35
 DAY 5

Aircraft Design Day5

Embed Size (px)

Citation preview

Page 1: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 1/35

 

DAY 5

Page 2: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 2/35

 

STRESS

• Stress is a measure of force per unit areawithin a body.• It is a body's internal distribution of force per 

area that reacts to external applied loads.

 

 A

 P =σ STRESS

Page 3: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 3/35

 

ONE DIMENSIONAL STRESS

• Engineering stress / Nominal stress

 – The simplest definition of stress, σ = F / A,

where A is the initial cross-sectional area prior 

to the application of the load 

• True stress – True stress is an alternative definition in which

the initial area is replaced by the current area 

eetrue σ ε σ  )1( +=• Relation between Engineering & Nominal stress

Page 4: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 4/35

 

TYPES OF STRESSES

TENSILE

BENDING

COMPRESSIVE

SHEAR

TORSION 

Page 5: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 5/35

 

SHEAR STRESS

TORSION

12

12

B Aτ z τ z

dz

dx

 τ       

z       d        

z       d        

   y              τ 

      z        d 

      z        d 

      y   

τ xdxdy

τ xdxdy

( ) ( )dz dxdydx dzdy xz  τ=τ

D

C

xz  τ=τ

Taking moment about CD, We get 

This implies that if there is a shear in one plane then there will be a shear in

the plane perpendicular to that

Page 6: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 6/35

 

TWO DIMENSIONAL STRESS• Plane stress

• Principal stress

 yσ 

 xσ  xσ 

 yσ 

 xyτ  

 xyτ  

 yxτ 

 yxτ 

2

2,122

xy

 y x y xτ 

σ σ σ σ σ  +  

 

  

  −±

+=

Page 7: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 7/35

 

THREE DIMENSIONAL STRESS

• Cauchy stress

 – Force per unit area in the deformed geometry

• Second Piola Kirchoff stress

 – Relates forces in the reference configuration to

area in the reference configuration

=

 zz  zy zx

 yz  yy yx

 xz  xy xx

ij

σ τ τ 

τ σ τ 

τ τ σ 

σ 

 

iJ,X

ijτ

 jI,JX

IJS = X – Deformation gradient

Page 8: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 8/35

 

• Stress invariants of the Cauchy stress

• Characteristic equation of 3D principal stress is

•Invariants in terms of principal stress

3D PRINCIPAL STRESS

 z  y x I  σ σ σ  ++=1222

2 zx yz  xy x z  z  y y x I  τ τ τ σ σ σ σ σ σ  −−−++=222

3 2  xy z  zx y yz  x zx yz  xy z  y x I  τ σ τ σ τ σ τ τ τ σ σ σ  −−−+=

032

2

1

3 =−+−  I  I  I  σ σ σ 

3211 σ σ σ  ++= I 

1332212 σ σ σ σ σ σ  ++= I 

3213

σ σ σ = I 

Page 9: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 9/35

 

VON-MISES STRESS

• Based on distortional energy

( ) ( ) ( )2

2

13

2

32

2

21 σ σ σ σ σ σ σ 

−+−+−=v

( ) ( ) ( ) ( )222222

62

1

 zx yz  xy x z  z  y y xvτ τ τ σ σ σ σ σ σ σ  +++−+−+−=

Page 10: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 10/35

Page 11: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 11/35

 

VOLUMETRIC STRAIN

• Volumetric strain

0

0

V V −=υ 

  z  y x ε ε ε υ  ++=

Page 12: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 12/35

 

TWO DIMENSIONAL STRAIN

• Plane strain

• Principal strain

 y

ε 

 xε  xε 

 yε 

  xyγ    xyγ  

  yxγ  

  yxγ  

   

  

 +  

 

  

  −±

+=

2222,1

 xy y x y x γ  ε ε ε ε ε 

Page 13: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 13/35

 

3D STRAIN

=

 zz 

 zy zx

 yz 

 yy

 yx

 xz  xy

 xx

ij

ε γ  γ  

γ  ε 

γ  

γ  γ  ε 

ε 

 

22

22

22Strain tensor 

( )

   

  

 

∂∂

∂∂

+∂∂

+∂∂

=

−=

 j

i

i

 j

 j

i

ij

 x

u

 x

u

 x

u

 x

u

2

1

2

1

 

FFij

Ekjki

δ 

( ) FF

ij

Ekj

1-

ki

1

2

1 −−=ij

δ 

Green Lagrangian Strain tensor 

Almansi Strain tensor 

Page 14: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 14/35

 

STRESS-STRAIN CURVE

Mild steel

Thermoplastic

Copper 

Page 15: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 15/35

 

BEAM

• A STRUCTURAL MEMBER WHOSE THIRD DIMENSION IS

LARGE COMPARED TO THE OTHER TWO DIMENSIONS

AND SUBJECTED TO TRANSVERSE LOAD

• A BEAM IS A STRUCTURAL MEMBER THAT CARRIES

LOAD PRIMARILY IN BENDING

• A BEAM IS A BAR CAPABLE OF CARRYING LOADS IN

BENDING. THE LOADS ARE APPLIED IN THE

TRANSVERSE DIRECTION TO ITS LONGESTDIMENSION

Page 16: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 16/35

 

