26
i INTERIM REPORT , . . Accession No. ORNL/ TSP-1008 Contract Program or Project Title: Heavy-Section Steel Technology Program Subject of this Docement: HSST Thermal-Shock Program Quic - * Report for TSE-6 4 ,g Type of Document: Quick-Look Report O 1 N RECEIVED D - 3J JAN 7 1982> ~8 Author (s): R. D. Cheverton i " sums "rsamamY \g * # ' Date of Document: December 21, 1981 N - - Responsible NRC Individual and NRC Office or Division: C. Z. Serpan , Jr. , Division of Eng:neering Technology This document was prepared primarily for preliminary or in- ternal use. It has not received full review and approval. Since there may be substantivc changes, this document should not be considered final. . Prepared for U.S. Nuclear Regulatory Conmission Washington, DC 20555 Under Interagency Agreements DOE 40-551-75 and 40-552-75 NRC FIN No. B0119 | # bit" f ft a,$d ( & Aldd dC5darcht "* i * | OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION ! for the DEPARTMENT OF ENERGY 8201270720 011221 PDR RES PDR ! * INTERIM REPORT

Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

i

INTERIM REPORT

, . .

Accession No.

ORNL/ TSP-1008

Contract Program or Project Title: Heavy-Section Steel TechnologyProgram

Subject of this Docement: HSST Thermal-Shock Program Quic -*Report for TSE-6 4 ,g

Type of Document: Quick-Look Report O 1N RECEIVEDD -

3J JAN 7 1982> ~8 -Author (s): R. D. Cheverton i

" sums "rsamamY\g * # '

Date of Document: December 21, 1981N

--

Responsible NRC Individual and NRC Office or Division: C. Z. Serpan , Jr. ,Division of Eng:neering Technology

This document was prepared primarily for preliminary or in-ternal use. It has not received full review and approval.Since there may be substantivc changes, this document shouldnot be considered final.

.

Prepared forU.S. Nuclear Regulatory Conmission

Washington, DC 20555Under Interagency Agreements DOE 40-551-75 and 40-552-75

NRC FIN No. B0119

|

# bit" f ft a,$d ( &Aldd dC5darcht "*

i *

| OAK RIDGE NATIONAL LABORATORYOak Ridge, Tennessee 37830

operated byUNION CARBIDE CORPORATION

! for theDEPARTMENT OF ENERGY

8201270720 011221PDR RES PDR

!*

INTERIM REPORT

Page 2: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

. .- - . .

.

OAK RIDGE NATIONAL LABORATORY .OPERATED BY

union CARBIDE CoRPoRATloNNUCLEAR DIVISION

@t-

POST OFFICE BOX Y

OAK RIDGE. TENNESSEE 37830

December 21, 1981

DirectorOffice of Nuclear Regulatory ResearchU.S. Nuclear Regulatory Cnmmission'Washington, DC 20555 -

Attention: Mr. G. Arlotto, DirectorDivision of Engineering Technology .

Dear Sir:

SuSject: HSST Thermal-Shock Program Quick-Look Report for TSE-6

Transmitted herewith is the Quick-Look Report for HSST Thermal-Shock ExperimentTSE-6, which is the seventh in a series of thermal-shock experiments related tothe PWR LOCA-ECC-type thermal transient. Distribution of this report has beenmade in accordance with previous instructions from NRC, and ten copies arebeing forwarded to the Chief of the Materials Engineering Branch, Division ofEngineering Technology, NRC. ;

TSE-6 was conducted with a thick-walled cylindrical test specimen (0.84-m ID x0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) ,and fabricated from A508 class 2-chemistry steel tempered at 613 C. The thermalshock was administered by dunking the test cylinder (initially at 96 C) inliquid nitrogen (-196'C).

.

During the thermal transient, there were two initiation-arrest events, and 'nearrest depths were s27 and 93% of the way through the 76-mm wall, leaving t. 5.0-mm uncracked ligament. These results agree reasonably well with predictions and-'

tend to demonstrate the inability of a long axial flaw to penetrate the outersurface during severe thermal-shock loading conditions. 5,

4

Sincerely yours,

b. - !

H. E. Trammell, Director i

Engireering Technology Division'

HET:RDC:spfAttachment j

.,

)

a

. - . . ,, ., ,c... , ,, e m . , , . _ . _

Page 3: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

. -

O

PRELIMINARY

.

HSST THERMAL-SH0CK PROGRAMQUICK-LOOK REPORT FOR TSE-6

R. D. Cheverton|

INTRODUCTION

Thermal-shock experiment TSE-6 was the seventh in a series of experimentsconducted for the purpose of investigatirig the behavior of surface flawsin thick-walled steel cylinders subjected to severe thermal shock. Resultsof the first six experiments (TSE-1, 2, 3, 4, 5, 5A)2-8 indicate that (1)LEFM is valid for both shallow (a/w < 0.2) and deep (0.2 5 a/w 5 0.8)flaws, although there remains a question regarding a practical means formeasuring with lab specimens an appropriate " lower-bound" toughness; (2)crack initiation will not take place while KI is decreasing even though,as a result of a continuously decreasing temperature, KI Kic (a warmprestress phenomenon); and (3) crack arrest will take place with KI in-creasing with crack depth in accordance with KIa values measured in thelab with KI decreasing with crack depth. Furthermore, for the particulartesting conditions, which included a rather long crack jump [Aa/w'= 0.43(Aa = 2.6 in.)], (1) crack arrest took place in accordance with the : staticmethods of analysis, and (2) a very short flaw extended in length toeffectively become a long flaw. Although the data are not absolutelyconclusive because of a lack of generality imposed by the specific testconditions, the latter two test results indicate that dynamic effects atarrest may be negligible for present-generation reactor vessels, and thatwe must continue to be' concerned with the behavior of long flaws, eventhough such flaws presumably have much less probability of existing, priorto the advent of a severe thermal shock, than do short flaws.

An LEFM analysis of the PWR-LOCA indicates, as shown in Fig.1, that ifwarm prestressing were not effective, a two-dimensional long axial flawin a high-copper vessel could penetrate very deep (a/w > 0.9) withoutencountering upper shelf toughness, but it is suspected that the flaw

I could not actually penetrate the remaining plastic ligament. This possi-bility was discussed at NRC thermal-shock review meetings several years

j ago, and as a result two beam experiments were conducted. In both casesthe displacement of the beam while under load was limited so that whent

fracture occurred the crack-opening angle would be the same as that cal-culated for a long axial flaw that extended all the way through a PWR-

vessel during a LOCA. Gray et al.' conducted one experiment usingquenched and tempered A533 at room temperature, while ORNL conducted a

,

similar experiment using a quench-only heat treatment. The latter experi-i ment was started with a shallow flaw, and a long crack jump was achieved

with arrest very close to the back surface. Gray :, tarted with a very deepflaw and denonstrated that it would not initiate. Because of the muchlower toughness involved, the ORNL experimnt constituted a much moresevere test of the inability of the plastic ligam2nt to be penetrated.At any rate, both experiments demonstrated this inability. It was re-quested by NRC that ORNL attempt to demonstrate this same inability in athick-walled cylinder under sevare thermal-shock loading conditions.

