170
ABOUT TECNOCOMMERZ .................................................................. 1 COMPANY AIMS AND PHILOSOPHY .................................................... 2 MATERIALS ..................................................................................... 3 PRODUCTS, WE SUPPLY ................................................................... 4 PIPES DIMENSIONS AND WEIGHTS ..................................................... 5 COMPARISION OF INTERNATIONAL STANDARDS FOR STAINLESS STEEL ... 6 NICKEL ALLOYS CORROSION DATA ..................................................... 7 PRODUCTS ACCORDING TO ASTM CODE ............................................. 8 MAXIMUM RECOMMENDED PRESSURES FOR SEAMLESS/STAINLESS STEEL TUBES ................................................. 9 SWG & BWG EQUIVALENTS IN INCHES AND MILLIMETRES .................... 10 WEIGHT OF FITTINGS ........................................................................ 11 MATERIALS INFORMATION ................................................................. 12 CONTENTS CATALOGO 14/11/05 13:35 Página 1

Aceros y Aleaciones_TUBOS

Embed Size (px)

Citation preview

Page 1: Aceros y Aleaciones_TUBOS

ABOUT TECNOCOMMERZ .................................................................. 1

COMPANY AIMS AND PHILOSOPHY .................................................... 2

MATERIALS ..................................................................................... 3

PRODUCTS, WE SUPPLY ................................................................... 4

PIPES DIMENSIONS AND WEIGHTS ..................................................... 5

COMPARISION OF INTERNATIONAL STANDARDS FOR STAINLESS STEEL ... 6

NICKEL ALLOYS CORROSION DATA ..................................................... 7

PRODUCTS ACCORDING TO ASTM CODE ............................................. 8

MAXIMUM RECOMMENDED PRESSURES FOR

SEAMLESS/STAINLESS STEEL TUBES ................................................. 9

SWG & BWG EQUIVALENTS IN INCHES AND MILLIMETRES .................... 10

WEIGHT OF FITTINGS ........................................................................ 11

MATERIALS INFORMATION ................................................................. 12

CONTENTS

CATALOGO 14/11/05 13:35 Página 1

Page 2: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 2

Page 3: Aceros y Aleaciones_TUBOS

3

INTRODUCTION

Let us introduce you the ACEQUISA-TECNOCOMMERZ group.

– Since 1983, year that Acequisa was founded, we have been a specialist stockistand supplier of bars, plates, flanges, tubes and fittings in special stainless steels,superalloys of nickel, Cr and Mo, Titanium, tantalum, cupronickels and other spe-cial alloys. Developing our activity mainly throught the Iberian Peninsula (Spainand Portugal).

– In 2005, as an answer to a global demand, Tecnocommerz is created to exportmore than 20 years experience in this field to international markets.

v

TECNOCOMMERZ

Ctra. Madrid-Irún, Km. 245 • Naves Radial I, 2A/2B

09007 BURGOS

Telph. 00 34 947 47 51 48 • Fax 00 34 947 47 51 49

E-mail: [email protected]@tecnocommerz.com

ABOUT TECNOCOMMERZ

1

CATALOGO 14/11/05 13:35 Página 3

Page 4: Aceros y Aleaciones_TUBOS

4

Exit

2Ru

bena

-Vill

afría

Toll

Mot

orw

ay

HO

TEL

Vía

Serv

icio

Traf

ficlig

hts

Cas

taña

res

Toll

Mot

orw

ay

Villa

toro

Villi

mar

Roun

dabo

ut

Vía

Serv

icio

Tow

ards

N-1

Vito

ria-F

ranc

ia

Vill

alvi

lla

Dire

cció

nSa

ntan

der

Tow

ards

Mad

rid

Tow

ards

Vito

ria-F

ranc

iaTo

war

dsVi

toria

-Fra

ncia

N-6

23

N-6

20N

-1

N-1

Dire

cció

nSa

ntan

der

Dire

cció

nM

adrid

Dire

cció

nVi

toria

-Fra

ncia

Dire

cció

nVi

toria

-Fra

ncia

N-1

20LE

ÓN

-BU

RGO

S

N-6

20BU

RGO

S-VA

LLA

DO

LID

N-6

20M

OTO

RWAY

BURG

OS-

VALL

AD

OLID

N-6

23SA

NTA

ND

ER-B

URG

OS

N-1

IRÚ

N-M

AD

RID

AU

TOPI

STA

BURG

OS-

FRA

NC

IA

N-1

20BU

RGO

S-LO

GRO

ÑO

N-1

MA

DRI

D-IR

ÚN

Tow

ards

N-6

23Sa

ntan

der

Tow

ards

Cen

troU

rban

o

Tow

ards

Vito

ria-F

ranc

ia

Tow

ards

N-6

23Sa

ntan

der

Tow

ards

City

Cen

tre

Tow

ards

Vito

ria-F

ranc

ia

TEC

NO

CO

MM

ERZ

HO

WTO

REA

CH

US

BYRO

AD

:BU

RGO

S

CATALOGO 14/11/05 13:35 Página 4

Page 5: Aceros y Aleaciones_TUBOS

GLOSSARY

v Annealed:Metallurgical condition for products having undergone a special heat treatment that allows moresophisticated metalworking techniques such as certain types of machining of forming.In the case of austenitic and austeno-ferritic steels, this state corresponds to the solution annea-led state.

