x faster drop compared to thin ST CsI (~8 μC/mm2)

K-Sb-Cs PC ageing in avalanche modeK-Sb-Cs PC ageing in avalanche mode

Real conditions: gain=105; IBF=3*10-4. •20% QE drop 46 years @ 5kHz/mm2 ph. same conditions with a MWPC (IBF~0.5) 3000 times shorter lifetime: ~5 days!

A. Breskin al. NIM A553 (2005) 46

0 2 4 6 8 10 12 14 160,0

0,2

0,4

0,6

0,8

1,0

1,2

CsI(300A) QE~7%(180nm) 50Torr, CH

4, G~103

K-Cs-Sb

PC1 QE~17% (375nm), 100Torr, G~103

PC2 QE~25% (375nm), 100Torr, G~20 PC3 QE~11% (375nm), 700Torr, G~103

Ar/CH4 (95:5)

0408

16_S

b-K-

Cs_P

Cage

ing

Rela

tive

PC c

urre

nt

PC accumulated charge [mC/mm2]

Page 23: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Sealed detectorTest detector setup

Visible-sensitive GPMVisible-sensitive GPMUHV compatible materials

Bi-alkaliphotocathode

cascadedmultiplier

GEM/MHSP

M. Balcerzyk et al., IEEE Trans. Nucl. Sci. Vol. 50 no. 4 (2003) 847

Page 24: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

200 220 240 260 280 300100

101

102

103

104

105

106

107

K-Cs-Sb CsI (exp. fit)

Double-GEM

Edrift=0.5 kV/cm, QE~27%@375nm700 Torr Ar/CH4 (95/5)

K-Cs-Sb CsI (exp. fit)

F-R-MHSP/GEM/MHSP

Tota

l gai

nV

AC_MHSP, DV

GEM [V]

Continuous operation of F-R-MHSP/GEM/MHSPContinuous operation of F-R-MHSP/GEM/MHSP with K-Cs-Sb photocathodewith K-Cs-Sb photocathode

Gain ~105 at full photoelectron collection efficiencyFirst evidence of continuous high gain operation of visible-sensitive

GPM

K-Cs-Sb

CsI

Lyashenko et al., JINST (2009) 4 P07005

Page 25: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Short-term GPM stabilityShort-term GPM stability

Rate: 12kHz/mm2 photonsGain: 105

Total anode charge ~125μC

300 400 500 60005

10152025303540

fresh PC in vacuum in gas after 14 hours @ gain 105

file: 2

008-

05-2

5_FR

GM

_KCs

Sb_l

ong_

term

_sta

b

700 Torr Ar/CH4 (95/5)

QE

[%]

Wavelength [nm]

K2CsSb

Page 26: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

Visible-sensitive GPM featuresVisible-sensitive GPM features

Single photon sensitivityNo ion-feedback

Fast ns pulses

19 ns0 100 200 300 400 500

100

101

102

103

104

105

Gain ~ 105

Gain ~ 2*105

Gain ~ 3*105

700 Torr Ar/CH4 (95/5)

K-Cs-Sb (QE~26%@375nm)F-R-MHSP/GEM/MHSP

Coun

ts

Channel

100 photoelectrons

Page 27: Alkali-antimonide Photocathodes for Gas-Avalanche Photomultipliers

A. LyashenkoAlkali-antimonide PCs for GPMPC workshop, Chicago 09

SummarySummary

Alkali-antimonide PCs for GPMsHigh (>40%) QE values reached Stability in gas verifiedProbability of IISEE evaluated Required IBF estimated

MHSP/GEM-based CASCADED MULTIPLIERS• 100 times lower IBF than with cascaded GEMs with full efficiency for collecting primary electrons!• Gain ~105 reached with visible-sensitive K-Cs-Sb PC• Demonstrated stable GPM operation at a gain 105

• Atmospheric pressure operation Many potential applications in large-area photon detectors: Particle Physics, Medical Imaging, Astroparticle, Military, Bio

First evidence of high-gain continuous operation of visible-sensitive GPM