227
Algebra Jeff Edmonds York University COSC 6111 ields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other Finite Fields ector Spaces Colour Error Correcting Codes inear Transformations Integrating hanging Basis Fourier Transformation (sine) Fourier Transformation (JPEG) Fourier Transformation (Polynomials) ther Algebra Taylor Expansions

Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Embed Size (px)

Citation preview

Page 1: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

AlgebraJeff Edmonds

York University

COSC 6111

• Fields• GCD• Powers mod p• Fermat, Roots of Unity, & Generators• Z mod p vs Complex Numbers• Cryptography• Other Finite Fields

• Vector Spaces• Colour• Error Correcting Codes

• Linear Transformations• Integrating

• Changing Basis• Fourier Transformation (sine)• Fourier Transformation (JPEG)• Fourier Transformation (Polynomials)

• Other Algebra• Taylor Expansions• Generating Functions• Primes Numbers

Page 2: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fields• A Field has:• A universe U of values• Two operations: + and ו + Identity: $0 a+0 = a• × Identity: $1 a×1 = a• Associative: a+(b+c) = (a+b)+c & a×(b×c) = (a×b)×c • Commutative: a+b = b+a & a×b = b×a • Distributive: a×(b+c) = a×b + a×c• + Inverse: "a $b a+b=0, i.e. b=-a

• (These give you a group.)

(& a×0 = 0)

Differentiates between + and ×

Page 3: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fields• A Field has:• A universe U of values• Two operations: + and ו + Identity: $0 a+0 = a• × Identity: $1 a×1 = a• Associative: a+(b+c) = (a+b)+c & a×(b×c) = (a×b)×c • Commutative: a+b = b+a & a×b = b×a • Distributive: a×(b+c) = a×b + a×c• + Inverse: "a $b a+b=0, i.e. b=-a• × Inverse: "a≠0 $b a×b=1, i.e. b=a-1

• Examples:• Reals & Rationals• Complex Numbers• Integers• Invertible Matrices

(& a×0 = 0)

Page 4: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fields

• Problems for computers:• Reals

• Too much space• Lack of precision

• Integers• Lack of inverses• Grow too big

• Better field?• Finite field, eg integers mod a prime

Finite

Page 5: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Finite Fields

123404

241303

314202

432101

000000

43210×

321044

210433

104322

043211

432100

43210+• Integers mod 5 (Z/5)• Universe U = {0,1,2,3,4}• Two operations + and ×

• 3+4 = 7 =mod 5 2• 3×4 = 12 =mod 5 2

• Don’t think of mod 5 as a function mod5(7) = 2.

• Think of it as equivalence classes … -8 =mod 5 -3 =mod 5 2 =mod 5 7 …

• Must prove + & × are well defined [a]modp × [b]modp = [a+ip]×[b+jp] = a×b + (aj+bi+ijp)p = [a×b]modp

Page 6: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Finite Fields

123404

241303

314202

432101

000000

43210×

321044

210433

104322

043211

432100

43210+• Special value 0

• a+0 = a• a×0 = 0

• Special value 1 • a×1 = a

Page 7: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Finite Fields

123404

241303

314202

432101

000000

43210×

321044

210433

104322

043211

432100

43210+

• Associative: • a+(b+c) = (a+b)+c • a×(b×c) = (a×b)×c

• Commutative: • a+b = b+a • a×b = b×a

• Distributive: • a×(b+c) = a×b + a×c

Page 8: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Finite Fields

123404

241303

314202

432101

000000

43210×

321044

210433

104322

043211

432100

43210+• Inverses:

• "a $b a+b=0, i.e. b=-a• 0 = 2+(-2) =mod 5 2 + 3

• "a≠0 $b a×b=1, i.e. b=a-1

• 1 = 2×(½) =mod 5 2×(?)• 2×3 = 6 =mod 5 1

Page 9: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

12345606

24613505

36251404

41526303

53164202

65432101

00000000

6543210×

Finite Fields

• Integers mod 7

• Multiplicative Inverse:• "a≠0 $b a×b=1, i.e. b=a-1

• Given a, find a-1

• If b = a-1, then a = b-1

• 1 = 1-1

• It is possible that a = a-1

Page 10: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Finite Fields

• Integers mod 6• Multiplicative Inverse:

• "a≠0 $b a×b=1, i.e. b=a-1

• Given a, find a-1

• No inverse for 2• Zero Divisors:

• 2×3 = 6 =mod 6 0 • No inverses for ints mod n

if n is 1234505

2402404

3030303

4204202

5432101

0000000

543210×

not prime

Page 11: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Finite Fields

• Integers mod 6• Multiplicative Inverse:

• "a≠0 $b a×b=1, i.e. b=a-1

• Given a, find a-1

• No inverse for 2• Zero Divisors:

• 2×3 = 6 =mod 6 0 • No inverses for ints mod n

if n is • Inverses for ints mod p

if p is prime• Prove by construction

using GCD alg

1234505

2402404

3030303

4204202

5432101

0000000

543210×

not prime

Page 12: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

GCD(a,b)Input: <a,b>

= 3Output: GCD(a,b)= <21,9>

Maintain values <x,y> such that GCD(a,b) = GCD(x,y)

GCD(a,b) = GCD(x,y) = GCD(y,x mod y) = GCD(x’,y’)

Replace <x,y> with <y,x mod y>

Page 13: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

GCD(a,b)

Page 14: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Extended GCD(a,b)

Input: <a,b>= <5,2,-3>5 = GCD(25,15)(2)×25 + (-3)×15 = 5

Output: <g,u,v>• g = GCD(a,b)• u×a + v×b = g

= <25,15>

Page 15: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Extended GCD(a,b)My instance: <a,b>

My friend’s instance: <a’,b’> = <b,a mod b>a’ = b, b’ = a mod b = a - r×b

My friend’s solution: <g’,u’,v’>• g’ = GCD(a’,b’)• u’×a’ + v’×b’ = g’• u’×b + v’×(a-r×b) = g• v’×a + (u’-v’×r)×b = g• u×a + v×b = g

My solution: <g,u,v>• g =• u =• v =

g’v’u’-v’×r

= g

Page 16: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Extended GCD(a,b)

Page 17: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

12345606

24613505

36251404

41526303

53164202

65432101

00000000

6543210×

Finding Inverses• Integers mod p (Z/p)• Multiplicative Inverse:

• Given a≠0 and prime p, find b such that a×b =mod p 1

Page 18: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• Use Extended GCD( , ) a pOutput: <g,u,v>

• g = GCD(a,p)• a×u + p×v = g

= 1= 1

b = u

a×b =

• Multiplicative Inverse:• Given a≠0 and prime p,

find b such that a×b =mod p 1

a×b =mod p 11 – p×v =mod p 1

"a≠0 $b a×b=1, i.e. b=a-1

• Integers mod p (Z/p)

Finding Inverses

Page 19: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Chinese Remainder TheoremSuppose you want to compute some integer x.But instead of doing the long computation over the integers,you compute it over the integers mod p1.Then you compute it over the integers mod p2.

Input: <a1,p1,a2,p2,…,ar,pr>Output: x• i x = ai mod pi

• Unique answer ≤ p1p2…pr

Sorry. We don’t cover the algorithm.

Page 20: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Powers mod p

1

Start with 1 and continually multiply by b mod p.What do you get?

b×b

b2

×bb3

×bb4

×bb5

×bb6

×bbN

×b…

Input: b and NOutput: y = bN mod p

Time(N) = (N)n = Size = log(b) + log(N)

= 2(n)

Page 21: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

N=7

N=2

N=1N=1

N=2

N=1N=1

N=2

N=1N=1

N=1

N=4N=3b4b3

b7 = b3 × b4

T(N) = 2T(N/2) + 1 = (N)Size = log(b) + log(N)

= 2(n)

Powers mod p

Page 22: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

N=7

N=1

N=3b3

b7 = (b3)2 × b

T(N) = 1T(N/2) + 1 = (log(N))Size = log(b) + log(N)

= (n)

Powers mod p

Page 23: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Powers mod pInput: b and NOutput: y = bN mod p

Time(N) = (log N) = (n)

Time(N) = (N) = 2(n)

Input: b and yOutput: N such that y = bN mod p

N = logb(y) mod p

n = Size = log(b) + log(N)

1 b×b

b2

×bb3

×bb4

×bb5

×bb6

×by

×b…

A one way hard functionUseful in cryptography.

Discrete Log

Similarly:• Multiplying: p×q = N

Time = (n)• Factoring: N = p×q

Time = 2(n)

Page 24: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Can this go on for ever?No. There are only p elements.

b×x = b×yb-1×b×x = b-1×b×y

x = yEach node has in-degree one

and out-degree one.

1 b×b

b2

×bb3

×bb4

×bb5

×bb6

×b

Is this possible?

x

×by

×b$b-1 b×b-1=1

Fermat, Roots of Unity, & Generators

Page 25: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

What does a graph with in and out-degree one look like?

1

b b2

b3

b4b5

Fermat, Roots of Unity, & Generators

Lets first focus on only these elements.

Page 26: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1

b b2

b3

b4b5

$r br = 1

a

ab ab2

ab3

ab4ab5

There might be another element a. abr = a

c

cb cb2

cb3

cb4cb5

There might be another element c. cbr = c Do this some q number of times.

qAre there more elements?

0The total # of elements

= rq+1 = p

Fermat, Roots of Unity, & Generators

Page 27: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1

b b2

b3

b4b5

$r br = 1

Do this some q number of times.

qAre there more elements?