v Descaled rolled bars:Hot processed peeled bars: 1X finishing as per EN 10088-3 (1C for the non-peeled black bars).

v Ground bars:Cold processed bars obtained by grinding; 2B an 2G finishing as per EN 10088-3 for the toleran-ces h9 and <h8 respectively.

v Heat treated:Metallurgical condition obtained by quenching + tempering.

v Material number:No. of the steel registered with the European Registration Office. The number is found in the STAH-LEISENLIST Nº 9.

v Mechanical properties:q 1 MPa = 1 N/mm2.q For profiles and bars with a thickness < 35 mm having undergone a final cold run, the maximum

HB hardness values or the maximum tensile strength values can be respectively increased:4 by 60 units and 150 MPa, and the minimum elongation value can be decreased to 10%, for

ferritic and martensitic steels.4 by 100 units and 200 MPa, and the minimum elongation value can be decreased to 20%, for

austenitics.EN 10088-3.

v Bright drawn bars:Cold processed bars obtained by drawing (cold deformation): 2H finishing as per EN 10088-3.

v Bright turned bars:Cold processed bars obtained by turning and roller burnishing: 2D finishing as per EN 10088-3.

v Treated and overaged, or precipitation hardened:Metallurgical condition obtained by quenching and tempering performed on precipitation hardeninggrades.

v Treated or solution annealed:Metallurgical condition obtained by quenching and reserved for precipitation hardening grades(4542 - ex F16 PH).It is mandatory that the material undergo tempering before its final use.

v PRECISION DRAWN/TURNED BARS:Products that are specially processed and manufactured to meet the increasingly strict requirementsof the screw cutting industry. See definition in the chapter entitled «Factory manufacturing possibilities».An manufacturing process that considerably improves the machinability of the grades without dete-riorating other properties (corrosion, Mechanical properties), which remain in complete conformitywith standards.

PRESENTATION

5

CATALOGO 14/11/05 13:35 Página 5

Page 6: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 6

Page 7: Aceros y Aleaciones_TUBOS

COMPANY AIMS AND PHILOSOPHY

7

THE TWO ESSENTIALBUSINESS PRINCIPLES

OUR PHILOSOPHY = WORK HARD TO REACH THESE TWOPILLARS

THE

CLI

ENT

SATI

SFA

CTI

ON

THE

ECO

NO

MIC

EFFI

CIE

NCY

2

CATALOGO 14/11/05 13:35 Página 7

Page 8: Aceros y Aleaciones_TUBOS

QUALITY:

All products are certified andguaranteed according to ASTM,

DIN, AFNOR, BS…

v

Trazability in all our products isassured.

8

CATALOGO 14/11/05 13:35 Página 8

Page 9: Aceros y Aleaciones_TUBOS

MATERIALS, GRADES AVAILABLE

UNS Material W.Nr, or…S31008 AISI 310S 1,4841S31603 AISI 316L 1,4404S31703 AISI 317L 1,4438S31726 AISI 317LMN 1,4439S32100 AISI 321 1,4541S32109 AISI 321 H 1,4878S34700 AISI 347 1,4550S41000 AISI410 1,4006S43100 AISI431 1,4057

9

S31254 S31254 1,4547; F44N08367 AL-6XNN08904 904L 1,4539

S31803 Duplex S31803 1,4462; F51S32550 Ferralium 255® 1,4507; F61S32760 Super duplex F55 1,4501S32750 Super duplex S32750 1,4410; F3

S17400 17-4PH® 1,4542; A564 Gr 630N08020 20Cb3® Alloy 20; 2,4660N10675 Hastelloy B3® 2,4617N06022 Hastelloy C22® 2,4602N10276 Hastelloy C276® 2,4819N06455 Hastelloy C4® 2,4610N08028 Incoloy 028® 1,4563; Sanicro28N08330 Incoloy 330® 1,4333N08800 Incoloy 800® 1,4876N08810 Incoloy 800H® 1,4876; 1,4958N08811 Incoloy 800HT® 1,4876; 1,4959N08825 Incoloy 825® 2,4858S66286 Incoloy A286® 1,4980; A638Gr 660N08330 Incoloy DS® 1,4864N06600 Inconel 600® 2,4816N06601 Inconel 601® 2,4851N06625 Inconel 625® 2,4856N07718 Inconel 718® 2,4668N07750 Inconel X750® 2,4669N04400 Monel 400® 2,4360N05500 Monel K500® 2,4375