,

!

| PRELIMINARY |

__ - .

Page 4: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

. . . . -_. _ . . _ _ . _ _ _.. . .

. .

.

-.

CRITICRL CRACK CEPTH CURVES FOR LOCR TB-70,H-200 REACTOR VESSEL (0U,

' - . . . . . , , , ,

KICTYP - 3't

RTNOTO - 0.0 CEG.d ' * MU - 0.340*

r0 - 0.sonii' ..

- u., , 8 -

. . xf

.

: : - " . - , ,x-

. x ig . .. . , , , , ,| -. . * . . sm .. . . ,

. *. ,

|-

.

a - .. . . 35o .

x .

,..# , . . . | ..

.

.- .- x. '

|" * ~

*

.. * *; _ . . . aoa = gI

. m. , , ,.

i.- x*

.- x.

*-WPS .- x :m a= . , , x ,x e .- w I - w,

P p-

=%KI=KIa |- -

- x- - -x..-m ,

- *x ~ xx.

"*. , . . . , . , * x,x,x |-o=

> 3% x 'E y

, f - - - - - - - - --- - - - - - y u-- o- L* <,,,,

x, 'a00o "

**xf

"o o o ox

* x$ O UDe

%0 K =KN I 0

2 - -* m o. ,o I Ic _

* }.r - - -r m e}/ 'aso0r 0

Ocp WPossible path of events ."2 - ,x" ,I a

,i o .o

***ixh99R99RQQQQR R. G 9 9 E E. R G E 9 E 9 9 9 4 R. R 9 9 9 E !x* *

. e-. , , ,

a 5 to is a as so ss o .s so ss soTIMC(MIMJTESI

Fig.1. - Critical-cra'ck-depth curves for a PWP, LOCA, assuming a long axial flaw,-

RTNDT C 0 F, Cu = 0.34%, and F = 0.5 x 1019 n/cm ,2 ,

0 0 ',

. >

t

~ .

$

t

+

Page 5: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

-

x'

.

'

PRELIMINARY1

3,

If it is to'be' assumed that WPS may not be effective, there is the possi-bility during a PWR-LOCA of a very long crack jump prior to arrest takingplace close to' the back surface (see Fig.1). Because of possible dynamiceffects the long crack jump might increase the chancss of a flaw penetrat-iry the small plastic ligament and thus, if possible, an experiment de-

.sigried to reveaJ the-behavior of a very deep flaw should include a_ longcrack' jump as the mechanism for creating the very deep flaw. This was theintent of TSE-6.

~

~ , .

DESIGN OF THERMAL-SH0CK EXPERIMENT TSE-6

.

- To obtain the desired long crack jump for TSE-6 the experiment was de-x- signed in such a way that the slope of the left hand portion of the ini-

tiation and arrest critical-crack-depth curves would be negative, ass

illustrated in Fig. 2. To achieve the negative slope it is necessary for'

Ky/K c to increase with increasing crack depth at a particular time within'

I'

a -time span of interest. Decreasing the wall thickness tends to increase',' p with increasing crack depth 'and tends to reduce the increase in K ciw"th increasing crack depth. The sccompanying decrease in the severity'

,ofi h,e thermal shock can be compensated for by increasing the RTNDT of thetm

material, and this also tends to' decrease dKIc/d(a/w).

Figures 2 and 3 correspond to imposed thermal-shock conditions'similar tothose for TSE-5A, to the heat treatment used for TSE-5 (temper at 613 C),and to a, wall thickness of 75 mm and an outside diameter of 991 mm, this

'

latter dimension being the.same as that for TSE-5 and SA. This is a com-- bination of conditions that could be achieved for TSE-6, and it appeared

that the desired calculated crack behavior for TSE-6 was obtainable forthis set 0; conditions. Starting with an initial flaw depth of 47.6 mm(a/w = 0.1), crack initiation would take place at a time of s1.7 min, andthe crack would jump in, a single event to a depth of s7.2'mm (a/w = 0.95),leaving an uncracked ligament of only 3.8 mm. During the crack propaga-tion event the' crack tip would not encounter upper-shelf conditions, andfoliowing arrest, wa d prestressing or a K1 value less than K would

1cprevent a second initiation event. This calculated behavior of tne verydeep flaw is based on the assumptions that LEFM is applicable for a deep'fla,,'and that there are no significant dynamic effects associated with7

, arrest.

"

i It is of interest to note by reference to Fig. 3 that the larger diameter-to-wall-thickness ratio for TSE-6 (13) compared to that for TSE-5, and5A (6.5) and.for TSE-1, 2, 3, 4 (3.5) results in a deeper point in the.

wall for dK /d(a/w) = 0 (a/w 10.8, 0.5 and 0.1 for TSE-6, TSE-5, and 5A!

! and fcr TSEI1, 2, 3, 4, respectively), in better agreement with the PWR~

I,

LOCA (a/w 2 0.85), for which the diameter-to-wall-thickness ratio is $22.<

AsshowninFig.2bythevaluesofKy/Kzk listed along the WPS curve, thepredicted effective maximum values of K / Ic were not very large; that is,Ithere was not much margin for uncertainty in the experiment with regard to,

| achieving initiation. Thus, it was important to achieve the design thermal,

i

i

[- PRELIMINARY

- t

Page 6: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

_ _ _ _ _ . _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.

PRELIMINARY.

4

OHNL-0WG 81-0085 [1D1O

|' 3

- : Kg * K ,,

ARREST

'N,*KK g

0.9 o 1.13103

I .

1i6105a K, o 1.54 = K,/Kg0.8 - -

(kd [I

[l I enas.,

0.7 -

1

I

06 .' --

1

If, 0.5 < >| 04 e) I AS-

I

'l

|04 - 1,07 -

Is

-- ( 77 1.680.3, , , ,

10.2 - 1.70

|t

-M 53 Mi 1.3G0.1 1.58-

FLAW

w_ t

00 1 2 3 4 5 6

TIME (mm)

Fig. 2. Critical-crack-depth curves for TSE-6 with 76-mwall (design).

PRELIMINARY

Page 7: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

. - __ . -. . .

,

PRELIM 1tlARY.

5

16C T0-200,TB--320,H(TEMP),K-21,CP(BW 1

4 . , , , , , , .

l[p.,*.

} J

s [:. .

Si[S - - I ,' . ,[ ,' m 'i ..