0The total # of elements

= rq+1 = p

1 1 1 1 1 1 1 1 1 1 11 2 4 8 5 10 9 7 3 6 11 3 9 5 4 1 3 9 5 4 11 4 5 9 3 1 4 5 9 3 11 5 3 4 9 1 5 3 4 9 11 6 3 7 9 10 5 8 4 2 11 7 5 2 3 10 4 6 9 8 11 8 9 6 4 10 3 2 5 7 11 9 4 3 5 1 9 4 3 5 11 10 1 10 1 10 1 10 1 10 1

b2 b3 b4 b5 b6 b7 b8 b9 b10b0 b1

Eg. p=11, n=p-1=rq=10

r=5,q=2

r=2,q=5

r=1,q=10r=10,q=1

Fermat, Roots of Unity, & Generators

Page 28: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1

b b2

b3

b4b5

$r br = 1

Values of b like 2,6,7, & 8 are said to• be a generator of the field

The total # of elements = rq+1 = p

1 1 1 1 1 1 1 1 1 1 11 2 4 8 5 10 9 7 3 6 11 3 9 5 4 1 3 9 5 4 11 4 5 9 3 1 4 5 9 3 11 5 3 4 9 1 5 3 4 9 11 6 3 7 9 10 5 8 4 2 11 7 5 2 3 10 4 6 9 8 11 8 9 6 4 10 3 2 5 7 11 9 4 3 5 1 9 4 3 5 11 10 1 10 1 10 1 10 1 10 1

b2 b3 b4 b5 b6 b7 b8 b9 b10b0 b1

Eg. p=11, n=p-1=rq=10

r=10,q=1

Fermat, Roots of Unity, & Generators

Page 29: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fermat’s Little Theorem: b≠0 bp-1 =mod p 1

1

b b2

b3

b4b5

$r br = 1

The total # of elements = rq+1 = p

Proof: bp-1 = brq = (br)q =mod p (1)q = 1

Fermat, Roots of Unity, & Generators

Page 30: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fermat’s Little Theorem: b≠0 bp-1 =mod p 1

Euler’s Version: b≠0 bφ =mod n 1where • n = pq with p and q are prime• φ = (p-1)(q-1)• and where b is co-prime with n.

Example: b=2, p=3, q=5, n=15, r=(p-1)(q-1)=8

=mod 15 11 2×b

4×b

8×b

16×b

Fermat, Roots of Unity, & Generators

Page 31: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fermat, Roots of Unity, & GeneratorsFermat’s Little Theorem: b≠0 bp-1 =mod p 1

Example: b=2, p=3, q=5, n=15, r=(p-1)(q-1)=8

1 2 4 8

b4 = 1

b8 = (b4)2 = 1

Euler’s Theorem: b≠0 bφ =mod n 1where • n = pq with p and q are prime• φ = (p-1)(q-1)• and where b is co-prime with n.

Page 32: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

161

160

162

16316

416

5

166

167

168

169

1610

1611

1612

1613

1614

1615

= 1616 = 1

Z mod 17 vs Complex Numbers16th roots of unity

-1 =

i

-i

(n/2)2 = 1

(n/4)2 = n/2 = -1

(3n/4)2 = n/2 = -1

These could be Z mod 17or complex numbers

×

rr

reθi = rcosθ + irsinθ

Page 33: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

f(θ) = reθi g(θ) = rcosθ + irsinθ

Goal: Proof f(θ) = g(θ)

f(0) = re0i = r g(0) = rcos0 + irsin0 = r

f’(θ) = ireθi g’(θ) = -rsinθ + ircosθ

f(0) = g(0)

f’(0) = ire0i = ir g’(0) = -rsin0 + ircos0 = ir

f’(0) = g’(0)

f’’(θ) = -reθi g’’(θ) = -rcosθ - rsinθ

= -f(θ) = -g(θ)

Z mod 17 vs Complex Numbers

Page 34: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Goal: Proof f(θ) = g(θ)f(0) = g(0)f’(0) = g’(0)

f’’(θ) = -f(θ) g’’(θ) = -g(θ)Proof by induction (over the reals) that f(θ) = g(θ)

f(θ) g(θ)

• For this θ, f(θ) = g(θ) and f’(θ) = g’(θ)• For next θ+, f(θ+) = g(θ+)• f’’(θ) = -f(θ) = -g(θ) =g’’(θ)• For next θ+, f’(θ+) = g’(θ+)

Z mod 17 vs Complex Numbers

Page 35: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

161

160

162

16316

416

5

166

167

168

169

1610

1611

1612

1613

1614

1615

= 1616 = 1

Z mod 17 vs Complex Numbers16th roots of unity

-1 =

i

-i

These could be Z mod 17or complex numbers

rr

reθi = rcosθ + irsinθreθi × seαi = (rs)e(θ+α)i

Page 36: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

CryptographyI publish a public key E

and hide a private key D.

I have a message m to send to him. I use E to encode it.

code = Encode(m,E)

Knowing E but not D, I cannot decode the message.

Knowing D, I decode the message. m = Decode(code,D)

Page 37: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Identifying Oneself I am the guy who knows D

Prove it. I will encode a message for you.

code = Encode(m,E)

Knowing D, I can decode the message.

m = Decode(code,D)

Knowing E but not D, I cannot pretend to be him.

Page 38: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Cryptography• I chose two primes p and q.• n = pq.• φ = (p-1)(q-1) • Euler’s Theorem:

b≠0 bφ = 1 mod n• Let e be some value co-prime with φ • Let d = e-1 mod φ• Note φ is not prime,

but gcd(φ,e) = 1 is good enough.• Note ed = 1+ φr

• I publish E = <n,e> to the world.• I keep D = <d> and <p,q,φ> private.

Page 39: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Cryptography• In summary:• b≠0 bφ = 1 mod n• ed =1+ φr

• c = Encode(m,E) = me mod n

Time? = (# bits in e, m, & n) using repeated squaring

Page 40: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Cryptography• In summary:• b≠0 bφ = 1 mod n• ed =1+ φr

• c = Encode(m,E) = me mod n

• m’ = Decode(c,D) = cd mod n = (me)d = med

= m1+ φr

= m × (mφ)r

= m × (1)r mod n = m

Page 41: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

We have seen the finite field Z/p • with elements being the integers {0,1,2,…,p-1}• with normal + and × mod a prime integer p.

Similarly, we consider the field of (Z/p)[x]/P • with elements the polynomials

ad-1 xd-1 + … + a3 x3 + a2 x2 + a1 x + a0

• with coefficients ai in Z/p.• and degree at most d-1.

• with normal + and × mod an unfactorable polynomial P. xd - 2xd-1 - … - 3x2 - x – 4 = 0• Note this field has pd elements.

Finite Fields mod Polynomial

Page 42: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

For example (Z/2)[x]/(x3+x+1)

Finite Fields mod Polynomial

Binary coefficients.

Polynomials over x.

Mod x3+x+1

All x3 removed, so elements have degree 2. There are 23=8 elements.

Page 43: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

For example (Z/2)[x]/(x3+x+1)• x2+1 and x2+x+1 are elements• (x2+1)×(x2+x+1)

= x4+x3+x2 + x2+x+1 = x4+x3+x+1 = (x3+x+1)(x+1) + (x2 +x)= x2 +x

Finite Fields mod Polynomial

xx4+x3 +x+1 x3+x+1x4 +x2+x

x3+x2 +1

+1

x3 +x+1x2 +x remainder

Page 44: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Types of Finite Fields• Lemma: Every finite field has pd elements

for some prime p and int d.• Any two finite fields with the same number of elements

are isomorphic  ie same with under some renaming of the elements.

• Eg There is not a field with 6 elements!

Is there a field with 81 elements?Yes, because 81 = 34

Is there a field with 82 elements?No, because 82 = 2∙41

Page 45: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Can this go on for ever?No. There are a

finite # of elements.

x+1 = y+1x+1+(-1) = y+1+(-1)

x = yEach node has in-degree one

and in out-degree one.

0+1 +1 +1 +1 +1 +1

Is this possible?

x

+1y

+1$(-1) 1+(-1)=0

Partial Proof: Consider some finite field.Every field has a zero 0 and a +1

Types of Finite Fields Every finite field has pd elements And effectively is determined.

Skip

Page 46: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

What does a graph with in and out-degree one look like?

0

1

Lets first focus on only these elements.

Types of Finite Fields Every finite field has pd elements And effectively is determined.

Page 47: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

0

$n 1+1+1+ … + 1 = 0Give these elements names.We don’t know how × works.Proof that for these n elements

× works act like Z/n.• r’×s’ = (1+1+…+1) × (1+1+…+1)

= (1×1 + 1×1 + … + 1×1)

= ( 1 + 1 + … + 1)

= (r×s)’

r s • A Field is distributive: a×(b+c) = a×b + a×c

r×s

r×s

1 2’

3’

4’(n-1)’

• 1×1 = 1

• By definition

• By definition

Proves × works correctly.

Types of Finite Fields Every finite field has pd elements And effectively is determined.

Page 48: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

0Similarly, for these n elements

+ works act like Z/n.Hence, we can rename the elements.

1 2’

3’

4’(n-1)’

Types of Finite Fields Every finite field has pd elements And effectively is determined.

Page 49: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Similarly, for these n elements + works act like Z/n.

Hence, we can rename the elements.0

1 2

3

4(n-1)

Types of Finite Fields Every finite field has pd elements And effectively is determined.

Page 50: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• Proof n is prime. • Suppose n=rs• No zero divisors allowed• Hence, n is prime.

Types of Finite Fields Every finite field has pd elements And effectively is determined.

0

1 2

3

4(n-1)

Page 51: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• But there may be other elements in the Field.• Consider one u.• What about a×u for a in Z/p ?

Types of Finite Fields Every finite field has pd elements And effectively is determined.

0

1 2

3

4(p-1)

u

4u

0

2u

3u

(p-1) u

Page 52: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• What about u×u? Call it v.• What about b×v for b in Z/p ?

Types of Finite Fields Every finite field has pd elements And effectively is determined.

0

1 2

3

4(p-1) 4u

0

2u

3u

(p-1) u 4v

0

2v

3v

(p-1) v

u v= u×u

Page 53: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Types of Finite Fields Every finite field has pd elements And effectively is determined.

0

1 2

3

4(p-1) 4u

0

2u

3u

(p-1) u 4v

0

2v

3v

(p-1) v

• What about au + bv for a and b in Z/p ?

u v= u×u

2v

00+

3v

4v

5v

6v

v

u 2u 3u 4u 5u 6u

au+bv

Page 54: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Types of Finite Fields Every finite field has pd elements And effectively is determined.

0

1 2

3

4(p-1) 4u

0

2u

3u

(p-1) u 4v

0

2v

3v

(p-1) v

• What about au + bv for a and b in Z/p ?

u v= u×u

Or think of u and v as vectors in a vector space with underlying finite field Z/p.

3u + 2v = =

=

u

v

Page 55: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• We now have considered • Z/p = 0,1,2,…,p-1• u• v= u×u• Linear combinations au+bv

• Now consider x3, x4, x5, ..., xd-1 • And Linear combinations

a0+ a1 x + a2 x2 + a3 x3 + … + ad-1 xd-1

• Until d is such that xd has been seen before. Perhaps xd = 2xd-1 + … + 3x2 + x +4

Types of Finite Fields Every finite field has pd elements And effectively is determined.