1º Austenitic stainless steels:

2º Super austenitic stainless steels:

3º Steels type Duplex and Super Duplex (Ferretic-Austenitic):

4º Super Alloys Cr, Ni, Mo,…:

5º Nickels:

6º Exotic metals:

N02200 Niquel 200 2,4060; 2,4066N02201 Niquel 201 2,4061; 2,4068

NiobiumTantalo

N50250..... Titanio Gr 1, 2 y 7Zirconium

3

CATALOGO 14/11/05 13:35 Página 9

Page 10: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 10

Page 11: Aceros y Aleaciones_TUBOS

PRODUCTS, we supply:

11

Round bars

Hexagon bars

Bored bars

Forged bars

Blanks and rings

Tube plates

Tubes

Plates

Flanges

Elbows

Tess

Reductions

Caps

…………

– Plates– Plates cutting according to your needs

Welded and seamless tubes

Fittings, welded and seamless

4

CATALOGO 14/11/05 13:35 Página 11

Page 12: Aceros y Aleaciones_TUBOS

12

Flanges ANSI-DIN – Bars (rounds, square angles…)– Profiles according to your needs

Bolting according to your drawings

Fittings

PRODUCTS, we supply:

CATALOGO 14/11/05 13:35 Página 12

Page 13: Aceros y Aleaciones_TUBOS

13

We cut according to your needs

– Flanges– Forgings– Special forgings

Fittings according to your drawings

Welding wire and electrodes

PRODUCTS, we supply:

CATALOGO 14/11/05 13:35 Página 13

Page 14: Aceros y Aleaciones_TUBOS

14

Forget fittings

Collars

Wire mesh

PRODUCTS, we supply:

CATALOGO 14/11/05 13:35 Página 14

Page 15: Aceros y Aleaciones_TUBOS

15

Special flanges

Seamless and welded fittings

PRODUCTS, we supply:

CATALOGO 14/11/05 13:35 Página 15

Page 16: Aceros y Aleaciones_TUBOS

16

Wide range of products

Parts according to your needs

PRODUCTS, we supply:

CATALOGO 14/11/05 13:35 Página 16

Page 17: Aceros y Aleaciones_TUBOS

PIPE DIMENSIONS IN MM AND WEIGHTS IN KG.ASME B36.B36.10

17

DN NPS O.D. 5 S 5 10 S 10 20 30 STD 40 60 XS 80 100 120 140 160 XXS(MM) (INCH) (MM) 40 S 80 S

– 1/8 10,3 1,24 1,45 1,73 2,410,3 0,3 0,4 0,5

– 1/4 13,7 1,65 1,85 2,24 3,020,5 0,5 0,6 0,8

10 3/8 17,1 1,65 1,85 2,31 3,200,6 0,7 0,9 1,1

15 1/2 21,3 1,65 2,11 2,41 2,77 3,73 4,75 7,470,8 1,0 1,1 1,3 1,6 2,0 2,6

20 3/4 26,7 1,65 2,11 2,41 2,87 3,91 5,56 7,821,0 1,3 1,4 1,7 2,2 2,9 3,7

25 1 33,4 1,65 2,77 2,90 3,38 4,55 6,35 9,091,3 2,1 2,2 2,5 3,3 4,3 5,5

32 1 1/4 42,2 1,65 2,77 2,97 3,56 4,85 6,35 9,701,7 2,7 2,9 3,4 4,5 5,7 7,9

40 1 1/2 48,3 1,65 2,77 3,18 3,68 5,08 7,14 10,151,9 3,2 3,5 4,1 5,5 7,4 9,7

50 2 60,3 1,65 2,77 3,18 3,91 5,54 8,74 11,072,4 4,0 4,5 5,5 7,6 11,1 13,4

65 2 1/2 73,0 2,11 3,05 4,78 5,16 7,01 9,53 14,023,8 5,3 8,0 8,6 11,4 14,0 20,4

80 3 88,9 2,11 3,05 4,78 5,49 7,62 11,13 15,244,6 6,5 9,9 11,3 15,3 21,4 27,7

– 3 1/2 101,6 2,11 3,05 4,78 5,74 8,085,2 7,4 11,4 13,6 18,6

100 4 114,3 2,11 3,05 4,78 6,02 8,56 11,13 13,49 17,125,8 8,4 12,9 16,1 22,3 28,3 33,5 41,0

