27
ADS LNA simulation example

ADS LNA Simulation Example

Embed Size (px)

Citation preview

Page 1: ADS LNA Simulation Example

ADS LNA simulation example

Page 2: ADS LNA Simulation Example

ADS documentation

• Apart from the handed-out ADS tour: a lot more info on ADS and simulation tricks, know-how on http://www.agilent.com

Page 3: ADS LNA Simulation Example

Project data

• Project name: LNA_PRJ• Technology: CMOS 0.25 um (included via netlist

statement)• Number of networks: 9 (plus one sub-network)

• Description: Shows how to simulate all important specifications of a (common-source cascode) LNA. Output matching is not done, because after the LNA no external (50 Ohm) filter is anticipated: hence no need for matching (which cost 3 dB in gain)

Page 4: ADS LNA Simulation Example

Simulation of MOS characteristics

Set gate and drain voltage sweep limits as needed. If the transistor instance name changes (for example, MOSFET2 instead of MOSFET1), then the MOS_Gm equation must also be changed. If a library part is used on this schematic, then the MOS_Gm equation will have to be set to something like A1.Device.Gm.

FET Curve Tracer

MOSFET_NMOSMOSFET1

Width=100 umLength=0.25 umModel=nfet

DCDC1

Other=Step=0.1Stop=2.5Start=0SweepVar="VDS"

DCParamSweepSweep1

Step=0.1Stop=1.4Start=0SimInstanceName[6]=SimInstanceName[5]=SimInstanceName[4]=SimInstanceName[3]=SimInstanceName[2]=SimInstanceName[1]="DC1"SweepVar="VGS"

PARAMETER SWEEP

MeasEqnMeas1MOS_Gm=MOSFET1.Gm

EqnMeas

NetlistIncludeNetlistInclude1IncludeFiles[1]=generic025.lib

NETLIST INCLUDE

VARVAR1

VDS=0VGS=0

EqnVar

V_DCSRC1Vdc=VDS

V_DCSRC3Vdc=VGS

I_ProbeIDS

Schematic: FET_curve_tracer

Page 5: ADS LNA Simulation Example

Example of simulation output

m 1VDS=IDS.i=0.010VGS=0.900000

1.000m 1VDS=IDS.i=0.010VGS=0.900000

1.000

0.5 1.0 1.5 2.00.0 2.5

5

10

15

20

25

30

35

0

40

VGS=0.000VGS=0.100VGS=0.200VGS=0.300VGS=0.400VGS=0.500VGS=0.600VGS=0.700

VGS=0.800

VGS=0.900

VGS=1.000

VGS=1.100

VGS=1.200

VGS=1.300

VGS=1.400

VDS

IDS

.i, m

A

m 1

Device I-V Curves

m 2VDS=MOS_Gm =0.003VGS=0.500000

2.300m 2VDS=MOS_Gm =0.003VGS=0.500000

2.300

0.5 1.0 1.5 2.00.0 2.5

0.000

0.005

0.010

0.015

0.020

0.025

0.030

-0.005

0.035

VGS=0.000VGS=0.100VGS=0.200VGS=0.300VGS=0.400VGS=0.500

VGS=0.600

VGS=0.700

VGS=0.800

VGS=0.900VGS=1.000VGS=1.100VGS=1.200VGS=1.300VGS=1.400

VDS

MO

S_G

m

m 2

DC Transconducta nce ve rsus VDS

DC transfer curves to determine proper biasing voltage Vgs

Page 6: ADS LNA Simulation Example

DC and S-parameter simulation

Vdra in

Vga te

The S pa ra me te rs a re s imula te d to c he c k ga ina nd s ta bility.

I_P robeID

Te rmTe rm2

Z=300 OhmNum=2 V_DC

S RC1Vdc =2.5 V

V_DCS RC2Vdc =0.75 V

MOSFET_NMOSMOSFET1

Trise=Width=100 umLength=.25 umModel=nfet

MuP rimemup1mu_loa d=mu_prime (S )

MuP

rime

Mumu1mu_s ourc e =mu(S )

