1
Figure 1: Annotated physiographic map of northern Bangladesh from Pickering et al., 2013, with loca>ons of sites A & B (see Figure 2) marked. Figure 2: Results from numerical model for the early Holocene floods. A) At this loca>on, overtopping and spillover is plausible, as the floodwaters would exceed 130% of bankfull flow, possibly leading to par>al avulsions into Sylhet Basin. B) In contrast, the Jamuna valley downstream could easily accommodate the floods, which would only reach 40% of bankfull flow (45 m) without spillover and only 30% when accoun>ng for spillover (shown). I) Numerical Modeling Using Manning’s Equa=on: Manning’s equa>on relates discharge to channel dimensions and parameters under the assump>ons of uniform flow. Manning’s equa>on is given by: Q=n 1 A 5/3 P 2/3 S 1/2 where: Q = discharge [m 3 /s] n = Manning’s number [dimensionless] A = channel area [m 2 ] P = we[ed perimeter [m] S = slope [rad] Calcula>ons were run assuming a discharge of 5 x 10 6 m 3 /s. 1 Valley floor topography was es>mated based on drill core evidence from Transect A (see map). 2 Manning’s n of .06 and .05 for the valley walls and floor, respec>vely, were chosen to reflect roughness due to abundant vegeta>on and gravel. Height above valley floor (m) Distance along valley floor (m) Height above valley floor (m) 68 m Distance along valley floor (m) 40 m Poten=al Impacts of Tsangpo Lakeburst Megafloods and their Preserva=on in the Bengal Basin and Delta System Michael Diamond 1 , Steven Goodbred 1 , Luisa Palamenghi 2 , Saddam Hossain 3 , Jennifer Pickering 1 , Ryan Sincavage 1 , Volkhard Spiess 2 , Lauren Williams 4 (1) Earth and Environmental Sciences, Vanderbilt University, Nashville TN, USA (2) Department of Geosciences, University of Bremen, Bremen, Germany, (3) Department of Geology, Dhaka University, Dhaka, Bangladesh, (4) Departhment of Earth and Environmental Sciences, University of Rochester, Rochester NY, USA EP13B3511 Abstract: Large, glaciallydammed lakes formed via the impoundment of the Tsangpo River in Tibet led to lakeburst floods during the late Pleistocene and at least two intervals in the early and late Holocene. We present the first cri>cal examina>on of the poten>al effects that the Holocene lake drainages had on the downstream Bengal delta and their preserva>on in the geologic record. Based on stra>graphic evidence from cores drilled across the delta, digital eleva>on models, seismic data, and hydraulic flow calcula>ons, we propose that lakeburst floods could be responsible for I) triggering shortlived avulsion events of the Brahmaputra River into the Sylhet basin, II) genera>on of a 10 m thick gravel layer flooring the Jamuna valley, III) the forma>on of two apparent overflow channels on the Madhupur Terrace, and IV) the deposi>on of a large, mass transport deposit in the submarine Swatch of No Ground canyon system. Comparing the early and late Holocene events, we expect the distribu>on of the floodwaters and their deposits in the two intervals to differ sharply owing to major differences in flood volume and the paleotopography of the delta. Despite much higher discharge, the early Holocene floods were largely accommodated within the vast lowstand valley of the Brahmaputra, with some spillover into the Sylhet basin. In contrast, the late Holocene floods likely spread over a larger area due to the rela>vely even, lowgradient topography. Offshore, a 40 m thick, chao>c, semitransparent seismic facies observed in the canyon corresponds temporally with the early Holocene floods and is interpreted as a subaqueous mass debris flow generated by the flood pulse directed to the canyon via the lowstand river valley. Methods: Sediment cores were drilled in 16 transects across the delta using a local drill method and shipped to Vanderbilt University for the following analyses: Grain size was measured on a Malvern Mastersizer 2000E Magne>c suscep>bility was measured on a Bar>ngton MS2E High Resolu>on Surface Scanning Sensor Stron>um (Sr), silica (SiO 2 ), and calcium (CaO) concentra>ons were measured via Xray fluorescence (XRF) on a benchtop Oxford Instruments MDX 1080 + XRF Spectrometer Digital eleva>on models (DEMs) were used for visual inspec>on of delta morphology. Enthought Canopy, a Python analysis environment, was used for numerical modeling of the floods. Seismic data from a marine mul>channel seismic survey was analyzed using the HIS Kingdom suite of soqware and GEDCO Vista. References: 1. Montgomery, David R., et al. (2004), Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet, Quaternary Research (vol. 62), pp. 201–207. 