125 5 141,3 2,77 3,40 6,55 9,53 12,70 15,88 19,059,5 11,6 21,8 31,0 40,3 49,1 57,4

150 6 168,3 2,77 3,40 7,11 10,97 14,27 18,26 21,9511,3 13,8 28,3 42,6 54,2 67,6 79,2

200 8 219,1 2,77 3,76 6,35 7,04 8,18 10,31 12,70 15,09 18,26 20,62 23,01 22,2314,8 20,0 33,3 36,8 42,6 53,1 64,6 75,9 90,4 100,9 111,3 107,9

250 10 273,0 3,40 4,19 6,35 7,80 9,27 12,70 12,70 15,09 18,26 21,44 25,40 28,58 25,4022,6 27,8 42,4 51,8 60,3 81,6 81,6 96,0 114,8 133,1 155,2 172,3 155,2

300 12 323,8 3,96 4,57 6,35 8,38 9,53 10,31 14,27 12,70 17,48 21,44 25,40 28,58 33,32 25,4031,3 36,0 49,7 65,2 73,9 79,7 109,0 97,4 132,1 159,9 187,0 208,1 238,8 187,0

350 14 355,6 3,96 4,78 6,35 7,92 9,53 9,53 11,13 15,09 12,70 19,05 23,83 27,79 31,75 35,7134,4 41,3 54,7 67,9 81,3 81,3 94,6 126,7 107,4 158,1 195,0 224,7 253,5 281,7

400 16 406,4 4,19 4,78 6,35 7,92 9,53 9,53 12,70 16,66 12,70 21,44 26,19 30,96 36,53 40,4941,6 47,3 62,6 77,8 93,3 93,3 123,3 160,1 123,3 203,5 245,6 286,6 333,2 365,4

450 18 457 4,19 4,78 6,35 7,92 11,13 9,53 14,27 19,05 12,70 23,83 29,36 34,93 39,67 45,2446,8 53,3 70,6 87,7 122,4 105,2 155,8 205,7 139,2 254,6 309,6 363,6 408,3 459,4

500 20 508 4,78 5,54 6,35 9,53 12,70 9,53 15,09 20,62 12,70 26,19 32,54 38,10 44,45 50,0159,3 68,6 78,6 117,2 155,1 117,2 183,4 247,8 155,1 311,2 381,5 441,5 508,1 564,8

– 22 559 4,78 5,54 6,35 9,53 12,70 9,53 22,23 12,70 28,58 34,93 41,28 47,63 53,9865,2 75,5 86,5 129,1 171,1 129,1 299,3 171,1 373,8 451,5 527,0 600,6 672,3

600 24 610 5,54 6,35 6,35 9,53 14,27 9,53 17,48 24,61 12,70 30,96 38,89 46,02 52,37 59,5482,5 94,5 94,5 141,1 209,6 141,1 255,4 355,3 187,1 442,1 547,7 640,0 720,2 808,2

NOTE: Green values are wall thicknesses in mm, other values are weights in kg/m.Specific steel weight used for calculation is 8.0.Titanium weight is approximately 57% of the table values.DN = Nominal Diameter. SI description of pipe size in mm.NPS = Nominal Pipe Size - description of pipe size in inch.O.D = Outside Diameter of pipe.Sch5S and 10S do not permit threading according to ANSI B1.20.1.Sch40S and 80S in the table are applicable up to and including 12”.