Mu

DCDC1

DC

Ne tlis tInc ludeNe tlis tInc lude 1Inc lude File s [1]=ge ne ric 025.lib

NETLIST INCLUDE

DC_Fe e dDC_Fe e d1

S _P a ra mS P 1

S te p=10 MHzS top=3.0 GHzS ta rt=10 MHz

S-PARAMETERSDC_Bloc kDCBloc k1

Te rmTe rm1

Z=50 OhmNum=1

Schematic: DC_and_Sparams

Port-impedance: “term” for Sparam simulation

Port-impedance: “term” for Sparam simulation

Stabilitymeasures

Page 7: ADS LNA Simulation Example

Example of simulation output

freq0.000 Hz

Vgate750.mV

Vdra in1.19 V

freq0.000 Hz

ID.i4.35mA Dc conditions

m2fre q=dB(S (2,1))=8.982

2.000GHzm2fre q=dB(S (2,1))=8.982

2.000GHz

0.5 1.0 1.5 2.0 2.50.0 3.0

-40

-20

0

-60

20

freq, GHz

dB(S

(1,2

))dB

(S(2

,1))

m2

freq (10.00MHz to 3.000GHz)

S(1

,1)

S(2

,2)

S-parameters

Target for S11: 50 Ohm

gain

Reverse-isolation

Page 8: ADS LNA Simulation Example

DC and S-parameter simulation: cascode LNA

Vg a te

Vin

Vdra in

Vout

T he S pa ra m e te r s a r e s im ula te d to c he c k g a ina nd s ta b ility.D A_S m ithC ha r tM a tc h1_D C _a nd_S pa r a m s _c a s c a de

D A_S m ithC ha r tM a tc h1

Z 0= 50 O hmZ l= (50 .00- j*127.5) O hmZ s = 50 O hmF = 1.9 G H z

S _P a ra mS P 1

S te p= 10 M H zS top= 3 .0 G H zS ta r t= 10 M H z

S -P A R A M E T E R S

M uP r im em up1m u_loa d= m u_pr im e (S )

MuP

rime

D CD C 1

D C

M um u1m u_s our c e = m u( S )

Mu

I_P robeID

LL1

R =L= 1.05 nH

T e r mT e r m 2

Z = 100 O hmN um = 2

M e a s E q nM e a s 1Vds _c a s c a de = Vout- Vdra in

Eq nMe a s

D C _Bloc kD C Bloc k1

T e rmT e rm 1

Z = 50 O hmN um = 1

V_D CS R C 2Vdc = 0.75 V

MO S F E T _ N MO SMO S F E T 2

T ris e =W id th =1 0 0 u mLe n g th = 0 .2 5 u mMo d e l=n fe t

MO S F E T _ N MO SMO S F E T 1

T ris e =W id th = 1 0 0 u mLe n g th = 0 .2 5 u mMo d e l= n fe t

V_D CS R C 3Vdc = 1.8 V

V_D CS R C 1Vdc = 2.5 V

D C _F e e dD C _F e e d1

N e tlis tInc ludeN e tlis tInc lude 1Inc lude F ile s [1 ]= g e ne r ic 025 .lib

N E T L IS T IN C LU D E

Smith –chart component first disabled and shorted to see un-matched S11

Cascode LNA for improved stability and isolation and less miller effect

Schematic: DC_and_Sparams_cascode

Page 9: ADS LNA Simulation Example

Example of simulation output

m3freq=S(1,1)=0.793 / -37.940impedance = Z0 * (0.983 - j2.579)

1.900GHz

freq (10.00MHz to 3.000GHz)

S(1

,1)

m3S

(2,2

)

Coil in source has right value, but inductive matching network needed

m2freq=dB(S(2,1))=9.109

2.000GHz

0.5 1.0 1.5 2.0 2.50.0 3.0

-80

-60

-40

-20

0

-100

20

freq, GHz

dB(S

(1,2

))dB

(S(2

,1))

m2

Improved isolation due to cascode stage (and thus stability)

Page 10: ADS LNA Simulation Example

DC and S-parameter simulation: cascode LNA

• Same schematic but smith-chart component enabled

Vgate

Vin

Vdrain

Vout

The S parameters are s imulated to check gainand s tability.DA_SmithChartMatch_DC_and_Sparams_cascode

DA_SmithChartMatch1

Z0=50 OhmZl=(50+j*0) OhmZs=(50+j*0) OhmF=1 GHz

S_ParamSP1

Step=10 MHzStop=3.0 GHzStart=10 MHz

S -P ARAMETERS

MuPrimemup1mu_load=mu_prime(S)

MuP

rime

DCDC1

DC

Mumu1mu_source=mu(S)