2. Pickering, J.L., et al. (2013), Late Quaternary sediment record and Holocene channel avulsions of the Jamuna and Old Brahmaputra River valleys in the upper Bengal delta plain, Geomorphology, DOI: 10.1016/j.geomorph.2013.09.021. Acknowledgements and Correspondence: We would like to thank the en>re BanglaPIRE team, past and present, for their support and assistance. In par>cular, this project has benefi[ed immeasurably from conversa>ons and correspondence with Carol Wilson, Jonathan Gilligan, Chris Paola, and JeanLouis Grimaud. Financial support for undergraduate student travel was generously given by the Vanderbilt University College of Arts and Science. BanglaPIRE funded by NSF Grant # 0968354. Correspondence can be sent to Michael Diamond at [email protected]. Bangladesh 200 km Sylhet Basin Madhupur Terrace Namche Barwa India Swatch of No Ground canyon Tibet Burma Shillong Massif 30 18 6 Loca=on A B Slope .0002 .00025 Valley width 25 km 58.8 km Valley depth (max) 59 m 67 m Frac>on of 5 Sv flood discharge accommodated 77% 246% Figure 5: Stra>graphic columns of boreholes shown in Figure 4E. III) Madhupur Terrace: Two prominent, symmetric channels (“scars”) cut through the Madhupur Terrace. Three plausible hypotheses can explain their forma>on: 1. They were carved by the BrahmaputraJamuna River as it avulsed across the delta; 2. Megafloods excavated the scars in discrete, violent events; and 3. Local drainage carved the channels over millennia. We reject the first hypothesis because there are not meters of Holocene sand underlying the modern floodplain, as would be expected with a Brahmaputraorigin, and the only Holocene sand underlying the modern channel has a Sr concentra>on of ~80 ppm, well outside the typical Brahmaputra range of 140180 ppm. The sharpness of the boundaries between terrace and scar and the size of the incisions are difficult to explain with local drainage alone, sugges>ng a poten>al role for floods as the primary morphological agent. Key: HolocenePleistocene boundary 10 m Figure 4: A) Bangladesh in context of south Asia, with Namche Barwa indicated (Google Earth image). B) DEM image of Bangladesh (scale in meters) with loca>ons of interest labeled. C) Reconstruc>on of Tsangpo paleolake, with ice dam at Namche Barwa, from Montgomery et al., 2004. D) Loca>ons of boreholes drilled for Transect A. E) Loca>ons of Transect D & E boreholes drilled around Madhupur Terrace, which is highlighted. F) Stra>graphic crosssec>on of Transect A from Pickering et al., 2013. Floods may have had a role in carving the Old Brahmaputra Valleys’ strikingly different dimensions with respect to the main BrahmaputraJamuna course. Shillong Madhupur II) Gravel Layer: A ~10 m thick gravel layer extends at least 200 km down the delta. Such a thick gravel surface is rare in fluvial systems –– it requires a significantly different hydrologic regime than what is present today. Since it is wellestablished that monsoon discharge was reduced during the last glacial, it is implausible that such an extensive gravel layer would develop from the river alone. Figure 3: A) Seismic data taken via ship along the northern Jamuna river shows a ~10 m gravel layer, which has been corroborated by field evidence from the local drill teams. B) Loca>on of seismic cruise in rela>on to the Shillong massif and Madhupur Terrace. Scale is 0 m (purple) to 40 m (red) above sea level. 100 m below water level (125 ms TWT) 50 m below water level (76 ms TWT) Gravel layer (approximate) 17.3 km 15.2 km Madhupur Terrace Jamuna River Jamuna River Shillong Massif Transect E Transect D Transect A Pleistocene sediments IV) Swatch of No Ground Canyon: There is a ~40 m thick deposit in the Swatch of No Ground canyon characterized by oversized event beds of coarse or mixed grain size. The age of this surface could be es>mated between ca. 14 ka as it is conformable with the transgressive surface of erosion associated with early deglacia>on and ca. 2 ky from the surface sedimenta>on rate (25 cm/yr), with ages closer to the former figure more likely. Internal reflec>ons within the unit suggest it was deposited in a >mescale on the order of days, which would be expected if the deposit originated as a subaqueous mass debris flow from the early Holocene floods. Isopach images of the deposit reveal it to be much thicker and more extensive than ordinary slumping events due to earthquakes and other factors. Figure 6: A) Mapping of units in the Swatch of No Ground canyon from seismic data. The unit in red corresponds to the mass transport deposit that may be linked to the early Holocene megafloods. B) Isopach map of mass transport deposit that may be linked to the early Holocene megafloods.