= x

Page 56: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• The elements of our field then consist of• the set of polynomials

a0+ a1 x + a2 x2 + a3 x3 + … + ad-1 xd-1

• with coefficients ai in Z/p.• Degree at most d-1.• Mod xd - 2xd-1 - … - 3x2 - x – 4 = 0• (This is a polynomial that is like a prime

in that it has no factors.)• Note this field has pd elements.

Types of Finite Fields Every finite field has pd elements And effectively is determined.

Page 57: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A vector space has:• A universe V of objects. Eg:

• An arrow with a direction and a length• A knapsack of toys• A function

1inchNorth East

2x2exsin x

Page 58: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A vector space has:• A universe V of objects.• An underlying field F.• Closed under linear combinations

• If u,v V, then au + bv V

u = v =

3u + 2v =

Page 59: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A vector space has:• A universe V of objects.• An underlying finite field F.• Closed under linear combinations

• If u,v V, then au + bv V3u + 2v =

u = v =

Page 60: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A vector space has:• A universe V of objects.• An underlying finite field F.• Closed under linear combinations

• If u,v V, then au + bv V

3u + 2v =

u =

v =

2 x2exsin x + xexcos x

2 xexcos x+ 3 exsin x

6 x2exsin x + 7 xexcos x + 6 exsin x

Page 61: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A vector space has:• A universe V of objects.• An underlying finite field F.• Closed under linear combinations

• If u,v V, then au + bv V• Cannot multiply two objects producing an object.• Zero Object

0 v = 00 v =0 v =

Page 62: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A vector space has:• A universe V of objects.• An underlying finite field F.• Closed under linear combinations

• If u,v V, then au + bv V• Cannot multiply two objects producing an object.• Zero Object• Usual Field rules

• Associative: u+(v+w) = (u+v)+w• Commutative: u+v = v+u • Distributive: a×(u+v) = a×u + a×v• + Inverse: "v $u u+v=0, i.e. v=-u

Page 63: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A basis of a vector space:• A tuple <w1,w2,…,wd> of objects• Linearly independent

• wd ≠ a1w1+a2w2 +… + ad-1wd-1

• 0 ≠ a1w1+a2w2 +… + adwd

Page 64: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A basis of a vector space:• A tuple <w1,w2,…,wd> of objects• Linearly independent• Spans the space uniquely

"v $[a1,a2,…,ad] v = a1w1+a2w2 +… + adwd

[3,-1]

Basis = [ , ]

v = [a1,a2,…,ad] =

Page 65: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A basis of a vector space:• A tuple <w1,w2,…,wd> of objects• Linearly independent• Spans the space uniquely

"v $[a1,a2,…,ad] v = a1w1+a2w2 +… + adwd

Basis = [ , ]

v = [a1,a2,…,ad] = [3,4]

Standard

Page 66: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A basis of a vector space:• A tuple <w1,w2,…,wd> of objects• Linearly independent• Spans the space uniquely

"v $[a1,a2,…,ad] v = a1w1+a2w2 +… + adwd

[3,2,-4][a1,a2,…,ad] =

Basis =

v =

[ , , ]

Page 67: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A basis of a vector space:• A tuple <w1,w2,…,wd> of objects• Linearly independent• Spans the space uniquely

"v $[a1,a2,…,ad] v = a1w1+a2w2 +… + adwd

[a1,a2,…,ad] =

Basis =

v =

[ , , ][2,3,6]

Standard

Page 68: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A basis of a vector space:• A tuple <w1,w2,…,wd> of objects• Linearly independent• Spans the space uniquely

"v $[a1,a2,…,ad] v = a1w1+a2w2 +… + adwd

[3,7,6]

Basis =Standard

[ x2exsin x, xexcos x, exsin x ]

[a1,a2,…,ad] =

v = 3 x2exsin x + 7 xexcos x + 6 exsin x

Page 69: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces• A basis of a vector space:• A tuple <w1,w2,…,wd> of objects• Linearly independent• Spans the space uniquely

"v $[a1,a2,…,ad] v = a1w1+a2w2 +… + adwd

• The object V is represented by the vector [a1,a2,…,ad]• The dimension of the vector space V is d.

Page 70: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Vector Spaces

FindBasis( V )Let w1 be any nonzero object in VLet B = {w1} and d = 1loop

<loop inv>: B linearly independent 0 ≠ a1w1+a2w2 +… + adwd

Exit if B spans VLet wd+1 be any object in V not spanned by BLet B = B {wd+1} and d = d+1

end loopreturn(B)

Note the dimension d could be infinite.

Page 71: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Colour• Colour:• Each frequency f of light is a “primary colour”.• Each colour contains a mix of these

• ie a linear combination a1f1+a2f2 +… + adfd

• What is the dimension d of this vector space?• Infinite, because there are an infinite

number of frequencies• Do we see all of these colours?

Page 72: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• Colour:• No, we have three sensors that detect frequency

so our brain only returns three different real values.• What is the dimension d of the vector space

of colours that humans see?• d = 3. Each colour is specified by a vector [255,153,0]

Colour

Page 73: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• Colour:• The basis colours?

• Bases = <red,green,blue>• Or = <red,blue,yellow>

Colour

Page 74: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

We have a [n,k,r]-linear code[|code|, |message|, hamming dist] 

I have a k digit messageI encode it into an n digit code

and send it to you.

I corrupt some of the digits.

I can detect up to r-1 errors.I can correct up to (r-1)/2 errors

and recover the message.

Error Correcting Codes

Page 75: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

We have a [n,k,r]-linear code[|code|, |message|, hamming dist] 

I have a k digit messageI encode it into an n digit code

and send it to you.

Error Correcting Codes

Think of the code words as vectors in a sub-vector space

These code words are spread evenly through the set of all n digit tuples

so that the minimum hamming distance between any two is r.

Page 76: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Error Correcting Codes

These code words are spread evenly through the set of all n digit tuples

so that the minimum hamming distance between any two is r.

1010001

1110010

1010000

1101001

0010001

0110001 0110101

1110001

1100001

1110000

Page 77: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• A vector space has:• A universe V of objects. Eg:

• Code words v = 1110010• An underlying field F.

The digits of the message and in the codeare from your favorite finite field F.

Eg bits: v = 1110010Bytes: v = 13 A2 7C 41 04 F3 A2

Error Correcting Codes

Page 78: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• A vector space has:• A universe V of objects. Eg:

• Code words v = 1110010• An underlying field F. • Closed under linear combinations

• If u,v V, then au + bv V

10100011110010

+ 0100011

Each digit is a separate binary sum.No carries.

Error Correcting Codes

Page 79: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• A basis of a vector space:• A tuple <w1,w2,…,wd> of objects• Linearly independent• Spans the space uniquely

"v $[a1,a2,…,ad] v = a1w1+a2w2 +… + adwd

10100011110010

0100011

[0,0,1,1][a1,a2,…,ad] =

w2 = 1110010w1 = 1110010

Basis = <w1,w2,…,wd>

w4 = w3 =

v = w3+w4 =

What k digit message is associated with this code word?[3,-1]

Basis = [ , ]

v =

[a1,a2,…,ad] =

/k

/k

/k

/k/k

Error Correcting Codes

Page 80: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1010001

Given my message is “Yes, I will marry you”,I send this code.

1110010

Had my message been “No, way bozo”,I would have sent this other code.

My goal is to corrupt the message

to confuse the receiver.

I do hope I get a yes.

Error Correcting Codes

Page 81: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1010001

1110010

I must change r=3 digitsto completely corrupt

the code in an undetectable way.

We say that the hamming distance between these codes is r=3

because they differ in this many digits.

Oh. This is the code for no.

Error Correcting Codes

Page 82: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Considered the n-dimensional cube of possible codes with an edge between

those that differ in one digit.

1010001

1110010

When I corrupt a code, one digit at a time,

I travel along these edges.

1010011

1010000

1110011

11100011110000

1010010

Error Correcting Codes

Page 83: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1010001

1110010

1010000

1110000

We say that the hamming distance between these codes is r=3

because this is the shortest path between them in this cube.

Error Correcting Codes

Page 84: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1010001

1110010

1010000

This is a [n,k,r]-linear codeBecause the hamming distance

between any two codes is at least r.

1101001

0010001

0110001 0110101

1110001

1100001

Error Correcting Codes

1110000r

Page 85: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1010001

1110010

1010000

1101001

0010001

0110001 0110101

1110001

1100001

Error Correcting Codes

1110000

This is my code

I can detect up to r-1 errors.

I must change r=3 digitsto completely corrupt

the code in an undetectable way. r

Page 86: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1010001

1110010

1010000

1101001

0010001

0110001 0110101

1110001

1100001

Error Correcting Codes

1110000

If I receive a code that is not legal, I decode to the closest legal code.

(r-1)/2

I can correct up to (r-1)/2 errors and recover the message.

r

Page 87: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Linear Transformations• Linear Transformations T(v) = u• Useful for:

• Transforming objects wrt the same basis.• Change the basis used to describe an object.

• Linear means: T(au+bv) = aT(u) + bT(v) • Recall"v $[a1,a2,…,ad] v = a1w1+a2w2 +… + adwd

T(v) = T(a1w1+a2w2 +… + adwd ) = a1T(w1) +a2T(w2) +… + adT(wd )• Hence we only need to know where the basis

vectors get mapped.

Page 88: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• Linear Transformations• We only need to know where the basis vectors

get mapped• T(v) = a1T(w1) +a2T(w2) +… + adT(wd )

Basis = [ , ]

T( ) =

T( ) =

T( ) =

Linear Transformations

Page 89: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• Linear Transformations• We only need to know where the basis vectors

get mapped• T(v) = a1T(w1) +a2T(w2) +… + adT(wd )

T( ) =

2 ?

