[Advances in Ecological Research] Litter Decomposition: A Guide to Carbon and Nutrient Turnover Volume 38 || Contents

  • Published on
    27-Jan-2017

  • View
    213

  • Download
    1

Embed Size (px)

Transcript

  • ContentsPreface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

    IntroductionI. General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    A. Decomposition, Nutrient Turnover, and Global

    Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    B. Biomass Distribution between Soil and Above-Ground

    Ecosystem Compartments . . . . . . . . . . . . . . . . . . . . . . . 9

    C. The Importance of Balance . . . . . . . . . . . . . . . . . . . . . . 12

    Litter FallI. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    II. Litter Fall AmountsMain Patterns and Regulating Factors . 21

    A. Patterns on the Forest Stand Level . . . . . . . . . . . . . . . . 21

    B. Litter Fall Patterns in Scots PineA Case Study . . . . . . 23

    III. A Model for Accumulated Litter Fall, Stand Level . . . . . . . . 26

    A. General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    B. A Case Study for a Scots Pine Stand . . . . . . . . . . . . . . . 26

    IV. Main Litter-Fall Patterns on a Regional Level: Scots Pine and

    Norway Spruce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    A. Distribution of Species . . . . . . . . . . . . . . . . . . . . . . . . . 28

    B. Factors Influencing Amounts of Litter Fall. . . . . . . . . . . 28

    C. Needle Litter FallPattern and Quantities: Scots Pine

    and Other Pine Species . . . . . . . . . . . . . . . . . . . . . . . . . 29

    D. Basal Area and Canopy Cover. . . . . . . . . . . . . . . . . . . . 35

    E. Needle Litter Quantities: Norway Spruce . . . . . . . . . . . . 36

    F. Comparison of and Combination of Species . . . . . . . . . . 36

    G. Litter Fall on a Continental to Semiglobal Scale . . . . . . . 37

    V. The Fiber Structure and OrganicChemical Components of

    Plant Litter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    A. The Fiber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    B. The OrganicChemical Components. . . . . . . . . . . . . . . . 43

  • x CONTENTSVI. Nutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    A. General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    B. The Trees Withdraw Nutrients before Shedding their

    Foliar Litter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    C. Scots PineA Case Study. . . . . . . . . . . . . . . . . . . . . . . 53

    D. Foliar Litter N Concentration in a Trans-European

    Transect, Several Species. . . . . . . . . . . . . . . . . . . . . . . . 58

    E. Several Deciduous and Coniferous Leaf Litters. . . . . . . . 58

    VII. Anthropogenic Influences . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    A. Nitrogen-Fertilized Scots Pine and Norway

    Spruce Monocultures . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    B. The EVect of Heavy Metal Pollution . . . . . . . . . . . . . . . 67VIII. Methods for Litter Collection . . . . . . . . . . . . . . . . . . . . . . . 69

    A. Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    B. Qualitative Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    Decomposers: Soil Microorganisms and AnimalsI. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    II. Communities of Soil Microorganisms and Animals . . . . . . . . 75

    A. Soil Microorganisms. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    B. Soil Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    III. The Degradation of the Main Polymers in Plant Fibers . . . . . 79

    A. Degradation of Cellulose . . . . . . . . . . . . . . . . . . . . . . . 79

    B. Degradation of Hemicelluloses . . . . . . . . . . . . . . . . . . . 82

    C. EVects of N, Mn, and C Sources on the Degradationof Lignin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    D. Degradation of Lignin . . . . . . . . . . . . . . . . . . . . . . . . . 87

    IV. Degradation of Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    A. Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    B. Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    V. Microbial Communities and the Influence of Soil Animals. . . 94

    A. Microbial Succession and Competition. . . . . . . . . . . . . . 94

    B. EVects of Soil Animals on the Decomposition Process . . 96

    Changes in Substrate Composition and Rate-Regulating

    Factors during DecompositionI. Introductory Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    II. OrganicChemical Changes During Litter Decomposition . . . 104

    A. Decomposition of Single Chemical Components and

    Groups of Compounds . . . . . . . . . . . . . . . . . . . . . . . . . 104

    B. Relationships between Holocellulose and Lignin

    during Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 114

  • CONTENTS xiIII. Concentrations of Nutrients and Heavy Metals During

    Litter Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    A. Nitrogen (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    B. Phosphorus (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    C. Sulphur (S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    D. Potassium (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    E. Calcium (Ca) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    F. Magnesium (Mg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    G. Other Metals and Heavy Metals in