,

-f s ('.* n ! <;,, ,

3,.

-

e

J

^% e e

E-

-

g -.

/g _

c -

\ .*

" ~

,6-

-.

0 0.1 0.2 0.3 0.4 0.5 0.5 0. 7 0.8 0.9 3

f1/H,

Fig. 3. TSE-6 design K vs a/w, t.y

.

PRELIMINARY. . - . . _ - - . -

Page 8: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

.. . . __. . - - . . . .

.

PRELIMINARY

.

6

transient or a transient somewhat more severe. For this reason the heat-transfer-enhancement coating on the inner surface of the test cylinder was '

adjusted to provide a nominal transient somewhat more severe than thedesign transient, which was the same as that achieved during TSE-5A.~ The

2 2surface density of the coating for TSE-6 was 241 g/m compared to 271 g/mfor TSE-5A. This difference in coating surface density was expected toprovide the necessary margin, provided the density of nucleation sites wcsabout the same, and it appeared that it was.

The TSE-5, 5A and 6 test cylinders (TSC-1, 2, 3) and their prolongationswere cut from the same A508 class 2-chemistry forging. TSC-1 and 3 were

' taken from opposite ends of the original forging and were tempered at thesame temperature (613 C). The static fracture and arrest toughness proper-

1 ties were obtained for.the prolongations of TSC-1 ano 3 by testing a large; number of small specimens at each of several temperatures. For TSC-1 both

IT and 2T-CT specimens were used for obtaining Kg data, with ten specimens-

being tested at each v three temperatures. In addition, five 6.x 6 x 1-in. wedge-loaded K a spximens were tested over the temperature range oflinterest. The results of TSE-5 added three more K c and KI values andIindicated that .long flaws will tend to behave in accordance,with the lowerbound of the laboratory Kg data. All of these data are shown in Fig. 4.

In preparation for TSE-6 additional material characterization studies were

conducted because of the possiblity of a variation in properties along thelength of the original forging, and because the temperature range of<

interest for TSE-6 was somewhat different than that for TSE-5. Ten IT-CT. specimens were tested at -73"C and 15 were tested at 10 C. The same large'

scatter and the same lower bound were obtained, as shown in Fig. 4. EightKIa values were also obtained, and they agreed reasonably well with theprevins data. The toughness curves deduced from TSE-5 were used for thedesigr. of TSE-6 and are shown in Fig. 5.;

With regard to the accuracy of predictions it must be kept in mind thatflaw behavior depends on the severity of the thermal shock, which dependsupon the characteristics of the heat-transfer enhancement coating. Controlof the coating characteristics is not as precise as-desired, and thus theonly meaningful " predictive" analysis in terms of evaluating the validityof analytical techniques must be perfonned posttest using the measuredtemperature distributionsin the wall of the test cylinder.

A summary of test conditions for TSE-6 is presented in Table 1.,

! TESTING TECHNIQUE

TSE-6 was conducted in the same manner as that for TSE-5 and SA; that is,the test cylinder, initially at a temperature of 196 C, was submerged ini

liquid nitrogen. Film boiling was suppressed and nucleate boiling pro-moted by coating the inner surface of the test cylinder with a thin layerof " rubber cement," and the ends and outer surface of the cylinder were

!

PRELIMINARY

_ _

Page 9: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

. _ ... .

|

.

PRELIMINARY.

7

p ORNL-DWG 80-4830 E TO

350-

g i i i i

300 09 IT-CT (0.33T) g ,

S 2T-CT (0.33T6 . ORNL Koi eA TSE-5 -300 -

A BCL Kg, (I T "T)g

250 - O BCL K,, GB TSE-5 r;,

250 x T3t-6 Peotoug. If-c r 14j (OW D_-.

+ Tad-G Prestow K ,(OcQy ,200 - % 4 g

% 8' -2m -

3 n e' .e 0150 *,

00 - rj 150 -

A

100 - |MM. 73E-6g100

+ o , Z2rsmo --

,

g 5

'A @ tf.

i 50 - 50 - *-

I '0- 0 '

(OC) -150 -100 -50* 0 50 100 150

I I I I I I il(OF) -200 -100 0 100 200 300

TE MPE R ATURE

.

'

Fig. 4. Fracture and arrest toughness values fromTSE-5 and from TSC-1.

!

i

k

PRELIMINARY-,

Page 10: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

.

PRELIMINARY.

8

.a .. _ _ _ . _ . . _ __.. _ _ . . . _ ._ m _ .__ _ __. ..

,i.4.. .... .- . ,, .. .

.l.-

2 .+. . ...y.. .e.. .,. .,. . .. .-. . . , ... .

,.4._ . .. ,

. . , 5._2, . . , + . .,

... .

:i.... . . . 64..

..:.+. q ,, .4.. .. .,. ...i .... . . _ . . ., 4

-

... .,i.. ..., . .i. .

... , . . .

. v.- _ --- ..-.. .. . .-- ..-_ . . . - . .. , .sy ,. : .

t. f. . .. . . . ..

. . - . . .. . . . .. .... ...,

. . - . . ..., . _. _ . . . .. . .,. . .. ..._w. -yv. .. . . a, . .. , ,. . ..

.v. .._:... .. . ... . ... .. ..

. | _x . .l...s , ,i .

. .. . . .. . . .

._ i _ .-__ __ ._. . . . _ . _ . _ _ . ..._ _ _

_. . K__a_._ _ . . .

. . . -. ,i . . ... . ..... , . ./A. .!, ., ...

Q. . .... . .

. .. ..,,/,. . -6 o- -

. ,

j,. j.. ..

... . -

- . - . - - -- . - _ . . - . . .-

.. . . . I .

.

...

. . . . -. . - - - . . ._ ... . . ... < ,,

-- . 6 .1 , . . .

j. . . . . ..

''

j ;* who . . : xo. . _ . m -e o . -co ;J: q :Ao.7Z:

__ _ _ . _ . . _ . - ._ .'ap,: */= .. _ _ __

. . _ . . . _ . . . _ _ . .

' ~

..

. _ _ .,

. ,

..

Fig. 5. K AND K DESIGN CURVES FOR TSE-6Ic Ia||

it

I,

b

.

1!

!!

|

|,

_ _ _ _ _ _

Page 11: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

-- _. - - . .- . -.

.

PRELIMINARY

,

9 i

iTable 1. Test conditions for TSE-6

_

Test specimen- TSC-3

Test specimen dimensions, m (in.).

OD 0.991 (39)'

ID 0.838 (33).Length 1.22:(48)

Test specimen material A508, class-2 chemistry.

Test specimen heat treatment Tempered at 613 C (1135*F)for 4 h

K and K , curves used in design K

from TSEIa (urves deducedand K cIcIc g

5 see Fig. 4)

Flaw Long axial sharp crack,a = 7.6 mm (0.30 in.)