Mu

I_ProbeID

LL1

R=L=1.05 nH

TermTerm2

Z=100 OhmNum=2

MeasEqnMeas1Vds_cascade=Vout-Vdrain

E qnMeas

DC_BlockDCBlock1

TermTerm1

Z=50 OhmNum=1

V_DCSRC2Vdc=0.75 V

MOSFET_NMOSMOSFET2

Tris e =Width=100 umLe ngth=0.25 umMode l=nfe t

MOSFET_NMOSMOSFET1

Tris e =Width=100 umLe ngth=0.25 umMode l=nfe t

V_DCSRC3Vdc=1.8 V

V_DCSRC1Vdc=2.5 V

DC_FeedDC_Feed1

Netlis tIncludeNetlis tInclude1IncludeFiles[1]=generic025.lib

NETLIS T INCLUDE

Schematic: DC_and_Sparams_cascode

Page 11: ADS LNA Simulation Example

Use design guide to match input (I)

• In schematic, ADS Menu: DesignGuide→filter→smith chart control window

Set frequency at 1.9 GHzunmark: normalized impedances

Click On Zl

Fill in S11impedance

Page 12: ADS LNA Simulation Example

Use design guide to match input (II)

S1149.1-j128.95

After entry, press enter

Page 13: ADS LNA Simulation Example

Use design guide to match input (III)

Select series inductance

Move around smith chart until matched

Page 14: ADS LNA Simulation Example

Last step: build ADS circuit

Click on this button

Lumped Element Low P as s Filter Des ign As s is tantNeed Help? P leas e s ee the appropriate Des ignGuide Us er Manual

P ortP 2Num=2

LL1

R=1e-12 OhmL=10.756248 nH

P ortP 1Num=1

VARVAR1P arameters ="#1.9 GHz#50 Ohm#(49.10-j*128.9) Ohm#50 Ohm"

EqnVar

Automatically creates this sub-network

Page 15: ADS LNA Simulation Example

Repeat simulation of schematic:DC_and_Sparams_cascode

m2freq=dB(S(2,1))=13.063

2.000GHz

0.5 1.0 1.5 2.0 2.50.0 3.0

-80

-60

-40

-20

0

-100

20

freq, GHz

dB(S

(1,2

))dB

(S(2

,1))

m2

m3freq=S(1,1)=0.010 / -148.430impedance = Z0 * (0.983 - j0.010)

1.900GHz

freq (10.00MHz to 3.000GHz)

S(1

,1) m3

S(2

,2)

Improved gain (4 dB) and minimum return loss due to input matching.

Page 16: ADS LNA Simulation Example

DC and S-parameter simulation: cascode LNA

• Same schematic as previous schematic but with smith chart component replaced by coil (~ 10 nH)

Vgate

Vin

Vdra in

Vout

The S parameters a re s imulated to check ga inand s tability .

LL2

R=L=10.6 nH

S_ParamSP1

Step=10 MHzStop=3.0 GHzStart=10 MHz

S -P ARAMETERS

Mumu1mu_s ource=mu(S)

Mu

Netlis tIncludeNetlis tInclude1Inc ludeFiles [1]=generic025.lib

NETLIS T INCLUDE

MuPrimemup1mu_load=mu_prime(S)

MuP

rime

DCDC1

DC

I_ProbeID

LL1

R=L=1.05 nH

TermTerm2

Z=100 OhmNum=2

Meas EqnMeas 1Vds _cas cade=Vout-Vdrain

EqnMe a s

DC_BlockDCBlock1

TermTerm1

Z=50 OhmNum=1

V_DCSRC2Vdc=0.75 V

MOS FET_NMOSMOS FET2

Tris e=Width=100 umLe ngth=0.25 umModel=nfe t

MOS FET_NMOSMOS FET1

Tris e =Width=100 umLe ngth=0.25 umMode l=nfe t

V_DCSRC3Vdc=1.8 V

V_DCSRC1Vdc=2.5 V

DC_FeedDC_Feed1

Schematic: DC_and_Sparams_cascode_match

Page 17: ADS LNA Simulation Example

AC simulation for noise figure

N o t ic e t h a t f o r t h is f irs tn o is e s im u la t io n t h e q u a lit yf a c t o r o f t h e t w o in d u c t o rsis in if it e (o n re a lis t ic : s e ef o r a m o re re a lis t ic n o is ef ig u re LN A _ n o is e _ re a l_ Q ).

