64
Point defects in graphene Eley-Rideal reaction Adsorption and reaction of hydrogen atoms on graphitic surfaces Rocco Martinazzo Dipartimento di Chimica Università degli Studi, Milano, Italy Exploring mechanisms for H 2 formation on very small carbonaceous grains and PAHs of astrophysical interest Toulouse, April 25, 2013

Adsorption and reaction of hydrogen atoms on graphitic ...users.unimi.it/cdtg/download/beamer talks/Toulouse-2013.pdf · Hypercoordination(˘) sublattice imbalance ( ) Z = 2 )E Z

  • Upload
    tranbao

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Point defects in graphene Eley-Rideal reaction

Adsorption and reaction of hydrogen atomson graphitic surfaces

Rocco Martinazzo

Dipartimento di ChimicaUniversità degli Studi, Milano, Italy

Exploring mechanisms for H2 formation on very smallcarbonaceous grains and PAHs of astrophysical interest

Toulouse, April 25, 2013

Point defects in graphene Eley-Rideal reaction

H2 in the ISM

Hydrogen is the most abundantelement of the UniverseH2 is formed on the surface ofdust grain

Hydrogen-graphite is an important model forunderstanding H2 formation in ISM

fgrain=ngrain/nH ∼ 10−12 i.e. ∼1%of ISM mass

Point defects in graphene Eley-Rideal reaction

Chemisorption and reaction

H + C2

CH2 CH2

2H + C

2 CH 2 CH

ortho dimer

single H adsortho−para conversion

Eley−Rideal

dimer recombination

diffusion

adsorption

adsorption

preferential sticking

4.75 eV

H + CH0.8 eV

0.8 eV1.9 eV

1.45 eV1.65 eV

0.2 eV

0.2 eV

1.0 eV

para dimer

R. Martinazzo, S. Casolo and L. Horneakerin Dynamics of Gas-Surface Interactions, Ed.s R. D. Muino and H. F. Busnengo, Springer (2013)

Point defects in graphene Eley-Rideal reaction

Technology: graphene physics and devices

Graphene is a true 2D-electron gas (2DEG) system withpseudo-relativistic charge-carriers

MIT occurs when hydrogenating graphene

..σ vs T agrees well with VRH in two dimensions

High nH : D. C. Elias et al., Science 323, 610 (2009)

Low nH : A. Bostwick et al., Phys. Rev. Lett. 103, 056404 (2009)

Point defects in graphene Eley-Rideal reaction

pz vacancies

-3 -2 -1 0 1 2 3( ε−εF ) / eV

0

15

30F

-3 -2 -1 0 1 2 3( ε−εF ) / eV

0

15

30

V2

Midgap states show up in the DOSsH, F, OH, CH3, etc. behave similarly to vacancies