    Natural Concentrations . . . . . . . . . . . . . . . . . . . . . . . . . 118

    IV. A Three-Phase Model Applied to Litter of DiVerent InitialChemical Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    A. Overview of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 119

    B. Initial Decomposition Rates for Newly Shed LitterThe

    Early Decomposition Stage . . . . . . . . . . . . . . . . . . . . . . 119

    C. Decomposition in the Late StageA Phase Regulated

    by Lignin Decomposition . . . . . . . . . . . . . . . . . . . . . . . 129

    D. Link between the Retardation of Litter Decomposition,

    Lignin Degradation Rate and N Concentration. . . . . . . . 137

    E. Comments on Spruce Needle Litter Decomposition

    versus the Three-Phase Model . . . . . . . . . . . . . . . . . . . . 139

    F. The Litter Close to the Limit Value and at a

    Humus-Near Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    G. Do Limit Values Indicate a Stop in the Litter

    Decomposition Process? . . . . . . . . . . . . . . . . . . . . . . . . 150

    V. Lignin Dynamics in Decomposing Litter. . . . . . . . . . . . . . . . 150

    A. Repeatability of Patterns in Lignin

    Concentration Changes . . . . . . . . . . . . . . . . . . . . . . . . . 150

    B. Variation in the Increase in Lignin Concentration

    Relative to DiVerent Initial Lignin Concentrations inthe Litter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    C. Variation in Lignin Concentration Increase Rate

    as Compared to DiVerent Concentrationsof N in Litter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    VI. Does the Litter Chemical Composition Influence Leaching

    of Compounds from Decomposing Litter?. . . . . . . . . . . . . . . 154

  • xii CONTENTSNitrogen Dynamics in Decomposing LitterI. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    II. The Dynamics of NitrogenThree Phases in

    Decomposing Litter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    A. General Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    B. The Leaching Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    C. Nitrogen Accumulation PhaseA Phase with a Net

    Uptake and a Retention of N . . . . . . . . . . . . . . . . . . . . 164

    D. A Release Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . 170

    E. The Final Release Phase . . . . . . . . . . . . . . . . . . . . . . . . 176

    III. Nitrogen Concentration Versus Accumulated

    Litter Mass Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    IV. Nitrogen Concentration in Litter Decomposing to the

    Limit Value and in Humus . . . . . . . . . . . . . . . . . . . . . . . . . 181

    A. Background and Some Relationships . . . . . . . . . . . . . . . 181

    B. A Model and a Case Study for Calculating N

    Concentrations in Humus . . . . . . . . . . . . . . . . . . . . . . . 182

    Origin and Structure of Secondary Organic Matter and

    Sequestration of C and NI. Introductory Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    II. Terminology According to Traditional Humus Classification

    and Chemical Composition of Secondary Organic Matter . . . 189

    III. Origin of Secondary Organic MatterSome

    Primary Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    A. Introductory Comments . . . . . . . . . . . . . . . . . . . . . . . . 194

    B. Two Traditional Scenarios . . . . . . . . . . . . . . . . . . . . . . 195

    C. Some More Recent Approaches to Humic Substances . . . 196

    IV. The Role of SOM in Soil . . . . . . . . . . . . . . . . . . . . . . . . . . 198

    V. What Litter Components May Be of Importance for the

    Formation of Humus?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

    VI. The Accumulation Rate of Humus. . . . . . . . . . . . . . . . . . . . 203

    A. Direct Measurements of Humus Accumulation. . . . . . . . 203

    B. Accumulation of HumusEstimates . . . . . . . . . . . . . . . 204

    C. How Reliable are Quantitative Estimates of

    Humus Accumulation? . . . . . . . . . . . . . . . . . . . . . . . . . 210

    VII. May All Humus be Decomposed or Just a Fraction?. . . . . . . 210

    A. DiVerent FractionsGeneral Comments . . . . . . . . . . . . 210B. Four Cases of Turnover of Humus Layers . . . . . . . . . . . 211