AGU_Poster

Embed Size (px)

Citation preview

Page 1: AGU_Poster

Figure  1:  Annotated  physiographic  map  of  northern  Bangladesh  from  Pickering  et  al.,  2013,  with  loca>ons  of  sites  A  &  B  (see  Figure  2)  marked.  

Figure  2:  Results  from  numerical  model  for  the  early  Holocene  floods.  A)  At  this  loca>on,  overtopping  and  spillover  is  plausible,  as  the  floodwaters  would  exceed  130%  of  bankfull  flow,  possibly  leading  to  par>al  avulsions  into  Sylhet  Basin.  B)  In  contrast,  the  Jamuna  valley  downstream  could  easily  accommodate  the  floods,  which  would  only  reach  40%  of  bankfull    flow  (45  m)  without  spillover  and  only  30%  when  accoun>ng  for  spillover  (shown).  

 I)  Numerical  Modeling  Using  Manning’s  Equa=on:    

 Manning’s  equa>on  relates  discharge  to  channel  dimensions  and  parameters  under  the  assump>ons  of  uniform  flow.  Manning’s  equa>on  is  given  by:    

Q  =  n-­‐1·∙A5/3·∙P-­‐2/3·∙S1/2    where:  •  Q  =  discharge  [m3/s]  •  n  =  Manning’s  number  [dimensionless]  •  A  =  channel  area  [m2]  •  P  =  we[ed  perimeter  [m]    •  S  =  slope  [rad]    Calcula>ons  were  run  assuming  a  discharge  of  5  x  106  m3/s.1  Valley  floor  topography  was  es>mated  based  on  drill  core  evidence  from  Transect  A  (see  map).2  Manning’s  n  of  .06  and  .05  for  the  valley  walls  and  floor,  respec>vely,  were  chosen  to  reflect  roughness  due  to  abundant  vegeta>on  and  gravel.    

Height  abo

ve  valley  flo

or  (m

)  

Distance  along  valley  floor  (m)  

Height  abo

ve  valley  flo

or  (m

)  

68  m  

Distance  along  valley  floor  (m)  

40  m  

Poten=al  Impacts  of  Tsangpo  Lake-­‐burst  Megafloods  and  their  Preserva=on  in  the  Bengal  Basin  and  Delta  System  Michael  Diamond1,  Steven  Goodbred1,  Luisa  Palamenghi2,  Saddam  Hossain3,    Jennifer  Pickering1,  Ryan  Sincavage1,  Volkhard  Spiess2,  Lauren  Williams4  

(1)  Earth  and  Environmental  Sciences,  Vanderbilt  University,  Nashville  TN,  USA  (2)  Department  of  Geosciences,  University  of  Bremen,  Bremen,  Germany,    (3)  Department  of  Geology,  Dhaka  University,  Dhaka,  Bangladesh,  (4)  Departhment  of  Earth  and  Environmental  Sciences,  University  of  Rochester,  Rochester  NY,  USA  

EP13B-­‐3511  

 Abstract:  

   Large,  glacially-­‐dammed  lakes  formed  via  the  impoundment  of  the  Tsangpo  River  in  Tibet  led  to  lake-­‐burst  floods  during  the  late  Pleistocene  and  at  least  two  intervals  in  the  early  and  late  Holocene.  We  present  the  first  cri>cal  examina>on  of  the  poten>al  effects  that  the  Holocene  lake  drainages  had  on  the  downstream  Bengal  delta  and  their  preserva>on  in  the  geologic  record.  Based  on  stra>graphic  evidence  from  cores  drilled  across  the  delta,  digital  eleva>on  models,  seismic  data,  and  hydraulic  flow  calcula>ons,  we  propose  that  

lake-­‐burst  floods  could  be  responsible  for  I)  triggering  short-­‐lived  avulsion  events  of  the  Brahmaputra  River  into  the  Sylhet  basin,  II)  genera>on  of  a  10  m  thick  gravel  layer  flooring  the  Jamuna  valley,  III)  the  forma>on  of  two  apparent  overflow  channels  on  the  Madhupur  Terrace,  and  IV)  the  deposi>on  of  a  large,  mass  transport  deposit  in  the  submarine  