Point defects in graphene Eley-Rideal reaction

Outline

1 Point defects in grapheneH adsorption and clusteringEdge effectsVacancies

2 Eley-Rideal reactionQuantum Dynamics at high EcollQuantum Dynamics at cold EcollAb initio molecular dynamics

Point defects in graphene Eley-Rideal reaction

Outline

1 Point defects in grapheneH adsorption and clusteringEdge effectsVacancies

2 Eley-Rideal reactionQuantum Dynamics at high EcollQuantum Dynamics at cold EcollAb initio molecular dynamics

Point defects in graphene Eley-Rideal reaction

Outline

1 Point defects in grapheneH adsorption and clusteringEdge effectsVacancies

2 Eley-Rideal reactionQuantum Dynamics at high EcollQuantum Dynamics at cold EcollAb initio molecular dynamics

Point defects in graphene Eley-Rideal reaction

Single-H chemisorption

1 2 3 4z / �

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

E /

eV

L. Jeloaica and V. Sidis, Chem. Phys. Lett. 300, 157 (1999)X. Sha and B. Jackson, Surf. Sci. 496, 318 (2002)

*

Point defects in graphene Eley-Rideal reaction

Midgap states

..patterned spin-density

-4 -2 0 2 4(ε−εF) / eV

-20

-10

0

10

20

DO

S

-4 -2 0 2 4(ε−εF) / eV

0

10

20

DO

S

Graphene

H-Graphene

+ H

Point defects in graphene Eley-Rideal reaction

Midgap states

Hπ ≈∑

τ,ij(tija†i,τbj,τ + tjib

†j,τai,τ ) + U

∑i ni,τni,−τ

n∗

nA + nB − 2n∗ n∗

*

Point defects in graphene Eley-Rideal reaction

Midgap states

M.M. Ugeda, I. Brihuega, F. Guinea and J.M. Gomez-Rodriguez, Phys. Rev. Lett. 104, 096804 (2010)D. Haberer et al., Phys. Rev. B 83, 165433 (2011)

Point defects in graphene Eley-Rideal reaction

Midgap states

ψ(x , y , z) ∼ 1/r

V. M. Pereira et al., Phys. Rev. Lett. 96, 036801 (2006);Phys. Rev. B 77, 115109 (2008)

Point defects in graphene Eley-Rideal reaction

Dimers

Point defects in graphene Eley-Rideal reaction

Dimers

S. Casolo, O.M. Lovvik, R. Martinazzo and G.F. Tantardini, J. Chem. Phys. 130 054704 (2009)S. Casolo, O.M. Lovvik, R. Martinazzo and G.F. Tantardini, arXiv:0808.1312 (2008)Preferential sticking: L. Hornekaer et al., Phys. Rev. Lett. 96 156104 (2006)

Point defects in graphene Eley-Rideal reaction

Dimers

[1] [2]

[1] L. Hornekaer, Z. Sljivancanin, W. Xu, R. Otero, E. Rauls, I. Stensgaard, E. Laegsgaard, B. Hammer and F.Besenbacher. Phys. Rev. Lett. 96 156104 (2006)

[2] A. Andree, M. Le Lay, T. Zecho and J. Kupper, Chem. Phys. Lett. 425 99 (2006) *

Point defects in graphene Eley-Rideal reaction

Role of edges

Point defects in graphene Eley-Rideal reaction

‘Geometric’ effect?

‘Reorganization’ energyupon binding

δE = E(PAH∗)− E(PAHeq)

E sites: δE ∼ 1.4± 0.1eV

G sites: δE ∼ 1.0± 0.1eV

...purely electronic effect

Point defects in graphene Eley-Rideal reaction

Hints from the tight-binding Hamiltonian Hπ

Shape of low-energy orbitals..from a ‘lattice renormalization’

Coordination (Z )Hypercoordination (ξ)sublattice imbalance (η)

Z = 2⇒ E

Z = 3⇒ F,G

2

1

0

*

Point defects in graphene Eley-Rideal reaction

Systems

η = 0 η 6= 0

Point defects in graphene Eley-Rideal reaction

Graphitic vs edge carbons

M. Bonfanti, S. Casolo, G. F. Tantardini, A. Ponti and R. Martinazzo, J. Chem. Phys., 135 164701 (2011)

Point defects in graphene Eley-Rideal reaction

Adsorption paths

M. Bonfanti, S. Casolo, G. F. Tantardini, A. Ponti and R. Martinazzo, J. Chem. Phys., 135 164701 (2011)

Point defects in graphene Eley-Rideal reaction

Predicting reactivity

η = 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0N pi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ebi

nd /

eV

ξ = 0

ξ = 1

ξ = 2E sites

G sites

η 6= 0

0.00 0.10 0.20N pi

0.0

1.0

2.0

3.0

4.0

Ebi

nd /

eV

0.0 2.0 4.0N pi

0.0

1.0

2.0

3.0

4.0

Ebi

nd /

eV

ξ = 2

ξ = 1 ξ = 2

E* sites

G* sites

ξ = 1ξ = 0

E sites

G sites

M. Bonfanti, S. Casolo, G. F. Tantardini, A. Ponti and R. Martinazzo, J. Chem. Phys., 135 164701 (2011)

Point defects in graphene Eley-Rideal reaction

Predicting reactivity

Point defects in graphene Eley-Rideal reaction

Spin-coupling around a carbon atom vacancy

Jahn−Teller

How the two e spins couple at a vacancy?How large is the splitting?Can that be used in applications? *