Temperatures, C ( F)

Wall (initial) 96-(205)Sink -196 (-320)

Coolant LN2

Flow conditions. Natural convection

! Coating on quenched surface Rubber cement (3M-NF34)'

2Coating surface density, g/m 241 i

..

S

4

PRELIMINARY

-_. . - . . . - .. . .. .. ..__ _ . _ _

Page 12: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

.

PRELIMINARY

.

10

well insulated to prevent quenching of these latter surfaces. The lengthof the test cylinder (1.2 m) was minimized (consistent with the require-ment that from a fracture-mei:hanics point of view the cylinder would beeffectively infinitely long) in order to prevent excessive vapor concen-tration in the upper regions.

The thermal shock was administered to the inner surface by first loweringthe test cylinder into a container of LN. and then suddenly releasing anitorgen-gas bubble from the interior cavity, allowing LN2 to. flood thecavity. Natural convection provided circulation of liquid up through thecentral cavity and down over the insulation on the outside of the speci-men. Nitrogen vapor exited through the top of the tank containing the LN2,and most of the entrained liquid fell back into the tank; makeup was pro-vided as necessary. A schematic of the test facility is shown in Fig. 6.

Data retrievad from the test cylinder included indications of crack initi-*

ation and arrest (C0D, AE and UT instrumentation), crack depth (COD andUT), crack tip velocity (C0D and calculated C0D vs crack depth) and radialtemperature distributions in the wall as a function of time. These actualtemperatures are used in the post-test fracture mechanics analysis of theexperiment. Temperature distributions in the wall are measured with 10thermocouples at each of 15 different locations around the cylinder.These locations and those for the C0D gages and the UT and AE transducersare shown in Fig. 7.

RESULTS OF TSE-6

During TSE-6 there were two initiation-arrest events, and the final crackprofile through the wall and at midlength of the test cylinder is shownin Fig. 8. The first event occurred at 69 s and the other at 137 s.

| These events are indicated in Fig. 9 by the COD-gage output, and they werealso indicated by the UT instrumentation. Physical evidence of the twoevents is shown in Fig.10, which ~ is a photograph of the. fracture surfacenear midlength of the test cylinder.. Measurements taken from the fracturesurface indicate that the initial flaw depth was 7.6 mm (0.30 in.), andthat the two arrest depths near midlength of the cylinder were $20 mm(0.80 in.) and 71 mm (2.80 in.) or 427% and 93% of the way through tnewall. These latter two depths were reasonably uniform over 80% of thelength of the cylinder. .Near both ends of the cylinder the arrested crackdepths were somewhat less, as would be expected because of free-end-

effects. The crack-front contours near one end of the cylinder are shownin Fig.11, and a sketch of the crack contours for the full length of thetest cylinder is shown in Fig. 12.'

Plots of K , KIc, K temperature and circumferential stress for the twotimes' at wkich evenf!,took place are shown in Figs.13 and 14. These

; curves are based on the measured temperature distributions, and the cal-| culated stress and K7 values do not include residual stresses that might

be present. Residua'-stress measurements made on the TSC-3 prolongation,

.

PRELIMINARY

Page 13: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

_.. . . _ - - . . . _. -. - _ . - - - . - .

.

PRELIMIi4ARY,

11

i

L........ .

_

SUSettisow900u Lasst

,

t utt45a04

ADapitR

b. YL esc b \

79 ,tii. fyPL.m, ~ . ,.

, .. . ._ . . .

_

._.

.bo... _;

-

,._ , , , , ,

~

|a. tivit , , , . . : r O!<".,'

.' Platg

S T.UC S||--

1 .. .

.., 1,_ e , . ,_

.a 4. ..__,'

lYL1"t N' " f- . .

. ,,,,/,5 "' "7, ..x Pu

. ...ar .- . (S tahal CF S E ACM S

.

C TLihot t %.1

, ,i-o

7

\ sm1UtatiCN.; _

LO*te, FLANGE g*-'^. J

~d ! 'l T 'k'set i

f- d LO*I "e tGoa

|: :| ST,vessu ecr

s90, g

b |

.QTahu surront

, c\

Lug fit 0 *.sht b.

* Posif fC4 OU.i=G sueur act hC E.R Asst 0 to entreast s tooo;46 Otut Nicot t in u

.

Fig. 6. Schematic cross section of theORNL LN2 thermal-shock test facility.-

.

d

g , _ ,, . _ _ - _ . ._ ., .,_ . _._ - . _ _ . w._ , _ _ . .,

Page 14: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

. . . .. .- .. .

--- _ _ . _ . . _

. .

m.

'ORNL-OWG 79-17161 ETD

l

1800 3000 00 60 00

| f gUPPER END , .g

60 011 152 (TYP) [~t 4 i

Iq

2+| U[ 383279 >

'i H ERMOCOUPLE12

70 THIMBLE (1513 O2 -q>,'

3, .L254 4 76 (TYP)

[ ha S13 5t>-- [ gj 80 --- O 03

7+77 qCOD GAGE (9) S I

,L ~ m

8| 04.

't > i14"

90 0,

7 N |279 } |9+ 123010 '

0 015 05 j76 f- T

f LOWER END CL k ( Jf 7 .T/ wise (.eM6a.srAXtAL FLAW 2s4,6 Dua' eww |

INNER SUHFACE OUTER SURFACE

|

Fig. 7. Partially developed views of TSC-3 showing locations of instrumentation.

|

Page 15: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

.

PRELIMINARY.

13

.

' "LWX% m.aM}$"-|R .|.- . .. . .

'.w . , . -%.

**' 111 f g e tf

N.Q;;h'$@7}kfkd.$r:9 F. & q ?t % '? S s- P % W p,c h

I Y.I.N. h- . Q A h2; Q(y m R h h M)f1M 8 d!M..[ iy.Y b khl.

% it?$:|-

h ?? ..?'5'.55N M 4.?.3'. W ...'~Q &, y .

|?)N,0N-

QS?Y, $$!%Y|h%g%% g;4,i.'Ei$. 'ha "jggNq.>- ~ , - w we nit h

. N9.?- Q.4.*iwy="k'+,#?||,

,W{Q''Wn(Q%qppi1i ,q

'.~ % +.c % 4 ',n C.% we a+y'.?c'no 444. Ia% g.ena?:.;;,:gyfe . .;kp #i >y;;p: Aft h .

,W

?,.p;;g|c,.(..yt%3r h:acp pg+, . . .. u x9a%.. .. ::,:-

w., nn ,:y ,. . TgL

x.ct.a.n u d i k;+V ",A Q , gt;.,n n .=.;gi.

~,:: .

geSj$ M.,

.

Fig. 8. Cross section of segment of TSE-6 test cylindershowing final crack profile.