IDEN

TIC

AL

TO5

S IDEN

TIC

AL

TO1

0S

IDEN

TIC

AL

TOST

D-4

0S

IDEN

TIC

AL

TOX

S-8

0S

5

CATALOGO 14/11/05 13:35 Página 17

Page 18: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 18

Page 19: Aceros y Aleaciones_TUBOS

COMPARISON OF INTERNATIONAL STANDARDS FORSTAINLESS STEEL

Werkstoff-Nr. DIN. AISI. UNS. AFNOR. BS. JIS SS. GOST

1.4000 X6Cr13 403(410S) S 41008 Z6C13 403 S17 SUS 403 2301 08Ch13(X7Cr13)

1.4002 X6CrAl13 405 S40500 Z6CAI13 405 S17 SUS 405 08Ch11NYU(X7CrAl13)

1.4006 X10Cr13 410 S 41000 Z12C13 410 S21 SUS 410 2302 12Ch131.4016 X6Cr17 430 S43000 Z8C17 430 S15 SUS 430 2320 12Ch17

(X8CR17) 430 S171.4021 X20Cr13 420 S42000 Z20C13 420 S29 SUS 420J1 2303 20Ch13

420 S37 SUS 420J2420 S45

1.4024 X15Cr13 410 S 41000 – 420 S29 SUS 410J1 – –410 S21

1.4028 X30Cr13 420 S 42000 Z30C13 420 S45 SUS 420J2 2304 30Ch131.4031 X38Cr13 420 S 42000 Z40C14 – SUS 420J2 2304 40Ch13

(X40Cr13)1.4034 X46Cr13 420 S42000 Z40C14 420 S45 – – 40Ch13

Z38C13M1.4057 X20CrNi172 431 S43100 Z15CN 16-02 431 S29 SUS 431 2321 20Ch17N2

(X22CrNi17)1.4510 X6CrTi17 XM8 – Z8CT17 – SUS 430LX – 08Ch17T

(X8CrTi17) 430Ti1.4512 X6CrTi12 409 S 40900 Z6CT12 409 S19 SUH 409 – –

409 S171.4301 X5CrNi1810 304/304H S 30400 Z6CN18-09 304 S31 SUS 304 2332 08Ch18N10

(X5CrNi189)1.4305 X10CrNiS189 303 S 30300 Z10CNF 18-09 303 S21 SUS 303 2346 –

(X12CrNiS188)1.4306 X2CrNi1911 304L S 30403 Z2CN18-10 304 S12 SCS 19 2352 03Ch18N11

(X2CrNi 189) Z3CN19-10M 304 C12 SUS304L 2333(G-X2Cr189) Z2CN18-09 304 S11

1.4310 X12CrNi177 301 S 30100 Z12CN17-07 301 S21 SUS 301 – –Z12Cn18-07

1.4311 X2CrNiN 1810 304LN S 30453 Z2CN18-10Az 304 S62 SUS 304LN 2371 –1.4401 X5CrNiMo17122 316 S 31600 Z6CND17-11 316 S16 SUS 316 2347 –1.4404 X2CrNiMo17132 316L S 31603 Z2CND 18-13 316 S14 SUS 316L 2348 –

(X2CrNiMo1810) Z2CND17-12(G-X2CrNiMo1810)

1.4429 X2CrNiMoN17133 316LN S 31653 Z2CND 17-13 – SUS 316LN 2375 –(X2CrNiMoN1813)

1.4435 X2CrNiMo18143 316L S 31603 Z2CND 17-13 316 S11 SCS 16 2353 03Ch17N14M2(X2CrNiMo1812) 316 S12 SUS 316L

316 S131.4436 X5CrNiMo17133 316 S 31600 Z6CND 17-12 316 S16 SUS 316 2343 –

(X5CrNiMo1812) 316 S331.4438 X2CrNiMo18164 317L S 31703 Z2CND 19-15 317 S12 SUS 317L 2367 –

(X2CrNiMo1816)1.4439 X2CrNiMoN17135 317LNM S 31726 Z2CND 19-15 317 S16 – – –1.4449 X5CrNiMo1713 317 – – 317 S16 SUS 317 – –1.4465 X1CrNiMoN25252 – N 08310 – – – – –1.4505 X5CrNiMoCuNb2018 – – – – – – 07Ch17N20M2D2T1.4521 X2CrMoTi182 440 S 44400 – – – 2326 –1.4529 X1NiCrMoCuN25206 – N 08925 – – – – –

19

6

CATALOGO 14/11/05 13:35 Página 19

Page 20: Aceros y Aleaciones_TUBOS

Werkstoff-Nr. DIN. AISI. UNS. AFNOR. BS. JIS SS. GOST

1.4539 X1NiCrMoCu25205 904L N 08904 Z1NCDU25-2004 – – 2562 –1.4541 X6CrNiTi1810 321 S 32100 Z6CNT18-10 321 S12 SUS 321 2337 1Ch18N12T

(X10CrNiTi189) 321 S20(321 S31)

1.4550 X6CrNiNb1810 347 S 34700 Z6CNNb 18-10 347 S17 SUS 347 2338 08Ch 18N12B(X10CrNiNb189) 347 S31

1.4558 X2NiCrAITi3220 – N 08800 – – – – –1.4563 X1NiCrMoCuN31274 – N 08028 Z1NCDU31273Az – – – –1.4571 X6CrNiMoTi17122 316Ti S 31635 Z6CNDT 17-12 320 S31 – 2350 10Ch17N13M2T

(X10CrNiMoTi1810) 320 S171.4580 X6CrNiMoNb17122 316 Cb – Z6CNDNb17-12 – – – 08Ch16N13M2B

(X10CrNiMoNb 1810) Z6CNDNb19-131.4583 X10CrNiMoNb1812 318 – – – – – –1.4586 X5CrMoCuNb2218 – – – – – – –1.4335 X1CrNi2521 310LC – Z2CN25-20 – – – –1.4713 X10CrAl7 – – Z8CA7 – – – –1.4718 X45CrSi93 HNV3 – Z45CS9 401 S45 SUH 1 – –1.4724 X10CrAl13 (405) – Z10C13 403 S17 – – –1.4742 X10CrAl18 (430) – Z10CAS18 430 S15 SUS 430 – –