Swatch  of  No  Ground  canyon  system.  Comparing  the  early  and  late  Holocene  events,  we  expect  the  distribu>on  of  the  floodwaters  and  their  deposits  in  the  two  intervals  to  differ  sharply  owing  to  major  differences  in  flood  volume  and  the  paleotopography  of  the  delta.  Despite  much  higher  discharge,  the  early  Holocene  floods  were  largely  accommodated  within  the  vast  lowstand  valley  of  the  Brahmaputra,  with  some  spillover  into  the  Sylhet  basin.  In  contrast,  the  late  Holocene  floods  likely  spread  over  a  larger  area  due  to  the  

rela>vely  even,  low-­‐gradient  topography.  Offshore,  a  40  m  thick,  chao>c,  semi-­‐transparent  seismic  facies  observed  in  the  canyon  corresponds  temporally  with  the  early  Holocene  floods  and  is  interpreted  as  a  subaqueous  mass  debris  flow  generated  by  the  flood  pulse  directed  to  the  canyon  via  the  lowstand  river  valley.  

 

 

Methods:      

Sediment  cores  were  drilled  in  16  transects  across  the  delta  using  a  local  drill  method  and  shipped  to  Vanderbilt  University  for  the  following  analyses:    •  Grain  size  was  measured  on  a  Malvern  Mastersizer  2000E  •  Magne>c  suscep>bility  was  measured  on  a  Bar>ngton  MS2E  High  Resolu>on  Surface  Scanning  Sensor  •  Stron>um  (Sr),  silica  (SiO2),  and  calcium  (CaO)  concentra>ons  were  measured  via  X-­‐ray  fluorescence  (XRF)  on  a  benchtop  Oxford  Instruments  MDX  1080  +  XRF  Spectrometer  

Digital  eleva>on  models  (DEMs)  were  used  for  visual  inspec>on  of  delta  morphology.  Enthought  Canopy,  a  Python  analysis  environment,  was  used  for  numerical  modeling  of  the  floods.  Seismic  data  from  a  marine  mul>channel  seismic  survey  was  analyzed  using  the  HIS  Kingdom  suite  of  soqware  and  GEDCO  Vista.    

References:    1.  Montgomery,  David  R.,  et  al.  (2004),  Evidence  for  Holocene  megafloods  down  the  Tsangpo  River  gorge,  southeastern  Tibet,  Quaternary  Research  (vol.  62),  pp.  201–207.  2.  Pickering,  J.L.,  et  al.  (2013),  Late  Quaternary  sediment  record  and  Holocene  channel  avulsions  of  the  Jamuna  and  Old  Brahmaputra  River  valleys  in  the  upper  Bengal  delta  plain,  

Geomorphology,  DOI:  10.1016/j.geomorph.2013.09.021.  

Acknowledgements  and  Correspondence:    We  would  like  to  thank  the  en>re  BanglaPIRE  team,  past  and  present,  for  their  support  and  assistance.  In  par>cular,  this  project  has  benefi[ed  immeasurably  from  conversa>ons  and  correspondence  with  Carol  Wilson,  Jonathan  Gilligan,  Chris  Paola,  and  Jean-­‐Louis  Grimaud.  Financial  support  for  undergraduate  student  travel  was  generously  given  by  the  Vanderbilt  University  College  of  Arts  and  Science.  BanglaPIRE  funded  by  NSF  Grant  #  0968354.  Correspondence  can  be  sent  to  Michael  Diamond  at  [email protected].  

10  m  

Bangladesh  

200  km  

Sylhet  Basin  Madhupur  Terrace  

Namche  Barwa  

India  

Swatch  of  No  Ground  canyon  

Tibet  

Burma  

Shillong  Massif  

30  

18  

6  

Loca=on   A   B  

Slope   .0002   .00025  

Valley  width   25  km   58.8  km  

Valley  depth  (max)   59  m   67  m  

Frac>on  of    5  Sv  flood  discharge  accommodated  

77%   246%  

SONG  deposit  

Figure  5:  Stra>graphic  columns  of  boreholes  shown  in  Figure  4E.  