V in V g a t e

V o u t

V d ra in

N e t lis t In c lu d eN e t lis t In c lu d e 1In c lu d e F ile s [1 ]= g e n e r ic 0 2 5 . lib

NETLIS T INC LUDE

LL1

R =L= 1 . 0 n H

LL2

R =L= 1 0 . n H

Te rmTe rm 2

Z = 1 0 0 O h mN u m = 2

M O S F E T _ N M O SM O S F E T 2

T r is e =W id th = 1 0 0 u mLe n g th = 0 .2 5 u mM o d e l= n fe t

A CA C 1

In c lu d e P o rt N o is e = y e sS o r t N o is e = S o r t b y v a lu eN o is e N o d e [2 ]= "V in "N o is e N o d e [1 ]= "V o u t "C a lc N o is e = y e sS t e p = 1 0 0 MH zS t o p = 3 G H zS t a rt = 1 0 0 MH zS w e e p V a r= "f re q "

A C

M O S F E T _ N M O SM O S F E T 1

T r is e =W id th = 1 0 0 u mLe n g th = 0 .2 5 u mM o d e l= n fe t

P _ A CP O R T1

F re q = f re qP a c = p o la r(d b m t o w (0 ), 0 )Z = 5 0 O h mN u m = 1

I_ P ro b eID

D C _ B lo c kD C B lo c k 1

V _ D CS R C 2V d c = 0 . 7 5 V

V _ D CS R C 3V d c = 1 . 8 V

V _ D CS R C 1V d c = 2 . 5 V

D C _ F e e dD C _ F e e d 1

Schematic: LNA_noise

Coils are ideal here: no losses included yet

Page 18: ADS LNA Simulation Example

Example of simulation output

Eqn NF=20*log((Vout.noise/(mag(Vout/Vin)))/PORT1.t1.v.noise)

Measurement equation used to calculated the noise figure

m1freq=NF=0.703

1.900GHz

0.5 1.0 1.5 2.0 2.50.0 3.0

1

2

3

4

0

5

freq, GHz

NF

m1

Noise figure versus frequency

Page 19: ADS LNA Simulation Example

AC simulation for noise figure with realistic coils

Both Induc tors nowhave a s e rie s re s is tormaking the qua lity fac torof the c ompone nt approx7

Vin Vga te

Vout

Vdra in

LL1

R=1.7L=1 nH

LL2

R=18L=10. nH

Ne tlis tInc ludeNe tlis tInc lude 1Inc ludeFile s [1]=gene ric025.lib

NETLIST INCLUDETermTerm2

Z=100 OhmNum=2

MOSFET_NMOSMOSFET2

Trise=Width=100 umLength=0.25 umModel=nfet

ACAC1

Inc ludeP ortNois e =ye sS ortNois e=S ort by va lueNois e Node[2]="Vin"Nois e Node[1]="Vout"Ca lcNois e=yesS te p=100 MHzS top=3 GHzS ta rt=100 MHzS weepVa r="fre q"

AC

MOSFET_NMOSMOSFET1

Trise=Width=100 umLength=0.25 umModel=nfet

P _ACP ORT1

Freq=freqP ac =pola r(dbmtow(0),0)Z=50 OhmNum=1

I_P robeID

DC_Bloc kDCBlock1

V_DCS RC2Vdc =0.75 V

V_DCS RC3Vdc =1.8 V

V_DCS RC1Vdc=2.5 V

DC_Fee dDC_Fee d1

Resistance in coils set to have a quality factor of about 7

Schematic: LNA_noise_real_Q

Page 20: ADS LNA Simulation Example

Example of simulation output

m1freq=NF=1.471

1.900GHzm1freq=NF=1.471

1.900GHz

0.5 1.0 1.5 2.0 2.50.0 3.0

2

3

4

1

5

fre q, GHz

NF

m1

Notice tha t the nois e figurehas degraded s ignificantlydue to the the rmal nois e of the s e rie s re s is tancesin the inductors

Page 21: ADS LNA Simulation Example

Example of sweeping a parameter

Vin Vga te

Vout

Vdra in

Netlis tInc ludeNetlis tInc lude1Inc ludeFile s [1]=gene ric025.lib

NETLIST INCLUDE

P aramS weepS weep1

S tep=0.5e-9S top=15e -9S ta rt=1e -9S imIns tanceName[6]=S imIns tanceName[5]=S imIns tanceName[4]=S imIns tanceName[3]=S imIns tanceName[2]=S imIns tanceName[1]="AC1"S weepVar="s ource ind"

PARAMETER SWEEPLL2

R=L=s ource ind

VARVAR1s ource ind=1e -9

E qnVar

LL1

R=L=1.0 nH

TermTerm2

Z=100 OhmNum=2

MOSFET_NMOSMOSFET2

Tris e =Width=100 umLe ngth=0.25 umMode l=nfe t

ACAC1

Inc ludeP ortNois e=yesS ortNois e=S ort by va lueNois eNode [2]="Vin"Nois eNode [1]="Vout"CalcNois e=yesS tep=100 MHzS top=3 GHzS ta rt=100 MHzS weepVar="freq"