Point defects in graphene Eley-Rideal reaction

Magnetization constrained results

Partial geometrical relaxation,MS = 0,1 constrained

h

hh

triplet is stable, ω⊥ ∼ 200cm−1

singlet is bistable, ω⊥ ∼ 263cm−1

S = 1 is the ground-state up toh ∼ 0.5 Å

-1.0 -0.5 0.0 0.5 1.0 hC / Å

0.0

0.2

0.4

0.6

0.8

∆E /

eV

singlettriplet

Point defects in graphene Eley-Rideal reaction

CASPT2 results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

hC / Å

0.0

0.1

0.2

0.3

0.4

0.5

∆E /

eV

0 0.025 0.05

0.2

0.3

0.4S=0

S=1 CASPT2

DFT

Magnetization constrained DFT results are reliable

Accurate energies from CASPT2

Singlet-state has a dominant open-shell character, Ψ ∝ (σπ + πσ)(αβ − βα)

M. Casartelli, S. Casolo, G.F. Tantardini and R. Martinazzo, submitted

Point defects in graphene Eley-Rideal reaction

Hydrogenation

3.64 eV

3.45 eV

1.36 eV

3.80 eV

2.14 eV

1.38 eV

3.68 eV2.35 eV

Mono-, Three- and Penta- hydrogenated vacancies are all spin-1/2 species

Point defects in graphene Eley-Rideal reaction

Outline

1 Point defects in grapheneH adsorption and clusteringEdge effectsVacancies

2 Eley-Rideal reactionQuantum Dynamics at high EcollQuantum Dynamics at cold EcollAb initio molecular dynamics

Point defects in graphene Eley-Rideal reaction

Reaction: technicalities

Rigid, flat surface approximation1

Split-Operator with FFT along cartesiancoordinates and DBT along ρ 1

propagation in both product andreagent coordinate sets2

⇒ state-to-state, energy-resolved crosssections for all possible processes

[1] M. Persson and B. Jackson, J. Chem. Phys. 102, 1078 (1995); D. Lemoineand B. Jackson, Comput. Phys. Commun. 137, 415 (2001)[2] R. Martinazzo and G.F. Tantardini, J. Phys. Chem. A, 109 (2005) 9379; J.Chem. Phys. 124, 124703 (2006); J. Chem. Phys. 124, 124704 (2006)

Point defects in graphene Eley-Rideal reaction

Reaction: Potential Energy Surfaces

Chemisorbed target H (zeq) Physisorbed target H (zeq)

X. Sha, B. Jackson and D. Lemoine, J. Chem. Phys. 116, 7158 (2002)

Point defects in graphene Eley-Rideal reaction

I. H-chemisorbed case

Oscillations in both ER and CID xsections

Point defects in graphene Eley-Rideal reaction

I. H-chemisorbed case

Quantum vs(quasi) classicaldynamics:quantum effects

R. Martinazzo and G.F. Tantardini,J. Phys. Chem. A109, 9379; J. Chem. Phys. 124124272 (2006)

Point defects in graphene Eley-Rideal reaction

I. H-chemisorbed case

Product moleculesare internally hotInternal excitation isa steep decreasingfunction of Ecoll

Point defects in graphene Eley-Rideal reaction

I. H-chemisorbed case

Point defects in graphene Eley-Rideal reaction

II. H-physisorbed case

Point defects in graphene Eley-Rideal reaction

Reaction: technicalities (low Ecol)

Two-wavepacket approach1

Transmission-free2 absorbing potentialsand Fourier mapping3 in reagentcoordinates

In 3D Tf =25-30 ps and AP lengths ∼ 50Å inorder to get converged xsections down to∼ 10−5 eV, i.e. ∼ 0.1 K

[1] R. Martinazzo and G.F. Tantardini, J. Chem. Phys. 122, 094109 (2005)[2] D. Manolopoulos, J. Chem. Phys. 117, 9552 (2002)[3] A.G. Borisov, J. Chem. Phys. 114, 7770 (2001)