PRELIMINARY

Page 16: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

*

PRELIMINARY.

14

.=. ;a. O. - /- - ,). -.

~* i .,. . ,e .

. a e 4 e e e it . i4 ... . . . . .

e .e

.-, . _ . . . . .. . . . .. _. . . . , . . . . . - . ,. . . . .% .

.e . .,..

, a..e 4

e''

Q:. .

..g. . (. . g k9 . ,

_' . . - . . . . . . _ . . . ... .. . ~. - .. .- ...- - - . . . . . . . . . . . . .

. - . .9

., ,

:9g ,. Q.

.I., - .g

| Y fn sa.'e .. f s.

w. . . . , ,

*. ,.; p

. . ..- .s.. -. .. - . - .. . ... ... --. . - . .. .. ..-.-

.

.. .. . .

. . . .

. -. . ~ g,ww

- e. - y

E.

sa . , .,

. , s . ...

. . . . , . . i . , t ,L. . . i M- . . , , . .

..

, . h- g .>, o. .

Q. - .N

...g

. . . .. - + q + > . .. s .

b.. . . . .(

_ 43. . .

6.. 3

> > s . .. ..o.

, , ,.. j . , . d . ( . . - , . gl. M. . 4

~ - . . --|. . th ' *J F: . "

.

h. 4. . ... g

..

. .i. ,. ,

w. . ,, . . _ . . .. . ~ ... . .

,,, .. _ .

Osi.. .

. ' emh.., p o.b+ . . .e-- .m

M- ..

e....g e , .. * -- C, tW - -'

_'. ..U*

._. . 4. . , g .. . . . .

, , . . . o. ... ..a.. . k'..* 9 . ..t,

A. ,%. .I). Q. l

. - . - - . . .4. I....,_

(,AJ.. .. , . . . :: . .. v)

. . . . . . . . .. . p.. _ . . . . . , _ _ , . . . . . . ...--. . y. . . ., . . . ..

.

Ch7 -. . . . _|. . . . ,

n......%

,. .s. . . . . . . *

A.) .. . ; .. ..

q.. , _ . cn.

. . . : . . . . .- .-.

.c) . . . . . . . . . - 2 .. u..

._ . __ _ .

... . .. .. . ..

. . ... .- .

. 6. .. . . . ,

.. . . . . .. . . . . . . . sm.

- ._r..-..o..>...

. . .. . . . . . . o.--. Q .. , - . 4 a.. _

q. . . . . ..

j ..|. Q.-_.

..p . a .: __ . . _ . ,:- ' }_.

. _u. .L ' _.

_.4 ._ _. -_- _ - _ _-

.___m.... _ - .

.g... ..-. . ,y.i.

.. . n. . . . . .j

t

. .;, . .

-

x'..~ i .,_ .

i . -.. .

g- - 6 - !

. . .

.Q g. n-. ~~{-----g IN.~~ p) g-

i 4 7J . . ._. >. , ., . .s... . , , , , .

.. i' : . 'g &# W[ COD .{.I

PRELIMINARY

Page 17: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

1

|1

PRELIMINARY :,

.

15

;Flasrlixnnrnd~,

m asrAiHs' Sr ~'

~ SL;CCM2D 0 Ufzc5Ts

+%fGK -

'

.

::. .t ,,w.o-:, v n m.n:.ym.

f'' (* , ,3, ,'

:;f W(b ,W:)T'')Y.~ .' .$85 /-

' . L Q.>f$.a -*-:-

t y.

.h. hb ,}|$$ .'.

''Ih -E' hWh)&:||W:y.G.}.?|?S?.? .

'

Tj$iyk% . $ = -: fig;', - .ji'|.,pyfi i;l'x* ? ~ 5

&:9[N~a. ;;'&;4%,:::-

o"5$1hk; '.9,(L |:-c- .

.

'

*{'''''

.:i-;:yjfR ' . ?'. , . ;~~

,, .

.

. c[Ub, .I:m,a ',l'$kI-h.h..c...s..F-$ '

:p g. .-,~.1- _ . u. , x n,..r, m..s ; ~

< y 9 ....-

, -

WiYQMIT $*|15!$?%..,' . 51-s?:,,kh{W . ;.-,

's .- ,.

h-1 . . h*' .

.. '[a6;[MO:';?hyM. . f~.e}m..t~R- ~Yra

,.[> .d'flh .s, d $d6'' [J ';

b % f[he .|:%..u.;?l'.$5(.A:- \I 4 -f?.-. .h:.~, M. . \h ,i ? ,

w . ,.- . N.v <.|tn.: g ,- s.. . . ;

e g . u c5f W.s. w:., o :.r....k,.fcyw,. s3j' C-c| pvt.ew-a

G 2 ,1. g., :. Q [ P 'y ?h. . Q.. ,.

(:q:n T. .'; W.:,,* .?. g; .

.

. c, 1 .s . L.,:w.17.i:~. :..?. - .9 ,- ,; . f. . ,.\9 a e . $ . . .- y

.

(t q- y, u. };A ,,, ,e--

.. (. . y . .. , . ,. z. .. .x

1'* :

,

: m.ty. .,9,n'.'Y M 7.fur:dMh'.'S F% 71b.1O N ;?; #.'h'

r O >. . , . .0. . f;'M.~ 5ygi: 3A ;*'. 4n ''

. %.. Q. .,p a:st,.k*i,*:$,?.H {,. . .;;5Y*%:

]2 ,1:.O' .-?, Nip * ' ,,iIg'Ms .- e.. >L:;t yry ,h.:,:: L.'.,t,M.,

: pa

' ' , p'''a' .n %;.m'h . .p 'G" A +'t9 , .....

. . .'I k'j '' ,. a4 f 'we /-~.

#) 4.'.[As e. / {#

.

*6 1 M2 Ci

.?;.j",1qh ; .d,:?,.[;y | ... :w w.zyt,j;'?.%>

y . , ,. ,' ' '

Y 7. '' 4 :c'

.

%ej.::" ';f7 *, j s .

*

%.,

Fi g . 10. TSE-6 fracture surface near mid length of cylinder.

|.

||

PRELIMINARY. - -

- _. .__

Page 18: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

_ _ _ - . _ _

.

PRELIMINARY.

16

~

@KS7'.l AssTI/TT/bO , ;

, .~ Fe:, rag.ewsr-

'

v--SGcoA.sD OMsTT g,

.; h<g ', pN' . 4. jH -?,5^-~ ~ "Y'.g,).@ -' QR ,

v. {'%}!.

* Q@ M

"* y%'*}e

.I-7s.Sh"..p7 *- ' ,

. , -*m s., .

. g ?f. '.N. ,:. :,#< '*h

t

''..s 'N b%e

s (

p.vg!..W,j.,e

h p,h.