AC

MOSFET_NMOSMOSFET1

Tris e =Width=100 umLe ngth=0.25 umMode l=nfe t

P _ACP ORT1

Freq=freqP ac=pola r(dbmtow(0),0)Z=50 OhmNum=1

I_P robeID

DC_BlockDCBlock1

V_DCS RC2Vdc=0.75 V

V_DCS RC3Vdc=1.8 V

V_DCS RC1Vdc=2.5 V

DC_FeedDC_Feed1 Parameter

sweep block included

Schematic: LNA_noise_sweep

Matching inductor is varied from 1 to 15 nH(coils have infinite Q)

Page 22: ADS LNA Simulation Example

Example of simulation output

m1freq=NF=0.669sourceind=1.100000E-8

1.900GHz

0.5 1.0 1.5 2.0 2.50.0 3.0

2

4

6

0

8

freq, GHz

NF

m1

Lg ~ 10.7 nH close to the optimum value

Page 23: ADS LNA Simulation Example

Gain and 1dB compression simulation

Vin Vg a te

Vou t

Vdra in

Me a s E q nMe a s 1Vo u t_ dBm =d Bm (Vou t[1 ])

Eq nMe a s

VARVAR 1R F _powe r=-3 5

Eq nVa r

H a rm o n ic Ba la nc eH B1

S te p =1S top =10S ta rt=-50S we e pVa r="R F _po we r"O rd e r[1 ]=3F re q [1 ]=1 .9 G H z

HAR MO NIC BALANCE

V_D CS R C 1Vdc =2 .5 V

V_D CS R C 3Vdc =1 .8 V

N e tlis tInc lud eN e tlis tInc lud e 1In c lude F ile s [1 ]=ge n e ric 0 25 . lib

NE T LIS T INCLUDE

P _1 ToneP O R T1

F re q=1 .9 G H zP =d bm tow(R F _p owe r)Z =5 0 O h mN um =1

LL1

R =1 .7L=1 nH

LL2

R =18L=1 0 . nH

Te rmTe rm 2

Z =1 00 O hmN um =2

MOS FE T _ NMOSMOS FE T 2

T ris e =W id th =1 0 0 u mLe n g th =0 .2 5 u mMo d e l=n fe t

MOS FE T _ NMOSMOS FE T 1

T ris e =W id th =1 0 0 u mLe n g th =0 .2 5 u mMo d e l=n fe t

I_ P robeID

D C _Bloc kD C Bloc k 1

V_D CS R C 2Vdc =0 .75 V D C _F e e d

D C _F e e d1

From sources-freq. domain: P_1 tone source.RF_power is the sweep variable

Schematic: LNA_1dB_by_power_sweep

Initialization by means of Var (main menu) needed

HBcontroller

Meas eq.

Page 24: ADS LNA Simulation Example

Example of simulation output

Equation defining the line

Eqn Line =RF_power+dB_ga in[0]

m4ind De lta =de p De lta =-1.025de lta mode ON

0.000

m3RF_powe r=Line =8.016

-7.000

m4ind De lta =de p De lta =-1.025de lta mode ON

0.000

m3RF_powe r=Line =8.016

-7.000

-40 -30 -20 -10 0-50 10

-30

-20

-10

0

10

20

-40

30

RF_power

Vou

t_dB

m

m4Li

ne

m3

m1RF_power=Vout_dBm=9.265

-4.000

-40 -30 -20 -10 0-50 10

-30

-20

-10

0

10

-40

20

RF_power

Vou

t_dB

m

m1

Voltage gain ~ 15 dB

Input power for 1 dB compression

Page 25: ADS LNA Simulation Example

Simulation of IIP3

Vin Vg a te

Vd ra in

O rd e r 4 me a n s th a t Fre q [1 ] w illb e c a lc u la te d w ith 4 h a rmo n ic s

O u tp u t IP3 (O IP3 )

1 5 is th e s ma ll s ig n a l p o w e rg a in in d B o f th e LN A, w h ic h is ta k e n fro mth e 1 d B c o mp re s s io n s imu la tio ns c h e ma tic .