SUH 211.4749 X18CrN28 446-1 – – – – – Ch251.4762 X10CrAl24 (446) – Z10CAS24 – – – –1.4821 X20CrNiSi254 327 – Z20CNS25-04 – – – –1.4828 X15CrNiSi2012 309 – Z15CNS20-12 309 S24 SUH 309 – Ch24N12S11.4833 X7CrNi2314 309S – Z15CN24-13 – SUS 3095 – –1.4841 X15CrNiSi2520 314/310 – Z12CNS25-20 – SUH 310 – 20Ch25N20S21.4845 X12CrNi2521 310S – Z12CN25-20 310 S24 SUH 310 2361 10Ch23N18

SUS 310S1.4848 (G-X40CrNiSi2520) – – – 310 C40 SCH 21 – –1.4864 X12NiCrSi3616 330 N 08330 Z12NCS37-18 Na 17 SUH 330 – –

Z12NCS35-16Z12NC37-18

1.4871 X53CrMnNiN219 EV8 – Z52CMN21-09 349 S54 SUH 35 – –SUH 36

1.4876 X10NiCrAlTi3320 B163 N 08800 Z8NC32-21 NA 15(H) NCF 8000 – –1.4876 X10CrNiAPTi3320 B163 N 08810 Z8NC32-21 NA 15 – – –1.4878 X12CrNiTi189 321H – Z6CNT18-12(B) 321 S20 SUS 321 2337 –

(321 S12)1.4893 – – S 30815 – – – 2368 –

– – – S 32750 – – – – –1.4362 – – S 32304 – – – – –1.4417 – – S 31500 – – – – –1.4460 X4CrNiMo2751 329 S 32900 – – SUS 329J1 2324 –

(X8CrNiMo275) SCH 11SCS 11

1.4462 X2CrNiMoN2253 – S 31803 Z2CND22-05Az – – – –– – – S 31200 – – – – –– – – S 31260 – – – – –– – – S 32550 – – – – –– – – S 32950 – – – – –

20

(–) hitherto existing DIN-designation

CATALOGO 14/11/05 13:35 Página 20

Page 21: Aceros y Aleaciones_TUBOS

21

The following table summarises the typical resistance of various nickel base alloys to a wide range of co-rrosive environments. When using the table the following points should be borne in mind:

1. Data are summarised in this way for guidance only to show:

i: The most suitable alloy for a given environment bearing in mind that no allowance is made for the effectsof heat transfer, erosion, galvanic effects or the influence of minor impurities present in mixtures.

2. Materials are rated according to the determined corosion rate in a particular environment:

A= Corrosion rate less than 0-1 mm/y.B= Corrosion rate less than 0-5 mm/a but greater than 0-1 mm/y.C= Corrosion rate greater than 0-5 mm/y.

Corrosion rates less than 0-5 mm/a (A and B rating) are acceptable for most chemical and process plant.

3. The information should not be taken as an implied recommendation for the use of a particular materialin a specific environment. It should not be a substitute for in plant trials with sample test coupons.

4. Concentrations refer to aqueous solution or mixtures of gases in air.

5. Environments are listed in alphabetical order.

6. This data is typical of results obtained in these environments. However, these alloys are not limited tothe corrosives, temperatures or concentrations given.

N.B. The A rating can be misleading in that very often the corrosion rate is very much less than 0-1 mm/y.Where thin-walled material is to be used and only very low corrosion rates can be tolerated, more precise co-rrosion data should be obtained.

NICKEL ALLOYS CORROSION DATA

Media Concen- Tempe- Nickel alloy alloy alloy alloytration % rature °C 200 & 201 400 600 800 825

Acetaldehyde 99 40 A A A A AAcetic Acid 0-99 30 C B B A AAcetic Anhydride 100 30 B B B A AAcetone 0-100 100 A A A A AAcetylene 100 150 A – – A AAcrolein 100 100 B B B B BAir 100 – A A A A A AAlcohol-Allyl 100 30 A A A A AEthyl 100 30 A A A A AMethyl 100 30 A A A A AAllyl Chloride 100 30 A A B B AAluminium Chloride 100 0-30 B B B C BAluminiumSulphate (Alum.) 100 30 C B C B AAmmonia Liquid 0-100 30 C C B A AAmmonium Bicarbonate 0-100 100 – – – B BAmmonium Carbonate 0-20 30 – – – C BAmmonium Chloride (dry) 0-20 20 – – – A A