 III)  Madhupur  Terrace:    

 Two  prominent,  symmetric  channels  (“scars”)  cut  through  the  Madhupur  Terrace.      Three  plausible  hypotheses  can  explain  their  forma>on:    1.  They  were  carved  by  the  Brahmaputra-­‐Jamuna  River  as  it  avulsed  across  the  delta;    2.  Megafloods  excavated  the  scars  in  discrete,  violent  events;  and    3.  Local  drainage  carved  the  channels  over  millennia.    We  reject  the  first  hypothesis  because  there  are  not  meters  of  Holocene  sand  underlying  the  modern  floodplain,  as  would  be  expected  with  a  Brahmaputra-­‐origin,  and  the  only  Holocene  sand  underlying  the  modern  channel  has  a  Sr  concentra>on  of  ~80  ppm,  well  outside  the  typical  Brahmaputra  range  of  140-­‐180  ppm.  The  sharpness  of  the  boundaries  between  terrace  and  scar  and  the  size  of  the  incisions  are  difficult  to  explain  with  local  drainage  alone,  sugges>ng  a  poten>al  role  for  floods  as  the  primary  morphological  agent.    

Key:  

Holocene-­‐Pleistocene  boundary  

10  m  

Figure  4:  A)  Bangladesh  in  context  of  south  Asia,  with  Namche  Barwa  indicated  (Google  Earth  image).  B)  DEM  image  of  Bangladesh  (scale  in  meters)  with  loca>ons  of  interest  labeled.  C)  Reconstruc>on  of  Tsangpo  paleolake,  with  ice  dam  at  Namche  Barwa,  from  Montgomery  et  al.,  2004.  D)  Loca>ons  of  boreholes  drilled  for  Transect  A.  E)  Loca>ons  of  Transect  D  &  E  boreholes  drilled  around  Madhupur  Terrace,  which  is  highlighted.  F)  Stra>graphic  cross-­‐sec>on  of  Transect  A  from  Pickering  et  al.,  2013.  Floods  may  have  had  a  role  in  carving  the  Old  Brahmaputra  Valleys’  strikingly  different  dimensions  with  respect  to  the  main  Brahmaputra-­‐Jamuna  course.  

Shillong  

Madhupur  

 II)  Gravel  Layer:    

 A  ~10  m  thick  gravel  layer  extends  at  least  200  km  down  the  delta.  Such  a  thick  gravel  surface  is  rare  in  fluvial  systems  ––  it  requires  a  significantly  different  hydrologic  regime  than  what  is  present  today.  Since  it  is  well-­‐established  that  monsoon  discharge  was  reduced  during  the  last  glacial,  it  is  implausible  that  such  an  extensive  gravel  layer  would  develop  from  the  river  alone.    

Figure  3:  A)  Seismic  data  taken  via  ship  along  the  northern  Jamuna  river  shows  a  ~10  m  gravel  layer,  which  has  been  corroborated  by  field  evidence  from  the  local  drill  teams.  B)  Loca>on  of  seismic  cruise  in  rela>on  to  the  Shillong  massif  and  Madhupur  Terrace.  Scale  is  0  m  (purple)  to  40  m  (red)  above  sea  level.  

100  m  below  water  level  (125  ms  TWT)  

50  m  below  water  level  (76  ms  TWT)  Gravel  layer  (approximate)  

17.3  km  

15.2  km  

Madhupur  Terrace  

Jamuna  River  

Jamuna  River  

Shillong  Massif  

Transect  E  

Transect  D  

Transect  A  

Pleistocene  sediments  

 IV)  Swatch  of  No  Ground  Canyon:    

 There  is  a  ~40  m  thick  deposit  in  the  Swatch  of  No  Ground  canyon  characterized  by  oversized  event  beds  of  coarse  or  mixed  grain  size.  The  age  of  this  surface  could  be  es>mated  between  ca.  14  ka  as  it  is  conformable  with  the  transgressive  surface  of  erosion  associated  with  early  deglacia>on  and  ca.  2  ky  from  the  surface  sedimenta>on  rate  (25  cm/yr),  with  ages  closer  to  the  former  figure  more  likely.  Internal  reflec>ons  within  the  unit  suggest  it  was  deposited  in  a  >mescale  on  the  order  of  days,  which  would  be  expected  if  the  deposit  originated  as  a  subaqueous  mass  debris  flow  from  the  early  Holocene  floods.  Isopach  images  of  the  deposit  reveal  it  to  be  much  thicker  and  more  extensive  than  ordinary  slumping  events  due  to  earthquakes  and  other  factors.  

Figure  6:  A)  Mapping  of  units  in  the  Swatch  of  No  Ground  canyon  from  seismic  data.  The  unit  in  red  corresponds  to  the  mass  transport  deposit  that  may  be  linked  to  the  early  Holocene  megafloods.  B)  Isopach  map  of  mass  transport  deposit  that  may  be  linked  to  the  early  Holocene  megafloods.