Point defects in graphene Eley-Rideal reaction

I. H-chemisorbed case

S. Casolo, M. Bonfanti, R. Martinazzo and G.F. Tantardini, J. Phys. Chem. A, 113 14545 (2009)

Point defects in graphene Eley-Rideal reaction

I. H-chemisorbed case

Point defects in graphene Eley-Rideal reaction

I. H-chemisorbed caseQCT comparison, v = 0

10-5

10-4

10-3

10-2

10-1

100

Ecoll / eV

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

σ / Α

2

100

101

102

103

104

Ecoll / K

No ZPE, Ts = 0 K

ZPE, Ts = 10 K

ZPE, Ts = 30 K

QCT, adiab

QD, diabQD, adiab

Diffuse clouds

M. Sizun, D. Bachellerie, F.Anguillon, V. Sidis Chem. Phys.Lett. 32 498 2010D. Bachellerie, M. Sizun, F.Anguillon, D. Teillet-Billy, N.Rougeau, Phys. Chem. Chem.Phys. 2715 11 2009

Point defects in graphene Eley-Rideal reaction

II. H-physisorbed case

S. Casolo, M. Bonfanti, R. Martinazzo and G.F. Tantardini, J. Phys. Chem. A, 113 14545 (2009)

Point defects in graphene Eley-Rideal reaction

H-chem vs H-phys

Cross-sections have to be corrected for the spin statistics (1/4)

Point defects in graphene Eley-Rideal reaction

H-chem vs H-phys

Cross-sections have to be corrected for the spin statistics (1/4)

Point defects in graphene Eley-Rideal reaction

Ab initio molecular dynamics

lattice corrugationlattice dynamicsdimer formation

..expensive, but solves the problem of computing and fitting amodel potential

Point defects in graphene Eley-Rideal reaction

Ab initio molecular dynamics

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Ecoll / eV

0.0

1.0

2.0

3.0

4.0

5.0

σ / A

2

Eley-Rideal

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Ecoll / eV

0.0

1.0

2.0

3.0

4.0

5.0

σ / A

2

Dimers

QM - adiab

QM - diab

AIMD

meta

ortho

paraAreou et al. J. Chem. Phys. 134, 0141701 (2011)

Zecho et al. Chem. Phys. Lett. 366, 188 (2002)

S. Casolo, G.F. Tantardini and R. Martinazzo, PNAS in press

*

Point defects in graphene Eley-Rideal reaction

Ab initio molecular dynamics

10-5

10-4

10-3

10-2

10-1

100

101

Ecoll / eV

0

1

2

3

4

σ /

A2

S. Casolo, G.F. Tantardini and R. Martinazzo, PNAS in press

Point defects in graphene Eley-Rideal reaction

Ab initio molecular dynamics

Tg = 300K , Ts = 15K

Latimer et al. Chem. Phys. Lett. 455, 174 (2008) AIMD for H/D @ 0.025 eV

Point defects in graphene Eley-Rideal reaction

Ab initio molecular dynamics

0.0 0.3 0.6 0.9 1.2

Ecoll / eV

0.0

1.0

2.0

3.0

4.0

5.0

Eav

ail /

eV

0.0 0.3 0.6 0.9 1.2

Ecoll / eV

0

2

4

6

8

10

Esurf

Eint

Etrans

< v >

< j >

..most of energy is internal, but energy transfer to the surface isconsiderable

Point defects in graphene Eley-Rideal reaction

Summary

H dimers (clusters) which minimize sublattice imbalanceform easily in the bulkEdges and vacancies are chemically active and facilesticking is possible at these sitesEley-Rideal reaction out of chemisorbed species isreasonably efficientand dominates over dimer formationProduct molecules are hot, but up to ∼ 1eV can be left onthe surface

Point defects in graphene Eley-Rideal reaction

Chemical Dynamics Theory Group

Gian Franco Tantardini

Simone Casolo

Matteo Bonfanti

http://users.unimi.it/cdtg

Simona Achilli

Marina Casartelli

Paolo Bonardi

http://users.unimi.it/cdtg

Point defects in graphene Eley-Rideal reaction

Acknowledgements

Thank you for your attention!