0 ?[ ][ ] = [ ]1

0

2

0

2 0

0 1[ ][ ] = [ ]0

1

0

1

Basis = [ , ]

T( ) = = 2 + 0

T( ) = = 0 + 1

Linear Transformations

Page 90: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• Linear Transformations• We only need to know where the basis vectors

get mapped• T(v) = a1T(w1) +a2T(w2) +… + adT(wd )

T( ) =

2 0

0 1[ ][ ] = [ ]a

b

2a

b

Basis = [ , ]

T( ) =

Linear Transformations

Page 91: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• Linear Transformations• We only need to know where the basis vectors

get mapped• T(v) = a1T(w1) +a2T(w2) +… + adT(wd )

cos ?

sin ?[ ][ ] = [ ]1

0

cos

sin

Basis = [ , ]

T( ) = cos

sincos

-sin

T( ) = = cos + sin

T( ) = = -sin + cos cos -sin

sin cos[ ][ ] = [ ]0

1

-sin

cos

Linear Transformations

Page 92: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating• f(x) = x2exsin x• Can you differentiate it? • Can you integrate it?

Sure!f’(x) = 2xexsinx + x2exsinx + x2excosx

Ahh? No

I can!Think of differentiation as a Linear Transformation and then invert it.

Page 93: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

/x( x2exsinx )

We will explain where this basis comes from later.

Page 94: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

1

0

0

0

0

0

=

/x( x2exsinx )

1

1

2

0

0

0

= 2xexsinx + x2exsinx + x2excosx

1

1

2

0

0

0

Page 95: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

0

1

0

0

0

0

-1

1

0

2

0

0

=

/x( x2excosx )= 2xexcosx + x2excosx - x2exsinx

1 -1

1 1

2 0

0 2

0 0

0 0

Page 96: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

0

0

1

0

0

0

0

0

1

1

1

0

=

/x( xexsinx )= exsinx + xexsinx + xexcosx

1 -1 0

1 1 0

2 0 1

0 2 1

0 0 1

0 0 0

Page 97: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

0

0

0

1

0

0

0

0

-1

1

0

1

=

/x( xexcosx )= excosx + xexcosx - xexsinx

1 -1 0 0

1 1 0 0

2 0 1 -1

0 2 1 1

0 0 1 0

0 0 0 1

Page 98: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

0

0

0

0

1

0

0

0

0

0

1

1

=

/x( exsinx )= exsinx + excosx

1 -1 0 0 0

1 1 0 0 0

2 0 1 -1 0

0 2 1 1 0

0 0 1 0 1

0 0 0 1 1

Page 99: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

0

0

0

0

0

1

0

0

0

0

-1

1

=

/x( excosx )= excosx - exsinx

1 -1 0 0 0 0

1 1 0 0 0 0

2 0 1 -1 0 0

0 2 1 1 0 0

0 0 1 0 1 -1

0 0 0 1 1 1

Page 100: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

1

1

1

1

1

1

0

2

2

4

1

3

=

/x(x2exsinx + x2excosx + xexsinx + xexcosx + exsinx + excosx)

1 -1 0 0 0 0

1 1 0 0 0 0

2 0 1 -1 0 0

0 2 1 1 0 0

0 0 1 0 1 -1

0 0 0 1 1 1

= 2x2excosx + 2xexsinx + 4xexcosx + 1exsinx + 3excosx

Page 101: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating• f(x) = x2exsin x• Can you differentiate it? • Can you integrate it?

Sure!f’(x) = 2xexsinx + x2exsinx + x2excosx

Ahh? No

I can!Think of differentiation as a

Linear Transformations and then invert it.

Page 102: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

D = D-1 =

½ ½ 0 0 0 0

-½ ½ 0 0 0 0

0 -1 ½ ½ 0 0

1 0 -½ ½ 0 0

-½ ½ 0 -½ ½ ½

-½ -½ ½ 0 -½ ½

1 -1 0 0 0 0

1 1 0 0 0 0

2 0 1 -1 0 0

0 2 1 1 0 0

0 0 1 0 1 -1

0 0 0 1 1 1

Page 103: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

1

0

0

0

0

0

½

0

1

=

½ ½ 0 0 0 0

-½ ½ 0 0 0 0

0 -1 ½ ½ 0 0

1 0 -½ ½ 0 0

-½ ½ 0 -½ ½ ½

-½ -½ ½ 0 -½ ½

x2exsin x x= ½ x2exsinx - ½ x2excosx + xexcosx - ½ exsinx - ½ excosx

Page 104: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

/x( x2exsinx )

We will now explain where this basis comes from.The Basis must be “Closed under Differentiation”.Wedding Party: You must invite • the bride and groom.• any friend of anyone invited.

Page 105: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxBasis =

/x( x2exsinx ) = 2xexsinx + x2exsinx + x2excosx

We will now explain where this basis comes from.The Basis must be “Closed under Differentiation”.Wedding Party: You must invite • the bride and groom.• any friend of anyone invited.

Page 106: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosx

Basis =

/x( x2excosx )= 2xexcosx + x2excosx - x2exsinx

We will now explain where this basis comes from.The Basis must be “Closed under Differentiation”.Wedding Party: You must invite • the bride and groom.• any friend of anyone invited.

Page 107: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinx

Basis =

/x( xexsinx )= exsinx + xexsinx + xexcosx

We will now explain where this basis comes from.The Basis must be “Closed under Differentiation”.Wedding Party: You must invite • the bride and groom.• any friend of anyone invited.

Page 108: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x2exsinxx2excosxxexsinxxexcosxexsinxexcosx

Basis =

/x( xexcosx )= excosx + xexcosx - xexsinx

We will now explain where this basis comes from.The Basis must be “Closed under Differentiation”.Wedding Party: You must invite • the bride and groom.• any friend of anyone invited.

And so on

Page 109: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating• f(x) = x-1exsin x• Can you differentiate it? • Can you integrate it?

Sure!f’(x) = -x-2exsinx + x-1exsinx + x-1excosx

Ahh? No

I can?

Page 110: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

x-1exsinxx-2exsinxx-3exsinxx-4exsinxInfiniteBasis!

Basis =

/x( x-1exsinx )= -x-2exsinx + x-1exsinx + x-1excosx x-1exsinx

/x( x-2exsinx )= -2x-3exsinx + x-2exsinx + x-2excosx /x( x-3exsinx )= -3x-4exsinx + x-3exsinx + x-3excosx

Page 111: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating• f(x) = x-1exsin x• Can you differentiate it? • Can you integrate it?

Sure!f’(x) = -x-2exsinx + x-1exsinx + x-1excosx

Ahh? No

Oops this method does not work.

Page 112: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Integrating

Page 113: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

• The standard basis of a vector space:• A tuple <w1,w2,…,wd> of basis objects• Linearly independent• Spans the space uniquely

"v $[a1,a2,…,ad], v = a1w1+a2w2 +… + adwd• The new basis of a vector space:• A tuple <W1,W2,…,Wd> of basis objects• Linearly independent• Spans the space uniquely

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

• Use small letters aj for the coefficients in the standard basis and capital letters Ak for the coefficients in the new basis

Changing Basis

Page 114: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

[3,2]

v =

[a1,a2] = [11/5,32/5][A1,A2] =

T-1([A1,A2,…,Ad]) = [a1,a2,…,ad]

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

"v $[a1,a2,…,ad], v = a1w1 +a2w2 +… + adwd

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

=[w1,w2]=[ , ]

Standard Basis

NewBasis =[W1,W2]

=[ , ]

? ?

? ?[ ][ ] =[ ]a1a2

A1A2

v =

Changing Basis

Page 115: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

[4/5, -3/5][a1,a2] = [1,0][A1,A2] =

T-1([A1,A2,…,Ad]) = [a1,a2,…,ad]

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

"v $[a1,a2,…,ad], v = a1w1 +a2w2 +… + adwd

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

=[w1,w2]=[ , ]

Standard Basis

NewBasis =[W1,W2]

=[ , ]

?

?

?

?[ ][ ] =[ ]a1a2

A1A2

-3/54/5

v =

10

4/5 -3/5

4/5 -3/5

W1[1]W1[2]

?

?[ ][ ] =[ ]10

W1[1]W1[2]

W1[1]W1[2]

Changing Basis

Page 116: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

[3/5,4/5][a1,a2] = [0,1][A1,A2] =

T-1([A1,A2,…,Ad]) = [a1,a2,…,ad]

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

"v $[a1,a2,…,ad], v = a1w1 +a2w2 +… + adwd

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

=[w1,w2]=[ , ]

Standard Basis

NewBasis =[W1,W2]

=[ , ]

?

?[ ][ ] =[ ]a1a2

A1A2

3/5

4/5

01

v =

3/5 4/5

4/5 -3/5

3/5 4/5

W2[1]

W2[2]

[ ][ ] =[ ]01

W1[1]W1[2]

W1[1]W1[2]

W2[1]W2[2]

?

?

Changing Basis

Page 117: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

T-1([A1,A2,…,Ad]) = [a1,a2,…,ad]

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

"v $[a1,a2,…,ad], v = a1w1 +a2w2 +… + adwd

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

=[w1,w2]=[ , ]

Standard Basis

NewBasis =[W1,W2]

=[ , ]

[3,2]

v =

[a1,a2] = [11/5,32/5][A1,A2] =

v =

[ ][ ] =[ ]a1a2

A1A2

11/532/5

32

4/5 -3/5

3/5 4/5 [ ][ ] =[ ]W1[1]

W1[2]W2[1]W2[2]

a1a2

A1A2

Changing Basis

Page 118: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

"v $[a1,a2,…,ad], v = a1w1 +a2w2 +… + adwd

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

=[w1,w2]=[ , ]

Standard Basis

NewBasis =[W1,W2]

=[ , ]

[ ][ ] =[ ]W1[1]W1[2]

W2[1]W2[2]

a1a2

A1A2

[ ] [ ] =[ ]W1[1]W1[2]

W2[1]W2[2]

a1a2

A1A2

-1

Changing Basis

W1[1]W1[2]

W2[1]

W2[2]

Page 119: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

"v $[a1,a2,…,ad], v = a1w1 +a2w2 +… + adwd

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

=[w1,w2]=[ , ]

Standard Basis

NewBasis =[W1,W2]

=[ , ]If the new basis vectors are orthogonal and of uniform length:• |W1|2=n, then W1∙W1 = jW1[j]W1[j] = n

• W1W2, then W1∙W2 = jW1[j]W2[j] = 0

[ ][ ]=[ ]W1[1]W1[2]

W2[1]W2[2]

n0

0n

W1[1]W2[1]

W1[2]W2[2]

[ ] = [ ]W1[1]W1[2]

W2[1]W2[2]

-1W1[1]W2[1]

W1[2]W2[2]