100 100 B B B C BAmmonium Hydroxide 0-30 70 – C – A AAmmonium Nitrate 0-40 80 – – – A AAmmonium Phosphate 5 100 B B B A AAmmonium Sulphate 0-40 100 B B B B AAmyl Acetate 100 30 A A A A AAmyl Choride 100 30 A B B B BAniline 100 30 C C B A ABarium Chloride 0-40 100 B B B B BBarium Hydroxide 100 1040 B – B B A

0-50 100 A B B B ABeer – 30 A A A A A

7

CATALOGO 14/11/05 13:35 Página 21

Page 22: Aceros y Aleaciones_TUBOS

Media Concen- Tempe- Nickel alloy alloy alloy alloytration % rature °C 200 & 201 400 600 800 825

Beet Sugar Liquors 0-40 30 A A A A ABenzaldehyde 100 30 B B B A ABenzene 100 30 A A A A ABlack Sulphate Liquor 100 100 – – A B ABoric Acid 0-20 100 B B B A ABromine, Dry 100 50 A A A B BButadiene 100 30 A A A A AButane 100 30 A A A A AButil Acetate 100 30 B B B A AButyric Acid 0-100 100 C B C B ACalcium Chloride 0-25 30 A A A B ACalcium Hydroxide 0-30 100 B B B B BCane Sugar Liquors 100 90 A A A A ACarbon Bisulphide 100 30 A B A A ACarbon Dioxide 100 450 A A A A ACarbon Tetrachloride 100 30 A B A A ACaustic Soda See Sodium

HydroxideChlorine, Dry 100 550 B B A A CChlorobenzene 100 30 A B B B BChlorosulphonic Acid 100 30 B B B – BChloroform 100 100 A A A A AChromic Acid 0-100 30 C C C C BCitric Acid 100 30 B B B B ACoffee – 100 A A A A ACopper Sulphate 0-30 100 C C C B ACresylic Acid 100 30 B B B B BDichloretuane 100 30 A A A B A

100 700 – – A A –Ethyl Acetate 100 30 B B B B AEthyl Cellulose All 30 B B B B AEthyl Chloride 100 30 A A A A AEthylene Dichloride 100 30 A A A B A

100 700 – – A A –Ethylene Glycol 100 30 B B B A AFatty Acids 100 30 A A A A AFerric Chloride 100 30 C C C C BFerric Nitrate 100 30 C C C B AFerric Sulphate 0-30 30 C B C B AFluoboric Acid 25 30 B B B B BFluosilicic Acid 20 30 B C B B BFormaldehyde 0-100 30 A A A A AFormic Acid 0-100 100 B B B C AFuel Oil 100 30 C A C A AFurfuraI 30-100 100 B B B B AGelantine 0-40 50 B B A A AGlucose All 30 A A A A AGlutamic Acid All 30 B B B B AGlycerine 100 30 A A A A AGlycerol 0-100 150 A A A A AHigh Temperature Salt(nitrate/nitrite) – 500 A – A A –Hydraulic Oil – – A A A A AHydrazine 100 35 C C C C CHydrobromic Acid – – C C C C CHydrochloric Acid 0-37 35Hydrocyanic Acid 100 35 C C A A AHydrofluoric Acid 10-100 35 B A B C B

100 350 B B B C BHydrogen Peroxide(acid free) All 30 B B B A A

22

CATALOGO 14/11/05 13:35 Página 22

Page 23: Aceros y Aleaciones_TUBOS

23

Media Concen- Tempe- Nickel alloy alloy alloy alloytration % rature °C 200 & 201 400 600 800 825

Hydrogen Sulphide 0-20 150 – B – B AHydroquinone All 35 B B A – AInsulin 100 35 A A A A ALactic Acid 80 30 C C B B ALead Acetate 20 30 B B A A ALemon Juice All 30 A B A B ALinseed Oil 100 30 A A A A ALithium Chloride All 30 A A A A ALithium Hydroxide 10 30 A A A A AMagnesium Carbonate All 30 A A A A AMagnesium Chloride 0-50 30 A A A A AMagnesium Hydroxide All 30 A A A A AMagnesium Nitrate All 30 C C B A AMagnesium Sulphate 30 30 B A A A AMaleic Acid All 30 B B B B AMercuric Chloride All 30 C C C C CMercuric Cyanide All 30 C C C C BMercuric lodide All 30 C C C C CMercurous Nitrate All 30 C C B A AMercury All 100Methyl Alcohol 0-100 100 A A A A AMethyl Chloride 100 30 A A A A AMethyl Ethyl Ketone All 100 B B B A AMilk All 30 B B A A AMine Water All 65 C C A A AMolasses All 30 A A A A AMono (sodium, potassiumor ammonium) Phosphate All 30 A A A A ANaphthenic Acid 100 30 B A A A ANickel Chloride All 30 B B B B ANickel Nitrate All 30 C C B B ANickel Sulphate All 30 B B B B ANitric Acid 0-65 30 C C B A A