Physisorption

HF-MP2 / aug-cc-pVDZ + BFs / CP-BSSE

De = 39.5 meV vs De(exp)=39.2±0.5 meV

Ebarr = 4.0 meV, DT =0K = 1.7 10−4 cm2s−1

M. Bonfanti, R. Martinazzo, G.F. Tantardini and A. Ponti, J. Phys.Chem. C,111, 5825 (2007)

Exp: E. Ghio et al., J. Chem. Phys., 73, 596 (1980)*

Midgap states

Hπ ≈∑

σ,ij(tija†i,σbj,σ + tjib

†j,σai,σ)+U

∑i ni,τni,−τ

Electron-hole symmetrybi → −bi =⇒ Hπe → −Hπe

εi , |ψ(+)i 〉 =

∑k αk |ak 〉+

∑j βi |bj 〉

−εi , |ψ(−)i 〉 =

∑k αk |ak 〉 −

∑j βi |bj 〉

Midgap states

Hπ ≈∑

σ,ij(tija†i,σbj,σ + tjib

†j,σai,σ)+U

∑i ni,τni,−τ

Imbalance ruleLet nA > nB , T(nBxnA)

[0 T†T 0

] [αβ

]=

[00

]=⇒ Tα = 0 has nA − nB solutions

Midgap states

Hπ ≈∑

σ,ij(tija†i,σbj,σ + tjib

†j,σai,σ) + U

∑i ni,τni,−τ

Spin alignmentIf U > 0, the ground-state at half-filling has

S = |nA − nB |/2 = nI/2

E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

*

3-atom clusters

µ = 1µB ⇒µ = 2µB⇒ µ = 3µB

µ = 1µB ⇒ µ = 2µB ⇒ µ = 3µB

3-atom clusters

A2B A3

4-atom clusters

*

Hints from the tight-binding Hamiltonian Hπ

Hπ ≈∑

σ,ij(tija†i,σbj,σ + tjib

†j,σai,σ)+U

∑i ni,τni,−τ

t

tt

t

‘Lattice renormalization’H̃AA = HABHBA

ε̃i , |ψA,i 〉⇓

ε±i = ±√ε̃i , |ψ

(±)i 〉 = |ψA,i 〉 ± |ψB,i 〉

|ψB,i 〉 = ε̃−1/2i HBA |ψA,i 〉

Hints from the tight-binding Hamiltonian Hπ

H̃π ≈∑

i Zi t2a†i ai +∑

ij t2a†i aj

‘Lattice renormalization’H̃AA = HABHBA

ε̃i , |ψA,i 〉⇓

ε±i = ±√ε̃i , |ψ

(±)i 〉 = |ψA,i 〉 ± |ψB,i 〉

|ψB,i 〉 = ε̃−1/2i HBA |ψA,i 〉

Hints from the tight-binding Hamiltonian Hπ

H̃π ≈∑

i Zi t2a†i ai +∑

ij t2a†i aj

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20ε / eV

0

500

1000

1500

2000

ρ /

eV-1

-0.01 0 0.01 0.02 0.03 0.04

ε / eV2

0

2000

4000

6000

8000

10000

ρ /

eV

-2

HOMO LUMO

GSMO

‘Lattice renormalization’H̃AA = HABHBA

ε̃i , |ψA,i 〉⇓

ε±i = ±√ε̃i , |ψ

(±)i 〉 = |ψA,i 〉 ± |ψB,i 〉

|ψB,i 〉 = ε̃−1/2i HBA |ψA,i 〉

*

E ⊗ e JT problem

a’’

a’

a’

a’

a’1

e’ a’’2

A’1

1

2 0 2

1...(a’) e’ a’’

2σ π

A’’1

1A’’3

11E’’

1 2 1

1...(a’) e’ a’’

2 σ σ

E’’13

E’’2 1 1

1...(a’) e’ a’’

2

A’1

1A’3

11E’’

2 2 0

1...(a’) e’ a’’

2π σ

E x e

σ

σ

σ

π

σ

σ π

e’

..with interacting higher-energy statesOut-of-plane, E ′′ vibrations do not lift degeneracy at first order..

e’’

h

..but give corrections to second order, either positive ornegative *

Zecho’s kinetic experiments

*