1/n

Changing Basis

W1[1]W1[2]

W2[1]

W2[2]

Page 120: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

"v $[a1,a2,…,ad], v = a1w1 +a2w2 +… + adwd

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

=[w1,w2]=[ , ]

Standard Basis

NewBasis =[W1,W2]

=[ , ]

[ ][ ] =[ ]W1[1]W1[2]

W2[1]W2[2]

a1a2

A1A2

[ ] [ ] =[ ]W1[1]W1[2]

W2[1]W2[2]

a1a2

A1A2

-1

W1[1]W2[1]

W1[2]W2[2][ ][ ] =[ ]a1

a2

A1A2

1/n

Changing Basis

W1[1]W1[2]

W2[1]

W2[2]

Page 121: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

"v $[a1,a2,…,ad], v = a1w1 +a2w2 +… + adwd

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

=[w1,w2]=[ , ]

Standard Basis

NewBasis =[W1,W2]

=[ , ]

W1[1]W2[1]

W1[2]W2[2][ ][ ] =[ ]a1

a2

A1A2

v

a1

a2v

W1 A1

v

A1 = |v|cos() = v∙W1 = j ajW1[j]

cos() = v∙W1|v||W1|

Viewed a different way:

This is the correlation between v and W1

Changing Basis

W1[1]W1[2]

W2[1]

W2[2]

|W1|

Page 122: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Fourier Transform• are a change of basis from the time basis to• sine/cosine basis• JPG• or polynomial basis

• Applications• Signal Processing• Compressing data (eg images with .jpg)• Multiplying integers in n logn loglogn time.• ….

Purposes: • Some operations on the data are cheaper in new format• Some concepts are easier to read from the data in new format• Some of the bits of the data in the new format are less significant

and hence can be dropped.

http://www.dspguide.com/ch8.htm

The Scientist and Engineer's Guide toDigital Signal ProcessingBy Steven W. Smith, Ph.D.

Amazingly once you include complex numbers,the FFT codefor sine/cosines and for polynomials are the SAME.

Page 123: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation

Swings, capacitors, and inductorsall resonate at a given frequency,which is how the circuit picks outthe contribution of a given frequency.

A continuous periodic function

ttime

y(t)

Find the contributionof each frequency

Sine &CosineBasis

If this is the dominate musical note of frequency = 2/T,then all the other basis functions are its harmonics frequencies:

Frequency:Note on the Piano:

, 2, 3, 4, 5, 6, ...

C C G C E G ...

Page 124: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Surely this can’t be expressed as sum of sines and cosines.

Fourier Transformation y(x) = x

y(x) 2 sin(x) - sin(2x) + 2/3 sin(3x)

Sine &CosineBasis

Page 125: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation

y(x) -4 sin(x) + sin(2x) - 4/9 sin(3x)

y(x) = x2

Sine &CosineBasis

Page 126: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Change of Basis: T([a1,a2,…,ad]) = [A1,A2,…,Ad]Changes the basis used to describe an object.

• The Time basis of a vector space:• A tuple <w1,w2,…,wd> of basis objects• Linearly independent• Spans the space uniquely

"v $[a1,a2,…,ad], v = a1w1+a2w2 +… + adwd• The Fourier basis of a vector space:• A tuple <W1,W2,…,Wd> of basis objects• Linearly independent• Spans the space uniquely

"v $[A1,A2,…,Ad], v = A1W1+A2W2 +… + AdWd

Change of BasisFourier Transformation

Page 127: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Time Domain y Frequency Domain Y

The value y[j] of the signal at each point in time j.

The amount Y[f] of frequency f in the signal for each frequency f.

Page 128: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Change of Basis: T(y[0],y[1],…,y[n-1]) = [YRe[0],…,YIm[n/2]]Changes the basis used to describe an object.

Time Basis =[ , ]

y =

A discrete periodic function

j

y[j]

y[0]=3

y[1]=2

=[I1,I2,…]The time basis

j’

Ij[j’]

zeroone

j

"y $[y[0],y[1],…,y[n-1]], y = y[0]I1 +y[1]I2 +… + y[n-1]In

Change of BasisFourier Transformation

The value y[j] of the signal at each point in time j.

Page 129: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Time Basis =[ , ]

y =

Fourier Transformation

A discrete periodic function

j

y[j]

=[I1,I2,…] y = YRe[0]∙c1+YIm[0]∙s1+ ,…,YRe[n/2]∙sn/2+YIm[n/2]∙sn/2

=[c1,s1,..]

YRe[0] =11/5

YIm[0] =32/5

y =

FourierBasis

=[ , ]=[?,?]

c1

sn/2cn/2

s1

y[0]=3

y[1]=2

Change of Basis

Change of Basis: T(y[0],y[1],…,y[n-1]) = [YRe[0],…,YIm[n/2]]Changes the basis used to describe an object.

"y $[y[0],y[1],…,y[n-1]], y = y[0]I1 +y[1]I2 +… + y[n-1]In

The amount Y[f] of frequency f in the signal for each frequency f.

Page 130: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Time Basis =[ , ]

y =

Fourier Transformation

=[I1,I2,…] y = YRe[0]∙c1+YIm[0]∙s1+ ,…,YRe[n/2]∙sn/2+YIm[n/2]∙sn/2

=[c1,s1,..]

YRe[0] =11/5

YIm[0] =32/5

y =

FourierBasis

=[ , ] c1

sn/2cn/2

s1

y[0]=3

y[1]=2

Change of Basis

Change of Basis: T(y[0],y[1],…,y[n-1]) = [YRe[0],…,YIm[n/2]]Changes the basis used to describe an object.

"y $[y[0],y[1],…,y[n-1]], y = y[0]I1 +y[1]I2 +… + y[n-1]In

22

0Im

0Re ][][

nn

ff

ff jsfYjcfY jy

s1[1]s2[1]

s1[2]s2[2]

Y[1]Y[2][ ] [ ] =[ ]y[1]

y[2]

-1

s1[1]s1[2]

s2[1]s2[2]

Y[1]Y[2]

y[1]y[2][ ] [ ] =[ ]

?

Page 131: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Correlation (DFT)Ex. 1 Signal 1 Ex. 2 Signal 2

Searching for s3 sine base

Correlation (point wise mult) of 2 above signals

Ʃ ≠ 0 signal present Ʃ = 0 signal not presentwhy? orthogonal basis

Page 132: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Time Basis =[ , ]

Fourier Transformation =[I1,I2,…] Fourier

Basis =[ , ]

Sine and Cosines of different frequencies are orthogonal and of (almost) uniform length:

=[c1,s1,..]

2

1

0

2 ][][ nf

n

jffff jsjsss||s

0][][ hence

, and For 1

0

jsjsssss

ngfgf

g

n

jfgfgf

[ ][ ]=[ ]s1[1]s1[2]

s2[1]s2[2]

n/2

00n/2

s1[1]s2[1]

s1[2]s2[2]

[ ] = [ ]s1[1]s1[2]

s2[1]s2[2]

-1s1[1]s2[1]

s1[2]s2[2]

2/n

OrthogonalBasis

Page 133: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Time Basis =[ , ]

Fourier Transformation =[I1,I2,…] Fourier

Basis =[ , ]=[c1,s1,..]

22

0Im

0Re ][][

nn

ff

ff jsfYjcfY jy

1

0Im

1

0Re ][2 ,][2

n

jf

n

jf jsjyn fYjcjyn fY

[ ][ ] =[ ]s1[1]s1[2]

s2[1]s2[2]

Y[1]Y[2]

s1[1]s2[1]

s1[2]s2[2]

2/nY[1]Y[2][ ][ ] =[ ]

y[1]y[2]

y[1]y[2]

OrthogonalBasis

Duality of FT: If Y=FT(y), then y=FT(Y)

Page 134: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Time Domain y Frequency Domain Y

Delta function

Impulse at y[4]

Delta function

Impulse at Yre[4]

Cosine wave

Cosine with f=4

Cosine wave

Cosine with f=4

Duality of FT: If Y=FT(y), then y=FT(Y)

Dualityof FT

Page 135: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

How do you get these corner?

?

Fourier Transformation Time Domain y Frequency Domain Y

Sinc function-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

-100 -50 0 50 1000

1

2

3

4

5

6 Square wave

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-0.5

0

0.5

1

1.5

-100 -50 0 50 1000

1

2

3

4

5

6

Square wave

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-0.5

0

0.5

1

1.5

-100 -50 0 50 1000

1

2

3

4

5

6

Sinc function-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

-100 -50 0 50 1000

1

2

3

4

5

6

Duality of FT: If Y=FT(y), then y=FT(Y)

Dualityof FT

Page 136: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Time Domain y Frequency Domain Y

Duality of FT: If Y=FT(y), then y=FT(Y)

Gaussian

0 5 10 15 20 25 30 35 40 45 500

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 2500

1

2

3

4

5

6

Gaussian

0 5 10 15 20 25 30 35 40 45 500

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 2500

1

2

3

4

5

6

Dualityof FT

Page 137: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Continuous Functions nn b fY a fY ImRe and

Page 138: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

O(log(n)) levels

Fourier Transformation FFTButterfly

Fast Fourier Transform takes O(nlogn) time! (See Recursive Slides)

Page 139: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Time Domain y Frequency Domain Y

Sound Signal ie how far out is the speaker drum at each point in time.

Sound is low frequency

High frequencies filtered out.

RadioSignals

Page 140: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Time Domain y Frequency Domain Y

Radio Carrier Signal ie A wave of magnetic field that can travel far.

One high frequency signal

RadioSignals

Page 141: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Time Domain y Frequency Domain Y

y(i) = y1(i) y2(i) Modulation: Their product

Carrier signalAudio Signal (shifted)Audio Signal (shifted &flipped)

RadioSignals

Page 142: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

x[] y[]

Fourier Transformation This system takes in a signal and outputs transformed signal.

LinearFilter

Page 143: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation

In order understand this transformation, we put in a single pulse.

[] = h[] = h[]

This response h[]identifies the system.

h[] =

Linear Filter

Page 144: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation

h[]

Feed in any signal

x[] =

h[] =

Sum of contributions from each separate pulse.

Linear Filter

operator n convolutio theis where

0

hxy

jkhjxkyN

j

Computationally trying to figure out what this electronic system does to a signal takes O(nm) time.

How can we do it faster?