TERMINOLOGY• SHEAR FORCE

 – A shear force in structural mechanics is an exampleof an internal force that is induced in a restrainedstructural element when external forces are applied 

• BENDING MOMENT – A bending moment in structural mechanics is an

example of an internal moment that is induced in arestrained structural element when external forcesare applied 

• CONTRAFLEXURE – Location, where no bending takes place in a beam 

Page 17: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 17/35

 

TYPES OF BEAMS

• CANTILEVER BEAM

• SIMPLY SUPPORTED BEAM

• FIXED-FIXED BEAM• OVER HANGING BEAM

• CONTINUOUS BEAM

Page 18: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 18/35

 

BEAMS (Contd…)

• STATICALLY DETERMINATE• STATICALLY INDETERMINATE

C

BA

D

Page 19: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 19/35

 

BEAM

•TYPES OF BENDINGHoggingSagging

Page 20: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 20/35

 

SHEAR FORCE & BENDING

MOMENTBEAM

BENDING MOMENT

SHEAR FORCE FREE BODY DIAGRAM

P

P/2

PL/8P

LP/2

P/2

P/2

PL/8

PL/8 PL/8

Page 21: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 21/35

 

SHEAR FORCE & BENDING

MOMENTBEAM

BENDING MOMENT

SHEAR FORCE FREE BODY DIAGRAM

P

5P/16

P

L11P/16

11P/16

5P/16

3PL/8

3PL/8

RELATI N BETWEEN

Page 22: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 22/35

 

RELATI N BETWEEN

BM, SHEAR & LOAD

M+dMM V+dV

w

VO

dx

dx

dM V 

dxwdxVdxdM M M 

M O

=

=   

  −++−

⇒=∑ 02

)(0

Taking moments about O

Force equilibrium gives ( )

dx

dV w

dxwdV V V 

=

=++− 0*

Page 23: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 23/35

 

BEAM THEORY

• ASSUMPTIONS – MATERIAL IS HOMOGENOUS

 – MATERIAL IS ISOTROPIC

 – THE BEAM IS SYMMETRICAL

 – THE TRANSVERSE PLANE SECTION

REMAIN PLANE AND NORMAL TO THE

LONGITUDIONAL FIBRES AFTER BENDING

(NEUTRAL PLANE REMAINS SAME

AFTER BENDING)

Page 24: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 24/35

 

BENDING STRESSo

R  MM

 ba

c edf 

From similar triangles edf & cod

(1)... (

cd 

ef 

lengthOriginal 

lengthinChangestrain ==)ε 

(2)... co

de

cd 

ef =

...(3) (

 R

 y

cd 

ef  strain ==)ε 

Hooks law

...(5)  R

 E 

 y

 f 

=

...(4) (

( E 

or  f  strain

σ ε 

)) =

(6)... dA

 R

 Eyarea stressdF  == *

(7)... dA   

  == R

 Ey ydF  ydM  *

(8)... dAy 2  

 

 

 

 = 

 

 

 

 = ∫  R

 EI 

 R

 E M 

(9)...  R

 E 

 I 

M  =

From (3) & (4) From (5) & (9)

(9)... y

 f 

 R

 E 

 I 

==

Page 25: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 25/35

 

FINITE ELEMENTS

• TRUSS / BAR / LINK ELEMENT• BEAM ELEMENT

Page 26: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 26/35

 

3D BEAM ELEMENT

Page 27: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 27/35

 

3D BEAM ELEMENT

 s

l V  

……… (1)

 sz 

l q

k k k 

tz 

l q

k k k k 

l q

k k 

 sy

l q

k k k 

ty

l q

k k k k 

l q

k k 

 sx

l q

k k 

tx

l q

k k k 

l q

V hb s

V hat 

 z ht  sr  z 

V hb s

V hat 

 yht  sr  y

V hb s

V hat 

 xht  sr  x

∑∑∑

∑∑∑

∑∑∑

===

===

===

++=

++=

++=

111

111

111

22),,(

22),,(

22

),,(

t

t

Cartesian coordinate of any point in the element

Cartesian coordinate of any nodal point k

Cross sectional dimensions of the beam at nodal point k

Components of unit vector in direction t at nodal point k

Components of unit vector in direction s at nodal point k

We call and the normal vectors or director vectors at

nodal point k

===

==

 sz 

l k 

 sy

l k 

 sx

tz 

l k 

ty

l k 

tx

l  k k 

l l l 

V V V 

V V V  ba

 z  y x z  y x

,,

,, ,

,,,,

  k 

l V  

l V  

 s

l V  

 s

l V  

 s

l V  

Page 28: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 28/35

 

3D BEAM ELEMENT

The displacement components are

From (1) & (2) we get

……… (2)