4$ - i~4 sc h,Y''$Q $ f!N q, .

-J e

-e;3.

I*b$

-,

i( $$ h -''

1Jj

.tgJtTM,a., : 4 :, .p '"'

;w;|n %w '-. z.e%*,

; r b 9..

p .w .-

'' | h'. Yh.*$

j?..T.h '#y..

||..,-

,h.h| < * *f _ E . )j'r-,

'

's- ( * %;r,,,,'puem* i

,

[}r<

h ;&$|, ~ *tc T, i

.I ,;@#s' \,

*c.3 % h, ,;,k. . J f, ' -

I i - , ,t b'l

(y y|,,m .- V er 6-p 1 ,: .g y ,r; .. > . f, <s- .s - -. mA s . . ..

og$ ,N F % ih Y, ~ '.7},4'*,Q

'" .NIlt5MD4t

' 'd b #'

~$

: ,d.@~?. . . .. w. ,-:. i ,' .';i .,.

. [*. j?

$k* f, ' , ~V* * ''

f. ;

fh'.' ;- Nh;A=)U~ h , * gy,*

$ ~'7.

h. .; j:.h;*%.*!\(n .'C;- G, ,+ y, ' e'.**** * s's. . .

'T

'

h.

.ai W.N .' - ''s R*' ,

\' kN Y5. \. '''>'*@,'., ,

Y.;s.: w . . In. . w>u . V "f W:..~14

|hge$. $.. (h.y & $ &. ,cQ'l '.

~~.V%r<%.s e 'x. 5 '. . y -.

. ..; * +'

8 *.%mm%g ;g,

e p,.n

. m'' b.~ .1n -g:4. a n.. .. .-c ' : r.-

. - w r;'}% p nJ

Gcg.Qg$h,b;j.&? F ..: W h .0'|it-GFir,,. . .

,%

%y|C;;5 W.t.-

Q M C.>

b -: f. u ,r w:

y Oer/7

4

Fig. 11. TSE-6 fracture surface at end of cylinder.

PRELIMINARY._ _ . . - _ _ _ _ _ _ _ __

Page 19: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

~ , - . .- - _ - - . - __ .- ..-. - . - - . - + . _ - - .

. .

.

,.

.

%

,

g . A. . ~ . , - . , .

>,i | }hj{ $ I g 8I !Ak 'f4 . 4,, I;}., . -

*4$*},446 4.35 ., 3 . , f . f. .f I

...f. . 4*h .f * 3 -|*- *4;. f.|*4 . >. i !*.g

' j 4' g +4 it t' .

j t*

I t ' ** + t t- :- , !* **. 8.-+t* ,

,6' f }' - f[ g3:.

-] t*t* ?+ 8 '.- *i.| !.5 t'I t 't |: tI g '

s' ; I .*< t .';*==-+, - f *'-aei .it .

t1 e !) 4 I .-- t|t *I *e* . . t M e;t 1 tt r-.

y .e g.st! . .,a .;,. c ;, t | . .! .3,... .e.. . . .z . f.. .:,, , , . .... .t..

. .g.... .- , ; . .. ,.9. . i .s , . . ! . . . . .. .. i.

; -

. ,.

,a ., , , . .t.

. ...,. . . ..g...-i 4 :g,. .,;. .,

. . . .. .

. . , , . ....a

; j ,. 4 , t - t . j .e. .;, g +. . , 7 . ., 3 i4 4

4.,. .e .: . .... ..,.

. i.-.. ,.,.i., . 3 ,.. .: .

, . .., . , . ,;g. ..... ,, , . . . ... , . i. ..7 ; ., ...j .

.

. . ..3,. j .4 . | ,.,. .,,, ..,4 . ...., . . ...

. . i; , ., . .._ -_.,:

_ ,- . . . . . ,, ...._ . _ . _ .... .,... ... 4 . . . .. . . . .... .

. . . .._. . . . ..,. .. _,.,.

._6... . , r. . ., . _ . . . _. _. ... : ; gj i,i. - ..

. - . . .-

t;'. ,.: . ! ; ' .' |:'! ., jilj :!i! OUTER. :surmAcG. . , ; , ' - :|: . ':..:

. .l.: ., i. ..,..

.., ,r . . . . ... . ..

. g . . . . v'.4 i . ;... .,.,,. 4 i. .;. ... ... ,... .. 4 .'

._ . i. .. . .. . C .,<i....g.. . .i..

. .! .' ..... , . ,. .. . .. .....- - t

, . . .g. .

aj.. {, a. g*t. ,2114 e .r ;.g. ., * =g...- **.*}.'.*... .e

'.* ++ *,- . .h.--.n- -- t* - *,,, . ; ,. ,e !!,i : 6- ,

.-s. ,,,., . , , , ...

. . . . , . .,l.. . . . ..- ... - . . .. ... .,

...

, . . - g, .., . ,.., .. . . . ...... ...t .. ..,. .. ,,

..

., ... . . .. . . . .. ,..q..

.. . _ . - . .. .... .. , .. ,

. . ..n m. ,...

. . , , ....... . . .. .. . . .. . .

. . . . ..., g.. . . , ...-

.

...,

.. ,... . .. q ..<, :;......

.; . ,s. .. . . , ..w. - - . . . . . . .

..s.y p..#,-

, ._, ., .,, u. . . . , . . .... . ... ...x

.. , :. : 4. a . . . . . . . .. .

,~ ~,R-

-

. . . .. . . . . m. . .... ...... 2

,. .. .,i. .. .. 6

. ...m .2 : t..

... , .. _ . ..! .

,mr- .. .- . . ..- . . i.,.. . ,; ,;,

- . -4, ,. ..7., . .. . .... . r..

., . .4 4,._ . .. .. .. . ..

*E, . .. ... , .. , , -.. ...<, . ..s.. .. !. J :* 22'2

. .

4._ . ..

-.-. . . , .51,. .. ,--j .. 9 7.'.'

- j '. -. .

*- Uy %.C ' '

.. ..g,_, ,. , . 7. .

. . . .

. 6.. .| . . l.,- .a. -< .. .y 43 . . . . . ,. .l. ., . , . <,

' ..g. . . j . m. y. /W T/g d.. FL g j .,. . i-

. . | ,. . .,, <

;,l .g. .,. .

. . . . . , ...,_| .

....

,. .s... e.,, ,,4 ,,

. ,. ..o . . ..,

.. . . . j . p. . . . l....,.... . ....

O--.4 ., , . . . . , . . ' , . . . . .3 . _ ,.g., ..,.

. . ./ . - . . . . . . . . . . . .r.,. 39 . . . . . . . . .

.. M ,:..\ .. .

4./8 .c. .. /O : . ,. -O. . _ .. o .