Page 145: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Time Domain y Frequency Domain Y

Y = X H Product

y = x*h Convolution

x[] =

Input

h[] =

Impulse Response

X[]

H[]

x[]*h[] =

Output

X[]H[] Multiplication takes O(n) time.

OopsFourier Transformtakes O(n2) time.

FastFourier Transform takes O(nlogn) time!

*Convolution

Page 146: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation Time Domain y Frequency Domain Y

Y = X H Product

y = x*h Convolution

x[] =

Input

Impulse Response

X[]

x[]*h[] =

Output

*Convolution

h[] = H[] =

Impulse Response

X[]H[]

Multiplyingzeros low and high frequencies in input.

Filters out low and high frequencies in input.

Not clear what system does to input

Page 147: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation JPEG (Image Compression)

JPGImage Compression

JPEG is two dimensional Fourier Transformexactly as done before.

Page 148: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation JPGImage Compression

Each 88 block of valuesfrom the imageis encoded separately.

Page 149: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation JPGImage Compression

Each 88 block of valuesfrom the imageis encoded separately.

It is decomposed as a linearcombination of basis functions.

7

0

7

0, ],[,,

u vvu yxBvuF yxf

Each basis function has a coefficient,giving the contribution of this basis functionto the image.

Page 150: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation JPGImage Compression

16

12cos

16

12cos,

]7,0[,]7,0[, :functions Basis

,

yπv

xπuyxB

yx vu

vu

7

0

7

0, ],[,,

u vvu yxBvuF yxf

Each 88 block of valuesfrom the imageis encoded separately.

It is decomposed as a linearcombination of basis functions.

Each of the 64 basis functions is a two dimensional cosine.

Page 151: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation JPGImage Compression

The first basis is constant.

16

12cos

16

12cos,

]7,0[,]7,0[, :functions Basis

,

yπv

xπuyxB

yx vu

vu

1,0,0 yxB

Its coefficient gives the average value in within block.

7

0

7

0, ],[,,

u vvu yxBvuF yxf

Because many images havelarge blocks of the same colour,this one coefficient gives muchof the key information!

Page 152: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation JPGImage Compression

Its (pos or neg) coefficient gives whether left to right the value tends to increase or decrease.

The second basis “slopes” left to right

116

12cos,0,1

x

πyxB

16

12cos

16

12cos,

]7,0[,]7,0[, :functions Basis

,

yπv

xπuyxB

yx vu

vu

Page 153: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

16

12cos

16

12cos,

]7,0[,]7,0[, :functions Basis

,

yπv

xπuyxB

yx vu

vu

Fourier Transformation JPGImage Compression

The second basis “slopes” left to right

Because many images havehave a gradual change in colour,this one coefficient gives morekey information!

Page 154: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation JPGImage Compression

A similar basis for top to bottom.

16

12cos

16

12cos,

]7,0[,]7,0[, :functions Basis

,

yπv

xπuyxB

yx vu

vu

Page 155: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

16

12cos

16

12cos,

]7,0[,]7,0[, :functions Basis

,

yπv

xπuyxB

yx vu

vu

Fourier Transformation JPGImage Compression

16

122cos1,2,0

xπyxB

The <0,2> basis is

whether the value tends to be smaller in the middle.

Its coefficient gives

This helps display the horizontal lines in images

Page 156: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation JPGImage Compression

As seen, the low frequency components of a signal are more important.Removing 90% of the bits from the high frequency componentsmight remove, only 5% of the encoded information.

Page 157: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation

Instead of using sine and cosinesas the basis,

PolynomialBasis

Page 158: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation

Instead of using sine and cosinesas the basis,

We will now use polynomials.

PolynomialBasis

Page 159: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Change of Basis: T([y[0],y[1],…, y[n-1]]) = [a1,a2,…,an-1]Changes the basis used to describe an object.

Time Basis =[ , ]

Fourier Transformation

y[0]=3

y[1]=2

=[I0,I1,…]The time basis

x

Ij[x]

zeroone

xj

PolynomialBasis

f =

A discrete function

x

f(x)

the value f(xj) of the function at xj.

y[j] =

x0 x1 x2 x3 x4 … xn-1

These xj are fixed values.

For FFT, we set xj = e2i j/n

"f $[y[0],y[1],…,y[n-1]], f = y0 I0 +y1 I1 +… + yn-1 In-1

Page 160: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Change of Basis: T([y[0],y[1],…, y[n-1]]) = [a1,a2,…,an-1]Changes the basis used to describe an object.

Time Basis =[ , ]

Fourier Transformation

y[0]=3

y[1]=2

=[I0,I1,…]

"f $[y[0],y[1],…,y[n-1]], f = y0 I0 +y1 I1 +… + yn-1 In-1

PolynomialBasis

f =

A discrete function

x

f(x)

x0 x1 x2 x3 x4 … xn-1

y =

FourierBasis

=[ , ]=[1,x,x2,x3..]

"f $[a0,a1,a2 ,…,an-1], f = a0+a1x +a2x2 + … + an-1xn-1

The aj are the cooeficients of the polynomial.

a1

a2

Page 161: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• A Fourier Transform is a change in basis.• It changes the representation of a function

• from the coefficients of the polynomial f(x) = a0+a1x +a2x2 + … + an-1xn-1

• This amounts to evaluating f at these points.

Evaluating &Interpolating

x

• to the value f(xi) at key values xi.

x0 x1 x2 x3 x4 … xn-1

y0 y1 y2 y3 y4 … yn-1

Fourier Transformation

yi = f(xi)

Page 162: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

• A Fourier Transform is a change in basis.• It changes the representation of a function

Fourier Transformation

• from the coefficients of the polynomial f(x) = a0+a1x +a2x2 + … + an-1xn-1

• This amounts to evaluating f at these points.

(x0)0 (x0)1 (x0)2 (x0)3 … (x0)n-1 a0

a1

a2

a3

an-1

y0

y1

y2

y3

yn-1

=

(x1)0 (x1)1 (x1)2 (x1)3 … (x1)n-1

(xn-1)0(xn-1)1(xn-1)2 (xn-1)3…(xn-1)n-1

(x2)0 (x2)1 (x2)2 (x2)3 … (x2)n-1 (x3)0 (x3)1 (x3)2 (x3)3 … (x3)n-1

Vandermonde matrixInvertible if xi distinct.

Evaluating &Interpolating

yi = f(xi)

Page 163: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation

• to the coefficients of the polynomial f(x) = a0+a1x +a2x2 + … + an-1xn-1

• This amounts to interpolating these points.

• An Inverse Fourier Transform is the reverse. • It changes the representation of a function

Evaluating &Interpolating

x

• from the value f(xi) at key values xi.

x0 x1 x2 x3 x4 … xn-1

y0 y1 y2 y3 y4 … yn-1

yi = f(xi)

Page 164: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Fourier Transformation

• to the coefficients of the polynomial f(x) = a0+a1x +a2x2 + … + an-1xn-1

• This amounts to interpolating these points.

Given a set of n points in the plane with distinct x-coordinates, there is exactly one (n-1)-degree polynomial going through all these points.

• An Inverse Fourier Transform is the reverse. • It changes the representation of a function

Evaluating &Interpolating

Page 165: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Polynomial Multiplicationf(x) = a0+a1x +a2x2 + … + an-1xn-1

g(x) = b0+b1x +b2x2 + … + bn-1xn-1

[f×g](x) = c0+c1x +c2x2 + … +c2n-2x2n-2

x5 coefficient: c5= a0×b5+a1×b4 + a2×b3 + … + a5×b0

Time = O(n2)

Too much

Convolution

Page 166: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Polynomial Multiplicationf(x) = a0+a1x +a2x2 + … + an-1xn-1

g(x) = b0+b1x +b2x2 + … + bn-1xn-1

[f×g](x) = c0+c1x +c2x2 + … +c2n-2x2n-2

Coefficient Domain aj Evaluation Domain yi

[a0,a1,a2 ,…,an-1]

[b0,b1,b2 ,…,bn-1]

Fast Fourier Transform takes O(nlogn) time!

yi = f(xi)zi = g(xi)

yi×zi = [g×f](xi)

Multipling values pointwisetakes O(n) time!

[c0,c1,c2 ,…,cn-1]

Page 167: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Multiplying Big IntegersX = 11…10100011101100010010 (N bits)Y = 10…01001100011001001111

X×Y = 10…1110110101001001010100010100110010011110

The high school algorithm takes O(N2) bit operations.Can we do it faster?

With FFT we can do it in O(N log(N) loglog(N)) time.

See Recursive Slides.

Page 168: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

In many problems we face functions which are far more complicated than the standard functions from classical analysis. If we can represent them as series of polynomials then some properties of the functions would be easier to study.

Taylor Expansions

Page 169: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Taylor ExpansionsTaylor Expansions of a Function:

Functions f(x) can be expressed byF(x) = a0+a1x +a2x2 +a3x3 + …Clearly only converges if x<1 and/or ai 0.But gives the perfect answer within some range of x.

Eg: f(x) = 1/(1-x) F(x) = 1+x +x2 +x3 + …

Proof: xF(x) = x +x2 +x3 +x4 + …F(x)-xF(x) = 1F(x) = 1/(1-x)

Page 170: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Taylor ExpansionsTaylor Expansions of a Function:

Eg: f(x) = 1/(1-x) F(x) = 1+x +x2 +x3 +

Functions f(x) can be approximated by F(x) = a0+a1x +a2x2 +a4x3 + … + an-1xn-1

x4 + (x5)

Page 171: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Taylor ExpansionsTaylor Expansions of a Function:

Eg: f(x) = 1/(1-x) F(x) = 1+x +x2 +x3 + …

Eg: f(x) = 1/(1- x) F(x) = 1+ x +2 x2 +3 x3 + …

ai =i

Converges if | x| < 1

if |x| < 1/

Page 172: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Taylor Expansions

(Some functions?)Analytic

Eg: f(x) = 1/x F(x) = ??

Taylor Expansions of a Function:

The problem is a0 = f(0)=.