  • CONTENTS xiiiVIII. Humus Accumulation and Decomposition Versus The

    Concept Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

    A. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

    B. Why Is It an Error to Use the Concept Steady State? . 216

    IX. Nitrogen Sequestration to SOM . . . . . . . . . . . . . . . . . . . . . . 217

    A. We Can Estimate the Sequestration Rate of N in

    Stable Organic Matter. . . . . . . . . . . . . . . . . . . . . . . . . . 217

    B. We Can Validate the Long-Term Accumulation of

    Stable Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

    X. The Capacity of SOM to Store N. . . . . . . . . . . . . . . . . . . . . 221

    XI. Can DiVerent Capacities to Sequester N Be Related toSpecies or to The Initial Litter N Concentration? . . . . . . . . . 222

    XII. How Stable Is the Long-term N Stored in Humus? . . . . . . . . 225

    Climatic and Geographic Patterns in DecompositionI. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

    II. The Microbial Response to Temperature and Moisture . . . . . 228

    III. The Influence of Climate on Early-Stage Decomposition

    of Scots Pine Needle Litter . . . . . . . . . . . . . . . . . . . . . . . . . 229

    A. Early-Stage Decomposition at One Forest

    Stand over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

    B. Decomposition Studies in Transects with Scots

    Pine and Norway Spruce . . . . . . . . . . . . . . . . . . . . . . . . 231

    IV. The EVect of Substrate Quality on Mass-Loss Ratesin Scots Pine Transects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    A. Early Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    B. Decomposition over a Transect with Scots Pine

    MonoculturesThe Late Stage . . . . . . . . . . . . . . . . . . . 242

    C. Respiration from Humus from Scots Pine

    Stands in a Pan-European Transect . . . . . . . . . . . . . . . . 245

    V. The Influence of Climate on Decomposition of Norway

    Spruce Litter in a Transect . . . . . . . . . . . . . . . . . . . . . . . . . 250

    A. General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

    B. Climate Versus First-Year Mass Loss . . . . . . . . . . . . . . . 251

    C. Lignin-Mediated EVects on Litter DecompositionRates during Late Stages of Decomposition . . . . . . . . . . 252

    VI. A Series of Limiting Factors for Decomposing Litter. . . . . . . 255

    A. Factors Influencing Lignin Degradation Rates . . . . . . . . 255

    VII. The Influence of Climate on Decomposition of Root Litter . . 257

  • xiv CONTENTSVIII. Litter Chemical Changes as Related to Climate. . . . . . . . . . . 259

    A. Development of Litter N Concentration with

    Climate in Decomposing Scots Pine Needle

    Litter (Transects I and II) . . . . . . . . . . . . . . . . . . . . . . . 259

    B. Development of Litter Lignin Concentration with

    Climate in Decomposing Needle Litter. . . . . . . . . . . . . . 260

    Anthropogenic Impacts on Litter Decomposition and Soil

    Organic MatterI. Introductory Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

    II. Fate of Pollutants in Litter and Soil. . . . . . . . . . . . . . . . . . . 264

    A. General Background. . . . . . . . . . . . . . . . . . . . . . . . . . . 264

    B. Acidic Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

    C. Heavy Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

    D. Accumulation of Heavy Metals in Decomposing

    LitterA Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 268

    E. Sources of Heavy Metals in Litter . . . . . . . . . . . . . . . . . 271

    F. Organic Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

    III. EVects of Pollutants on Decomposition . . . . . . . . . . . . . . . . 277A. Heavy Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

    B. Acidic Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

    C. Organic Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

    D. EVects of Climate Change. . . . . . . . . . . . . . . . . . . . . . . 283E. Changes in Water Regimen . . . . . . . . . . . . . . . . . . . . . . 289

    Methods in Studies of Organic Matter DecayI. Introductory Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

    II. Incubation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

    A. In Situ (Field) Methods . . . . . . . . . . . . . . . . . . . . . . . . 292

    B. Decomposition RateLaboratory Methods . . . . . . . . . . 309

    III. Studying Chemical Changes During Decomposition . . . . . . . 314

    A. Introductory Comments . . . . . . . . . . . . . . . . . . . . . . . . 314

    B. Preparation of Samples for Chemical Analysis

    and Some Analytical Techniques . . . . . . . . . . . . . . . . . . 315

    IV. Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

    A. Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

    B. Analysis of Variance (ANOVA) . ....

Recommended

View more >