. . . : .. . . . .. .. _. . 4, .. . .;. ,. . - . .- ,, :, . ....t. .g

. . . ...

..;. . ...i.._ . .

,,,-

. O/S77W WrM._ NTOf%. . II) . . ;. .,.

. ~-~ . . . , . .

, . . .ai,..,... .

. . . .,

. . . , , . . , ..,. . . _ . . . . . . ... . ,.

,

. . , . . . , . . ., _., , y . .. , . , ..- . . .3 ,. .., , .

_ . . , .n n. . .7 . t ., . . . , - , .

.. .,:_ ,

.:, . .. ... .

L. *...,.;* * * *,l. *.

. .*I*-~' ..,,e p3. ,+,, jf L .- E- +, --- =r y

..

',i 4| ' - '.

g ; ..n, a.

. t. . : 4

* 'i+.*.,1

,, i,. ..,P. . . .

.**|i .. , ,

, . .ifi,.,

, . . , . : ..n . . .

d. , . . - . . - . . . . ,,. ; t..

j f r,-f' .''-+f''' ' f "w- " ' 'e., ' '

. .3 4 t ,: N t ,r .H,

..4 . . . . . '- t.Ff l .,; .t* .t . ,' l *. .* -. . e : t- l. -

-i4 ,. i ! - *i d. ..i! .r,i .- t, .f .i t h Oi rt -41 J-+4.t.,+ .

T1 - -4 w --t . . +. i .i t . . . - . .. -' ... . t .e ._

..i t, .: L.. .

,iri}?8,; h. ., ., -| |a. . . . .. ..,. . .. : ,,

fe-| : ,i t- .q . -- - ..- ..,- -t .i 4 -| j ] t. ,-+. ,4:+ p '. +. ' -t-i*-4i .1 , . .r 14: 84 4

--. --F.e i. -e g g... .- . , . - . ..

,L

Fig. 12. TSE-6 Crack Contours.,

e

t

f

i

Page 20: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

. - - . _ - - . ., _ --- , _ - . - . .

.

; PRELIMINARY,

18

t

1

i!

.

,

i -

i TSE 6 12/9 /81~ AT 1.17 MINUTES~ T

- /,,/_,, / . ..... .....s_ ,'

, , . . . . . ~ ~/

g. \ 7- , . . . * . . -, -, , - .-\. 7 .

-,

F k. / ,.c V.'' #'

\|4. s',2 / e

/.'',.~^, s

i s_ /' / \, ,/ / -

_ , ,

f.-R - ',.\-

p g.

i, s . 9 ?. ,/\, ...

t a'

y/$ 8 g.. .PZ. .,

" ' < . { j/ j\' -

5 s_, .

M S t. 7 / \-

C 'c . ,. j - .

\ -R< /*. / \

.+ \/ \"'

x1,,

N s.

2 / WA .. , ', / TEr.PERATURE _

: 2 "i:Ti5iriikYii":,.- e, t 9 h, sN-

- ! $ w

%~NI?* %~,

.

' < . yJ'k Q

= %.

3 q %~~.~_

, ~

.. , , . . .

| o.o a. : o.a o.2 c. , o.s o.s o.r o.e - c. : i.oH/W

._

.

Fig. 13. Characteristic FM curves for TSE-6 at -:

tive of first initiation-current event..

.

PRELIMINARY. - . . . - -_ _ __ _ ._ . . _ _ . .. .,_ _ _

Page 21: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

.

PRELIMINARY.

19

.

'

TSC 6 12/9 /81 AT 2.30 h!NUTES.

.$.

S-2 \p . . . . . -+

-

. . . . . . -rs . . .5. '

pg..v \ , , . . . . . . .s , . -\ *,-#\ -

,.- _ ,.--s.

3 s..# \ * . . . . . /.- -

,.i

r .

4" x .- /./'

\ ,-.v 15 -

/./../' -

_

3 a' .. ; N ,.- -

/,.-o .--

e S- @ +9 \ '. ./.

. -

,. / / _.' k* ;~

| 432 .y// 'f' -@sN= e-_ ,~

j N,/ .%"

i_,

/.f - / 'N~

?-. .

. s..'#

f..| / \ vt\-xic

8 / .- / N . 7s'

-' " - -?

' 3

| | N.,N - Tcrecinrust --

"65iriiVcii"S. g.. -C N,x%-

3. .

+ -,= .~ . .,

| -s ,%

t I a a a mp

. . . . . . , . ..3 . . . . . . . . . . . . , . . . . . . ...A/W

\ y.| '.

- c, n

.c L; , |.-

l

Fig. 14. Characteristic FM curves for TSE-6 attime of second initiation-current event.

.

l

i -

4

|-

f. PRELIMINARY.L

Page 22: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

.

PRELIMINARY

.

20

following machining of the prolongation to the same diametral dimensionsas for TSC-3 and then tempering, indicated some residual compressive stresson the outer surface but essentially no residual stress on the inner sur-face. Of course there would have to be a small residual tensile stressthroughout most of the wall thickness to balance the compressive stress atand near the outer surface. There is an additional residual tensile stressat the tip of the initial flaw that is a result of the electron-beam weldthat was used to generate the initial flaw. When the initial flaw poppedin during hydrogen charging of the EB weld the crack arrested near the tipof the EB-weld fusion zone, presumably in very low-toughness material, butnonetheless with a KI value equal to K a-l

The results in Fig.13 show that the calculated KI value for the initialflaw at the time of the first event was substantially less than the corre-spending nominal KIc value (nominal in the sense that it does not reflect

,

the effect of the EB-weld localized heat treatment). A combination ofresidual stress and local reduction in toughness, or simply a toughness19% less than the lowest value measured in the lab (see Fig. 4), wouldexplain the initiation event. At the arrest depth the calculated criticalK value is about 15% less than the K value, and this is consistent with

tbetrendfoundinTSE-5A. Ia

The results in Fig.14 correspond to the second and much larger crack-jump

This imp' 9 value at initiation was 20% less thanevent and shows that the nominal K L

the calculated KI value. les that the crack tip was blunted, asituation that was encountered during TSE-5 for the second initiation event.

Figure 14 also shows that the nominal Kla value at arrest was about 18%

previously.I which is not consistent with the trend that has been observedless than K

However, the KI gradient is so steep that an accurate compari-I and K a is difficult.son of K l

During TSE-6 two of the C0D gages (4 and 6) were recorded with fast--phenomena instrumentation in order to obtain the C0D rate. By calculatingthe static relation between C0D and crack depth for the times at which theinitiation arrest events took place it is possible to estimate the crackvelocity. The recorded plots of C0D vs time for the second event wereessentially the same for the two gages, and the one for gage 4 is shown inFig. 15. As indicated, it appears that dynamic effects resulted in amomentary arrest and reinitiation just prior to the final arrest, andthere is some evidence of this intermediate arrest event in the photo-

' graphs of the fracture surfaces (Figs.10 and 11). The velocity corre-sponding to the first part of both crack-run events is estimated to be4200 m/s.,

At about 16 s following the second initiation-arrest event the testcylinder was withdrawn from the liquid nitrogen. This was done to pre-vent a possible third initiation-arrest event, which would not havecontributed significantly to the experiment and which might have madeit difficult to ascertain the location of the second arrest event.