Page 173: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Taylor ExpansionsTaylor Expansions of a Function:

Functions f(x) can be expressed byF(x) = a0+a1x +a2x2 +a3x3 + …

F(x) = a0+a1x + a2x2+ a3x3+ a4x4 + …F’(x) =F’’(x) =F’’’(x) =

a1 + 2 a2x + 3 a3x2 + 4 a4x3+ …

a0 f(0)a1 f ’(0)

F(0) = F’(0) =F’’(0) =F’’’(0) =Fi(0) =

Proof:

2 a2 + 2∙3 a3x + 3∙4 a4x2 + …

i! ai

2∙3 a3 + 2∙3∙4 a4x + …

2 a21/2 f ’’(0)

2∙3 a3

a0 = a1 =

ai =

a2 = a3 =

1/i! f i(0)

1/1∙2∙3 f ’’’(0)

Page 174: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Taylor ExpansionsTaylor Expansions of a Function:

Functions f(x) can be expressed byF(x) = a0+a1x +a2x2 +a3x3 + …

f(0) = e0 = 1f’(0) = e0 = 1f’’(0) = e0 = 1f’’’(0) = e0 = 1

Example: f(x) = ex

ai = 1/i! f i(0)

Converges for all x.

Page 175: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Taylor ExpansionsTaylor Expansions of a Function:

Functions f(x) can be expressed byF(x) = a0+a1x +a2x2 +a3x3 + …

f(0) = sin(0) = 0f’(0) = cos(0) = 1f’’(0) = -sin(0) = 0f’’’(0) = -cos(0) = -1

Example: f(x) = sin(x)

ai = 1/i! f i(0)

Converges for all x.

Page 176: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

0

)(

32

)(!

)(

)(!3

)(''')(

!2

)(''))((')()(

i

ii

axi

af

axaf

axaf

axafafxF

Taylor Series for f(x) centered at a:

Clearly requires f(x) to be infinitely differentiable at x = a:

Taylor Expansions

Page 177: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

The nth order approximation:

The Lagrange Remainder:

Taylor Expansions

n

i

ii

nn

n

axi

af

axn

afax

afaxafafxF

0

)(

)(2

)(!

)(

)(!

)()(

!2

)(''))((')()(

)()()( xFxfxR nn

ion.approximat good a is )()!1(

)( next term The 1

)1(

nn

axn

af

)()!1(

)( ],,[ 1*

)1(*

n

n

n xn

afRxax

Page 178: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Taylor Expansions

36110.00000000)47832.0(!9!9

)cos(

!9

)( )(

360400000000.0)47832.0(31090.46028837)47832.0sin(95050.46028836

!7

47832.0

!5

47832.0

!3

47832.047832.0)47832.0sin(

!7!5!3 )sin(

? 2)sin(0.4783

8

99

*9

*)9(

8

8

753

753

R

xx

xx

xfxR

R

xxxxx

Application:

Page 179: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1

0

2 ?)sin( dtt

!7!5!3

)sin(753 xxx

xx

!7!5!3

)sin(14106

22 ttttt

70.31026815!715

1

!511

1

!37

1

3

1

!715!511!373

1

)!7!5!3

()sin(

1

0

151173

1

0

1

0

1410622

tttt

dtttt

tdtt

Application:

Taylor Expansions

Page 180: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

1))(!3

11(lim))(

!3

11(lim

1sinlim 5353

xRx

xRxx

xx

xxxx

?1

sinlim x

xx

Application:

Taylor Expansions

Page 181: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Application:

Taylor Expansions

• Find solutions to differential equations.• Newton’s method to find the root of a function.• Can be extended to functions in several variables.

Page 182: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating functions:• Hiding interesting values within the coefficients

of a Taylor expansion of a function. • It is so powerful that it can solve:

• Most recurrences• Most sums• Lots of the neat math facts.

Generating-Functionologyby Herbert S. Wilf(Academic Press)

Is HIGHLY recommended!

Generating Functions

Page 183: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating Functions

Which function has the Taylor Expansion withthe Fibonacci sequence for coefficients?

G = i=0.. Fi xi

where F0 = 0, F1=1, Fn=Fn-1 + Fn-2

G = F0 + F1 x + F2 x2 + F3 x3 + F4 x4 + F5 x5 + … -x G = -F0 x - F1 x2 - F2 x3 - F3 x4 - F4 x5 - …

-x2 G = -F0 x2 - F1 x3 - F2 x4 - F3 x5 - …

0 0 0x 0(1-x-x2) G =xG =

(1-x-x2)

Page 184: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

The fact that the manipulation of polynomial equations can encode the same theorems that are proved by combinatorial reasoning is very significant!

Never underestimate the insights encoded into the coefficients of a polynomial!

Generating Functions

Page 185: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLets count things.Eg: Let p(n) denote the # of binary trees there are with n nodes.

p(1)

p(2)

= 1

= 2

p(3) = 5

p(4)

?

= 14

?

(#L,#R) = (3,0),(2,1),(1,2),(0,3)? ?

(3,0)

(2,1)

(0,3)

(1,2)

p(0) = 1

Page 186: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLets count things.Eg: Let p(n) denote the # of binary trees are there with n nodes.

p(1)

p(2)

= 1

= 2

p(3) = 5

p(4) = 14

(#L,#R) = (n-1,0),(n-2,1),(n-3,2),…,(0,n-1)? ?(n-i-1,i)

p(0) = 1

p(n)

p(n-i-1) p(i)

= i=0..n-1 p(n-i-1)∙p(i)

Page 187: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating Functions(in a real cool way).

Let T denote the (infinite) set of all binary trees

Tt

tnT xP )(

.... 44444333332210 xxxxxxxxxxxxxx....145211 432 xxxx

....)4()3()2()1()0( 432 xpxpxpxpp

n

nxnp )(

For each tree, t, let n(t) denote the number of nodes in t.

The values of p(n) can be read off the coefficients of the polynomial.

Lets count things.Eg: Let p(n) denote the # of binary trees are there with n nodes.

Generation function for set T and powers n(t).

…}T={

Page 188: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLet T denote the (infinite) set of all binary trees

Note that a tree t is either:• the empty tree t=• or consists of:• a root node• a left tree t1,

• a right tree t2.

t=

…}T={

, , = ,t1,t2=

Page 189: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLet T denote the (infinite) set of all binary trees

TTtt

ttnTT xP

21

21

,

),(

TT={t1,t2 | t1,t2 T}

trees.ofpair in nodes ofnumber total, 2121 tntnttn

Tt Tt

tntnx1 2

21 )()(

Tt

tn

Tt

tn xx2

2

1

1 )()(

TT PP

…}T={

={ , , , , , , …}

…}T={

(a+b+c)

(u+v+x) =(au+av+ax+ bu+bv+bx+ cu+cv+cx)

Page 190: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLet T denote the (infinite) set of all binary trees

TTtt

ttnTT xP

21

21

,

),(

TT={t1,t2 | t1,t2 T}

trees.ofpair in nodes ofnumber total, 2121 tntnttn

Tt Tt

tntnx1 2

21 )()(

Tt

tn

Tt

tn xx2

2

1

1 )()(

TT PP

…}T={

={ , , , , , , …}

…}T={

Theorem: The generating function of the cross products of two sets is the product of the generating functions of the two sets provided the power n(t) are additive.

Page 191: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLet T denote the (infinite) set of all binary trees

…}T={

Theorem: The generating function of the disjoint union of two sets is the of the generating functions of the two sets.

sum

STa

anST xP )(

ST PP

Ss

sn

Tt

tn xx )()(

Page 192: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLet T denote the (infinite) set of all binary trees

TTtt

ttnTT xP

21

21

,

),,(

2121 1,, tntnttn

TT PPx

…}T={

TTtt

ttnx21

21

,

),(1

TTtt

ttnxx21

21

,

),(

={ , , , , , , , , , …} TT ={ ,t1,t2 | t1,t2 T}

Page 193: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLet T denote the (infinite) set of all binary trees

…}T={

={ , , , , , , , , , …} TT ={ ,t1,t2 | t1,t2 T}

Note that a tree t is either:• the empty tree t=• or t= ,t1,t2

t= , , = ,t1,t2=

Hence, the set TT can be thought of as a set of binary trees.But does it contain all of T?No. It is missing empty tree .

Page 194: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLet T denote the (infinite) set of all binary trees

…}T={

T = {} TT

Note that a tree t is either:• the empty tree t=• or t= ,t1,t2

0n

10)(}{ xxP n

TTTTTTT PPxPPPP 1}{}{

21 xPP a

acbbP

cbPaP

2

4

02

2

+-

x

xP

2

411

Taylor Expansion?

Page 195: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

(Recall) Taylor Expansions of a Function:Functions f(x) can be expressed byF(x) = a0+a1x +a2x2 +a3x3 + …

f(0)f ’(0)1/2 f ’’(0)

a0 = a1 =

ai =

a2 =

1/i! f i(0)

x

xP

2

411

?0

0

)0(2

)0(411)0(

P

12

414

21

x)('

)('

0

0

)(

)(lim 0

xg

xfxg

xfx

L'Hôpital's Rule

Generating Functions

Page 196: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

(Recall) Taylor Expansions of a Function:Functions f(x) can be expressed byF(x) = a0+a1x +a2x2 +a3x3 + …

f(0)f ’(0)1/2 f ’’(0)

a0 = a1 =

ai =

a2 =

1/i! f i(0)

x

xP

2

411

Generating Functions

...145211 432 xxxxP....)4()3()2()1()0( 432 xpxpxpxpp

The values of p(n) can be read off the coefficients of the polynomial.

p(n) Proof Sketch

Catalan Numbers

Page 197: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating Functions

Binomial Coefficients

What if n is not an integer?

Page 198: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating Functions

Binomial Coefficients

(½)(½-1)(½-2)(½-3) …(½-n+1) (½)n = n terms, non-int

n-1 neg

(1) (1) (3) (5) … (2n-3) - (-2)n (½)n =

n-1 terms, odd

(2) (4) (6) … (2n-2) 2n-1 (n-1)! = n-1 terms, even

(2n-2)!-½ (-4)n(½)n(n-1)! = 2n-2 terms

x>y

!1)4(

2)!-(2n221

nnn

n2

1

1

22

)4(

2

n

n

nn !1!1

2)!-(2n

)4(

2

nnnn

!

21

nn !