……… (3)

 z  z t  sr  z  y yt  sr  y x xt  sr  x

01

01

01

),,(),,(),,(

−=−=−=

 

 sz 

q

k k k 

tz 

q

k k k k 

q

k k 

 sy

q

k k 

ty

q

k k k 

q

 sx

q

k k k 

tx

q

k k k k 

q

k k 

V hb s

V hat 

 z ht  sr  z 

V hb s

V hat 

 yht  sr  y

V hb s

V hat 

 xht  sr  x

∑∑∑

∑∑∑

∑∑∑

===

===

===

++=

++=

++=

111

111

111

22),,(

22

),,(

22),,( 

 s

 s

 s

V V V 

V V V 01

01

−=

−=

 

Page 29: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 29/35

 

3D BEAM ELEMENT

[ ]

[ ]

[ ]

∂∂

=

∂∂

∂∂

∑=

 z 

 y

 x

q

i

i

ik 

i

i

ik 

i

i

i

u

 ) g (  ) g (  ) g ( h

 ) g (  ) g (  ) g ( h

(g)(g)(g)r 

h

u

 s

u

u

θ 

θ 

θ 

1

321

321

321

1

ˆˆˆ1

1

 

∑=

=

q

k k k 

u B1

ˆ

η ξ 

η ς 

η η 

γ  γ  ε  where [ ]

k  z 

k  y

k  xk k k k  wvuu θ θ θ   =ˆ

Strain displacement relation

and the matrices Bk ,k=1,…..,q, together constitute the matrix B,

[ ]q B B B  ....

1=

Page 30: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 30/35

 

3D BEAM ELEMENT

Jacobian Transformation

( )

=

0

0

0

00

00

00

 -

 sx

 sy

 sx

 sz 

 sy

 sz 

k k 

V V 

V V 

V V 

b g 

ξ ∂

∂=

∂ −1 J 

 x

 

( )

=

0

0

0

200

00

00

 -

tx

ty

tx

tz 

ty

tz 

k k 

V V 

V V 

V V a

 g 

( ) ( ) ( ) k ij

ij

ij   g t  g  s g  += ˆ

Page 31: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 31/35

 

3D BEAM ELEMENTStrain displacement relation

Where

Stiffness

Load

ξ d l 

 DB BT ∫ −

=1

1

2

2K  

 K 

T   f d l 

 N  B f  +=

∫ −ξ 

1

1

2

2

 

∂∂

∂∂

∂∂

=

∂∂

∂∂

∂∂

∑=

 z 

 y

 x

q

i

i

i

i

i

i

i

i

i

k u

 )(G )(G )(Gr 

h J 

 )(G )(G )(Gr 

h J 

 )(G )(G )(Gr h J 

 z 

u

 y

u

 xu

θ 

θ 

θ 

1

333

1

31

222

1

21

111

1

11

321

321

321

 

( ) ( )[ ] ( ) ( )[ ]k 

min

min

k k 

min

in

h g  J  g  J r 

h g  J Gm 1

3

1

2

1

1

ˆ −−− ++∂

∂=

STIFFNESS MATRIX

Page 32: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 32/35

 

STIFFNESS MATRIX

=

 L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L

GJ  L

GJ 

 L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L

 AE 

 L

 AE  L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L

GJ 

 L

GJ  L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L

 AE 

 L

 AE 

 K e

400

600

200

600

04

006

002

006

0

0000000000

600

1200

600

1200

06

0012

006

0012

0

0000000000

2

00

6

00

4

00

6

00

02

006

004

006

0

0000000000

600

1200

600

120

06

00126

0012

0

0000000000

22

22

2323

2323

22

22

2323

2323

-

 --

---

 

THREE MOMENT EQUATION

Page 33: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 33/35

 

THREE MOMENT EQUATION

THREE MOMENT EQUATION

Page 34: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 34/35

 

THREE MOMENT EQUATION(Developed by clapeyron)

Continuity condition

Equating the above equations

Using second moment-area theorem

 R

C  R

 L

C  L

 L Ltantan ∆=∆

 R R

 R R

 L L

 L L

 R

 R

 R

 R

 R

 L

 L

 L

 L

 L

 EI  L

 A x

 EI  L

 A xM 

 EI 

 LM 

 EI 

 L

 EI 

 LM 

 EI 

 L 662 −−=+  

 

  

 ++

   

   ++=∆  L L L LC  L L L

 L

C  LLM  L LM  L A x

 EL 21

31

21

321

tan

   

   ++=∆

 R R R RC  R R R

 R

C  RLM  L LM  L A x

 EL 2

1

3

1

2

1

3

21tan

Page 35: Aircraft Design Day5

8/14/2019 Aircraft Design Day5

http://slidepdf.com/reader/full/aircraft-design-day5 35/35

THREE MOMENT THEOREM

   

  

 +=+++

2

22

1

11

22116)(2

 L

 x A

 L

 x A LM  L LM  LM C  B A

  

 

 

 

 +=  

 

 

 

 +  

 

 

 

 ++  

 

 

 

 

22

22

11

11

2

2

2

2

1

1

1

1 62 I  L

 x A

 I  L

 x A

 I 

 LM 

 I 

 L

 I 

 LM 

 I 

 LM 

C  B A