PRELIMINARY

.

Page 23: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

_ _ - . _ . .- . _ . - -_. . _ - _

.

PRELIMINARY.

21

,

!

. . _ _

I| |.

-

, ,

i |'

.... ._ p .i i | ' .q. ,

- _i-1 i_ .a.'- | ! |

_ _ . . _

1

.7 _. .. . . . . . .. ! _ . .. . . . . _ _ . . ..L. .. ;*

, _ _ _ . . .

- 'ene .- - I I | 1 1 1--

7- ..._. . . .

.g, _ _ ..

. . :... . ._. . q _ . Am.mmT . .

' | | io .a. - - '

o- i | | i : i

!.* IL' ! . _ . . .t . ._ . . . _ .'

..

[ nedr._. ! .

'

..J'Uma i

R- 1 1 I_ a

'1 | I'._|. .. ... I i .

.| ... L e, ,

| ! |'

i. . _ _ . . . . . _ . . y. .r_m 7. ... 7__ ,

. !, . . . ,i _|. . . .. . , . . .

'

1. _ - . i.

,

,,

. . -.i . . ! .i .. .-. . mj | | ._

-. . , _ .

. ' .! l I <.

.. , ,

I i | ! 1 | |

.. , _

___i.o,

oj s{v | sy, >4 .n t . .; t e. >* r a 4* of,

se,s | 0. % ; .nknAn, o '. aco ho l.: o,

i i ,. ,e,,m. . . 4o. n..t @e_jgf, ,,;,, j_|..r.| [ J,_;g*ocoaco ,.

_) | | | | )| | 7-

Fi g. 15. TSE-6 C0D. output vs time for second initiation-arrestevent (Gage No. 4).

.

e

PRELIMINARY-.. - _ - - - - .- , .- . _ .

Page 24: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

.

PRELIMINARY.

22

A summary of the events that took place during TSE-6 is presented inTable 2.

Table 2. Summary of events for TSE-6

Time KI TemperatureEvent a/w(s) (ksi /in.) ( F,

69 Initiation 0.10 42 8

Arrest 0.27 57 90

137 Initiation 0.27 79 -24,

Arrest 0.93 95 145

References

1. R. D. Cheverton, Pressure Vessel Fracture Studies Pertaining to a PWRLOCA-ECC Thermal Shock: Experiments TSE-1 and TSE-2, ORNL/NUREG/TM-31, September 1976.

2. R. D. Cheverton and S. E. Bolt, Pressure Vessel Fracture StudiesPertaining to a PWR LOCA-ECC Thermal Shock: Experiments TSE-3 andTSE-4 and Update of TSE-1 and TSE-2 Analysis, ORNL/NUREG-22, December1977.

3. R. D. Cheverton, S. K. Iskander and S. E. Bolt, Applicability of LEFMto the Analysis of PWR Vessels Under LOCA-ECC Thermal Shock Conditions,NUREG/CR-0107, ORNL/NUREG-40, October 1978.

4. R. D. Cheverton and S. K. Iskander, Application of Static and DynamicCrack Arrest Theory to Thermal Shock Experiment TSE-4, NUREG/CR-0767,ORNL/NUREG-57, June 1979.

5. R. D. Cheverton, P. C. Gehlen, G. T. Hahn and S. K. Iskander, "Appli-cation of Crack Arrest Theory to a Thermal Shock Experiment," Crack

*Arrest Methodology and Applications, ASTM STP 711, Hahn and Kanninen,editors, p. 392, June 1980.

'

6. R. D. Cheverton, " Thermal Shock Investigations," Heavy-Section SteelTechnology Program Quarterly Progress Report for * July-September 1979,NUREG/CR-1197, ORNL/NUREG/lM-370, p. 52, April 1980.

7. R. D. Cheverton, " Thermal Shock Investigations," Heavy-Section SteelTechnology Program Quarterly Progress for January-March 1980, NUREG/CR-1477, ORNL/NUREG/TM-393, p. 16, July 1980.

;

PRELIMINARY

_.

Page 25: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

.

.

PRELIMINARY

.

23

8. R. D. Cheverton, " Thermal Shock Investigations," Heavy-Section SteelTechnology Program Quarterly Progress Report for OctobeM)ecember 1980,NUREG/CR-1941, ORNL/NUREG/TM-347, pp. 37-50.

9. R. A. Gray, Jr., G. Sica, and F. J. Loss, Plastic Net LigamentStudies, Structural Integrity of Water Reactor Pressure BoundaryComponents, NRL/NUREG-3512, p. 40, May 1977.

T

T

1

.

f

I

l

|.

.

|

|

|

_ .. _

PRELIMINARY_ ._ _

Page 26: Aldd dC5darcht * f ft · 2021. 1. 4. · 0.99-m OD x 1.22-m length) containing a long axial flaw (initial depth = 7.6 mm) , and fabricated from A508 class 2-chemistry steel tempered

= -

O

PRELIMINARY

.

24

TSP-1008

Internal Distribution

1. S. E. Bolt 18. D. J. Naus2. R. H. Bryan 19. G. C. Robinson

3-7. R. D. Cheverton 20. A. R. Sauter8. J. R. Dougan 21. J. E. Smith9. P. P. Holz 22. H. E. Trammell

10-14. S. K. Iskander 23. D. B. Trauger15. A. L. Lotts 24. J. R. Weir16. J. G. Merkle 25-29. G. D. Whitman

,

17. R. K. Nanstad 30. Laboratory Records - RC!

External Distribution

31. Director, Office of Nuclear Regulatory Research, NRC32-33. Director, Division of Engineering Technology, Office of Nuclear

Regulatory Research, NRC34-43. Chief, Materials Engineering Branch, Division of Engineering

Technology, Office of Nuclear Regulatory Research, NRC,

44. M. Vagins, Division of Engineering Technology, Office of NuclearRegulatory Research, NRC

45-47. Acting Director, Reactor Safety Research Coordination, DOE48-67. Executive Director, Advisory Committee on Reactor Safeguards, NRC68-69. Division of Technical Information and Document Control, NRC70-71. Technical Information Center, DOE

72. Office of Assistant Manager for Energy Research and Development,DOE-0R0

73. Director, Reactor Division, DOE-OR0

i-I

/

.

.

i

(

PRELIMINARY