1

!1)4(

2)!-(2n2

nnn

Page 199: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

n

n

yn

y

0

2

1

1

Generating Functions

Set y=-4x.

nnr

n

r yxn

ryx

0

x411

11 y Remove constant coefficient & negate.

n-1 n

n2

1

n

n

yn

1

2

1

1 n

nn

yn

n

n

1 1

22

)4(

21

nn

nx

n

n

n4

1

22

)4(

2

1

n

nn

yn

n

n

1 1

22

)4(

2

n

n

xn

n

n

1 1

222

1

1 1

221

n

n

xn

n

nx

xP

2

411

1

22

)4(

2

n

n

nn

n

n

xn

n

n

0

2

1

1

)(np

n

n

xnp

0

)(

The values of p(n) can be read off the coefficients of the polynomial.

n

n

n

2

1

1

Page 200: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Generating FunctionsLets count things.Eg: Let p(n) denote the # of binary trees are there with n nodes.

(in a real cool way).

We will explain this approximationwhen doing prime numbers.

)(np

n

n

n

2

1

1

Page 201: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other
Page 202: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Prime Number Theorem:Every integer can be uniquely decomposedinto a unique product of primes.

321212

Why is 1 not considered a prime?Because then this factorization would not be unique.

32112127

Primesp is prime if it is a positive integer and nothing but 1 and p divided into it. Eg 2,3,5,7,11,13,17,19,23,29,31,....

Page 203: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Primes

21

22

23

317

168

21

22

23

317 32

5168 90

Greatest Common Divisor (GCD)

21

31 32

590

Each integer can be though to asthe set of its prime multiples.

Subscripts are used to differentiate between copies.

The intersection 2∙3 = 6 isThe union 23∙32∙5∙7 = 2520 is Greatest Common Multiple

Page 204: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

Proof: By contradiction, suppose there are only a finite number.Hence, there is a maximum prime.Let it be p.Let n=p!+1.Note every prime p’ ≤ p does not divide into n, becausethe remainder is 1.Consider the decomposition of n into prime factors.It contains no primes ≤pHence there is a prime bigger than p that divides into n.Contradicting the fact that p is the biggest prime.

Theorem: There are an infinite number of primes.

Page 205: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

iii

N

NN

th ln prime ln(10)n

10 primesdigit n of#

ln ]...1[primes#

:Theorem

n

Number of Primes

Proof: Count the # of prime factors of

NN2

Page 206: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

ba

= “a choose b”= Given a set of a objects, it is the number of ways of choosing a subset consisting of b of them.

)!(!

!

bab

a

objects) remaining theunarrange to waysobjects)(# b theunarrange to ways(#

objects thearrange to ways#

a-b

a

)1( )...2)(1)((

)1)...(2)(1)((

bbb

baaaa

Page 207: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

ba

a

ab

aba

area 2 objects of subsets of # ..0

a

= “a choose b”= Given a set of a objects, it is the number of ways of choosing a subset consisting of b of them.

ba

02

a ab

Lm 1:nn

n n

2

22 2

2/aa

a

a2 a2

a

a2

Page 208: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

ba

= “a choose b”= Given a set of a objects, it is the number of ways of choosing a subset consisting of b of them.= an integer

Prime Number Theorem:Every integer can be uniquely decomposedinto a unique product of primes, eg 3212

12

pppp kdddd

nn k

3212 321

Let

Page 209: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primespppp k

ddddnn k

3212 321

]...1[ np ]2...1[ nnp ...]12[ np

Lm 2: nnpnnp 2/],2...1[prime

i.e. All of these primes appear here at least once each.

Proof: )1(.)..2)(1)((

)1...()...22)(12)(2(2

nnn

npnnnnn

This p appears on the top,but can’t be cancelled by the bottom

because it is a prime.

?

Page 210: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

?

Number of Primespppp k

ddddnn k

3212 321

]...1[ np ]2...1[ nnp ...]12[ np

Lm 2: nnpnnp 2/],2...1[prime

i.e. All of these primes appear here at least once each.

These only make the product bigger

And each of these is at least n.

]2...1[primes# nnn

Page 211: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primespppp k

ddddnn k

3212 321

]...1[ np ]2...1[ nnp ...]12[ np

Proof: )1(.)..2)(1)((

)1)...(22)(12)(2(2

nnn

nnnnnn

This p does not appear on the top,and can’t be put together from parts

because it is a prime.

?

i.e. None of these primes appear. Lm 3: n

npnp 2/...],12[prime

]2...1[primes# nnn

Page 212: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primespppp k

ddddnn k

3212 321

]...1[ np ]2...1[ nnp ...]12[ np

Proof: Later

?

i.e. Each prime contributes at most 2n to the product.

Lm 4: nppd dnn 2 then , divides timesofnumber theis If 2

]2...1[primes#)2( nn ]2...1[primes# nnn

Page 213: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes? ]2...1[primes#)2( nn ]2...1[primes# nnn

Lm 1nn

n n

2

22 2

)(log]2...1[primes# 2 nnn )2(log2 22

1 nn )2(log]2...1[primes# 2 nn

)(log

2]2...1[primes#

2 n

nnn

?]...1[primes# N

N2N4N8N

Ni

ii

2log..1

1 ]2...12[primes#

Ni

i

i2log..1 1

2

I

I 12

N

N

N

N

ln1.39

ln

)2ln(2

Page 214: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes? ]2...1[primes#)2( nn ]2...1[primes# nnn

Lm 1nn

n n

2

22 2

)(log]2...1[primes# 2 nnn )2(log2 22

1 nn )2(log]2...1[primes# 2 nn

littleln

1.39]...1[primes# N

NN

little)2(log

2]2...1[primes#

2

n

nnlittle

)(log]...1[primes#

2

N

NN little

)ln(

69.0little

)ln(

)2ln(

N

N

N

N

N

NN

ln1 ]...1[primes#

:Truth

Back to the proof of lemma 4.

Page 215: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

Proof:

Lm 5: times.most at divides 1

..iip

nn! p

n! = 1∙2∙3∙... ∙n

There is one place where p divides n!.And another.This gives of them.

∙p∙... ∙2p∙... ∙3p∙... ∙4p∙...

p

n

Page 216: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

Proof:

Lm 5: times.p

nmost at divides

1..ii

n! p

n! = 1∙2∙3∙... ∙n

There is one place where p divides n! two times.But one of these we counted in the last slideso this adds only one more to our count.And another.This gives more of them.

∙p2∙... ∙2p2∙... ∙3p2∙... ∙4p2∙...

2p

n

Page 217: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

Proof:

Lm 5: times.p

nexactly divides

1..ii

n! p

n! = 1∙2∙3∙... ∙n

There is one place where p divides n! i times.But all but one of these we counted already.So this adds only one more to our count.And another.This gives more of them.

∙pi∙... ∙2pi∙... ∙3pi∙... ∙4pi∙...

ip

n

Total: times.p

nexactly divides

1..ii

n! p

Page 218: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

Proof:

Lm 6: 122

b

a

b

a

brrqba for

b

rqb

b

rqb

b

a

b

a2

)(22

2

qb

rq 2

22

1 2

b

r

Page 219: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primespppp k

ddddnn k 321

2 321

Lm 4: nppd dnn 2 then , divides timesofnumber theis If 2

2 2

1..i1..i

ii p

n

p

n Lm 5: times.most at divides 1

..iip

nn! p

..12

2i ii p

n

p

n 0

2 and 2 then ,2log If

ii

p p

nnpni

p

n

p

n

n

i ii

p

log

12

2

Proof: n

npd 2 divides timesofnumber the

!!

!2 divides timesofnumber the

nn

np

) divides timesofnumber 2(the-)2 divides timesofnumber (the n!pn!p

Lm 6: 122

b

a

b

a

n

i

p

log

11

n p 2log

n pd 2

Page 220: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

• Primes are more or less randomly distributed.• If you want an n-bit prime,

• Generate a random n-bit number p and• Pr[p is prime] ~ 1/n

• Repeat 10n times and you likely have found a prime.

iii

N

NN

th ln prime n ln(2)

2 primesbit n of#

ln ]...1[primes#

:Theorem

n

Page 221: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

• Primes are more or less randomly distributed..• If you want p and p+2 to both be primes

• Generate a random n-bit number p and• Pr[both p and p+2 are prime] ~ 1/n

2

• Repeat 10n2 times and you likely have found twin primes.

iii

N

NN

th ln prime n ln(2)

2 primesbit n of#

ln ]...1[primes#

:Theorem

n

Conjectured for 100 yearsbut not proven

Page 222: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

• Primes are more or less randomly distributed..• If you want p and p+1 to both be primes

• Generate a random n-bit number p and• Pr[both p and p+1 are prime] ~ 0, because one must be even• Oops.

iii

N

NN

th ln prime n ln(2)

2 primesbit n of#

ln ]...1[primes#

:Theorem

n

Page 223: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

• Primes are more or less randomly distributed..• If you want p to be prime and p-1 to be a power of 2

• Generate a random n-bit number p and• Pr[p-1 is a power of 2] ~ 1 / 2n Note 1000000002 is only n-bit power of 2.• Oops

iii

N

NN

th ln prime n ln(2)

2 primesbit n of#

ln ]...1[primes#

:Theorem

n

Page 224: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

• Primes are more or less randomly distributed..• If you want p to be prime and p-1 to be a power of 2

• Generate a random ~n-bit number N that is a power of 2• Pr[N+1 is prime] ~ 1 / n• Repeat 10n times and you likely have found such

a p and p-1.• You will try N=2n,2n+1,2n+2,… 211n

getting an 11n-bit number

iii

N

NN

th ln prime n ln(2)

2 primesbit n of#

ln ]...1[primes#

:Theorem

n

Page 225: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

• Primes are more or less randomly distributed..• If you want p to be prime and p-1 divisible by 2n

• Generate a random small r,• Let p = r2n+1• Pr[p is prime] ~ 1 / n• Repeat 10n times and you likely have found good r.• Try r = 1,…,10n. • p will need log p = n + logr = n + log 10n bits.• Note this is much better than 11n

iii

N

NN

th ln prime n ln(2)

2 primesbit n of#

ln ]...1[primes#

:Theorem

n

Page 226: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

Number of Primes

• Primes are more or less randomly distributed.• Homework questions:• # of N of the form N=pq

• # of N of the form N=pq for primes p&q• # of prime factors of N

iii

N

NN

th ln prime n ln(2)

2 primesbit n of#

ln ]...1[primes#

:Theorem

n

Page 227: Algebra Jeff Edmonds York University COSC 6111 Fields GCD Powers mod p Fermat, Roots of Unity, & Generators Z mod p vs Complex Numbers Cryptography Other

End