In p u t IP3 (IIP3 )To c a lc u la te th e in p u t IP3th e g a in o f th e LN A is n e e d e d

Vo u t

VARVAR 1

R F_ p o w e r=-3 5R F_ fre q =1 .9 G H zs p a c in g =1 MH z

E q nVa r

P_ n To n ePO R T1

P[2 ]=d b mto w (R F_ p o w e r)P[1 ]=d b mto w (R F_ p o w e r)Fre q [2 ]=R F_ fre q - s p a c in g /2Fre q [1 ]=R F_ fre q + s p a c in g /2Z=5 0 O h mN u m=1

H a rmo n ic Ba la n c eH B1

O rd e r[2 ]=4O rd e r[1 ]=4Fre q [2 ]=R F_ fre q -s p a c in g /2Fre q [1 ]=R F_ fre q +s p a c in g /2

HARMO NIC BALANCE

IP3 o u tip o 2ip o _ lo w e r=ip 3 _ o u t(Vo u t,{1 ,0 },{-1 ,2 },5 0 )

P0

Pin

IP 3out

IP3 o u tip o 1ip o _ u p p e r=ip 3 _ o u t(Vo u t,{1 ,0 },{2 ,-1 },5 0 )

P0

Pin

IP 3out

IP3 inIP3 in 1IP3 in 1 =ip 3 _ in (Vo u t,1 5 ,{1 ,0 },{2 ,-1 },5 0 )

P0

Pin

IP 3in

N e tlis tIn c lu d eN e tlis tIn c lu d e 1In c lu d e File s [1 ]=g e n e r ic 0 2 5 .lib

NE TLIS T INCLUDE

Me a s Eq nMe a s 2to n e s =[{1 ,0 },{0 ,1 },{2 ,-1 },{-1 ,2 }]

E q nM e a s

LL1

R =1 .7L=1 n H

Me a s Eq nMe a s 1Vo u t_ d Bm=d Bm(Vo u t[1 ])

E q nM e a s

MOS FE T_NMOSMOS FE T1

Tris e=W idth=100 umLength=0.25 umModel=nfe tL

L2

R =1 8L=1 0 .6 n H

V_ D CSR C 1Vd c =2 .5 V

V_ D CSR C 3Vd c =1 .8 V

Te rmTe rm2

Z=1 0 0 O h mN u m=2

MOS FE T_NMOSMOS FE T2

Tris e=W idth=100 umLength=0.25 umModel=nfet

I_ Pro b eID

D C _ Blo c kD C Blo c k 1

V_ D CSR C 2Vd c =0 .7 5 V D C _ Fe e d

D C _ Fe e d 1

Schematic: LNA_IIP3

From sources-freq. domain: P_ntone source.Two tones are defined

Predefined equationsDef. of tones of interest

Page 26: ADS LNA Simulation Example

Mix –function in ADS

• Purpose: Returns a component of a spectrum based on a vector of mixing indices.

• Synopsis mix(xOut, harmIndex{, Mix}) – where – xOut is a voltage or a current spectrum. – harmIndex is the desired vector of harmonic frequency

indices (mixing terms). – Mix is a variable consisting of all possible vectors of

harmonic frequency indices (mixing terms) in the analysis.• Example: y = mix(vOut, {2, -1})

Page 27: ADS LNA Simulation Example

Example of simulation output

IP 3in11.333

ipo_lower16.332

ipo_upper16.333

Notice tha t the upper and lower third orde r inte rceptpoints a re a lmos t symmetrica l (ipo_uppe r and ipo_lower). The input IP 3 (IP 3in1) is s imply 15 dBlower (the small s igna l ga in) than the output IP 3

freq

0.0000 Hz1.000MHz2.000MHz1.898GHz1.899GHz1.901GHz1.902GHz3.798GHz3.799GHz3.800GHz3.801GHz3.802GHz5.698GHz5.699GHz5.700GHz5.702GHz7.598GHz7.599GHz7.600GHz7.601GHz7.602GHz

MixMix(1) Mix(2)

012

-1012

-10123012301234

0-1-2210

-13210

-1321043210

This is the so-ca lled mix table of the ha rmonic ba lance s imula tion. Number 1 represents the RF tone (with spacing). Zero means tha t notone is present (DC). And two represents two times the RF s imula tion tone (of Freq[1] or Freq[2]).

m1freq=dBm(mix(Vout,tones))=-19.934

1.899GHz

m2freq=dBm(mix(Vout,tones))=-19.939

1.901GHz

1.8990 1.8995 1.9000 1.9005 1.90101.8985 1.9015

-80

-60

-40

-20

-100

0

freq, GHz

dBm

(mix

(Vou

t,ton

es)) m1 m2