100 80 C C C B ANitrobenzene 100 100 B B B B BOils, Crude 100 30 A A A A AOils, Essential 100 30 A A A A AOils, Mineral 100 30 A A A A AOils, Palm 100 30 A A A A AOils, Peanut 100 30 A A A A AOils, Sulphonated 100 30 A A A A AOils, Vegetable 100 30 A A A A AOleic Acid 100 30 B B A A AOleum 20 30 C C A B AOrange Juice All 30 A A A A AOxalic Acid All 30 C B B C BOxidising gases 100 °C 1000 550 1100 1100 900Palmitic Acid 100 30 A A A A AParaffin 100 35 A A A A APetrol 100 30 A A A A APhenol 100 30 A B A A APhenol Sulphonic Acid 100 30 B B B B APhosphoric Acid 0-25 30 B A A B A

25-85 85 A A C C APhthalic Anhydride 100 30 B A A B APicric Acid 100 30 C C C C BPotassium Bicarbonate 0-30 30 A A A A APotassium Carbonate All 30 A A A A APotassium Chlorate All 30 B B B B APotassium Chloride All 30 A A A A APotassium Chromate 0-30 30 A B A B A

CATALOGO 14/11/05 13:35 Página 23

Page 24: Aceros y Aleaciones_TUBOS

Media Concen- Tempe- Nickel alloy alloy alloy alloytration % rature °C 200 & 201 400 600 800 825

Potassium Cyanide 0-30 100 B – B B BPotassium Dichromate 0-20 30 B B B B APotassium Ferricyanide 0-30 30 B B B B BPotassium Hydroxide 0-50 30 A A B B B

0-50 100 A A B B BPotassium Nitrate All 30 B B B A APotassium Sulphate 10 30 B B A A APropane 100 100 A A A A ASalicylic Acid All 30 A A A A ASea Water 100 100 A A A A ASilicon Tetrachloride 100 30 A A A B ASilver Nitrate All 30 C C B B BSoap 100 30 A A A A ASodium Acetate All 30 B B B B ASodium Bicarbonate All 30 B B B B ASodium Bisulphate 10 30 B A B B ASodium Bromide 0-50 30 B B B B BSodium Carbonate 30 A B B B B ASodium Chloride All 30 B A B A ASodium Hydroxide 0-50 30 A A A A A

50-75 30 A A A B ASodium Metaphosphate All 30 B B A B ASodium Metasilicate 0-50 30 A A A A ASodium Nitrate 10 30 B B A A A

All 30 B B A A ASodium Peroxide 100 100 B B B C BSodium Phosphate All 30 A A A A ASodium Sulphate All 30 A A A A ASodinm Sulphide All 30 B B A B ASteam 100 450 A A A A AStearic Acid All 30 A A A A ASugar (liquid) All 30 A A A A ASulphuric Acid 0-15 30 B A B B A

15-75 30 C B C B A75-96 30 C C C C A

Sulphurous Acid 0-60 100 – – – C BTall Oil 100 30 A A A A ATannic Acid 10 30 B B B B BTartaric Acid 58 30 B B B B ATetraphosphoric Acid 100 30 C C B – AToluene 100 100 A A A A ATrichloroethylene 100 100 A A B B BTurpentine 100 30 A A A A AUrea 50-100 375 – – B B AVinegar 100 30 A A A B AVinyl Chloride 100 30 A A A A AWater 100 100 A A A A AXylene 100 100 B B A B AZinc Ammonium Chloride 0-40 100 – B B C BZinc Chloride 0-100 30 B B B C BZinc Nitrate 10 30 C C B B AZinc Sulphate 20 30 B B B B A

24

CATALOGO 14/11/05 13:35 Página 24

Page 25: Aceros y Aleaciones_TUBOS

25

PRODUCTS ACCORDING TO ASTM CODE

SEAMLESS TUBES AND PIPES:

WELDED TUBES AND PIPES:

FITTINGS:

FLANGES AND FORGINGS:

FERRITIC – MARTESITIC STELL ASTM A 268STAINLESS STEEL ASTM A 213, ASTM A 269, ASTM A 271, ASTM A 312

ASTM A 376, ASTM B 677DUPLEX / SUPERDUPLEX ASTM A 789, ASTM A 790NICKEL AND NICKEL ALLOYS ASTM B 161, ASTM B 163, ASTM B 165, ASTM B 167

ASTM B 407, ASTM B 423, ASTM B 444, ASTM B 622ASTM B 668, ASTM B 729, ASTM B 677

TITANIUM ASTM B 338, ASTM B 861, ASTM B 337COPPER AND COPPER ALLOYS ASTM B 43, ASTM B 68, ASTM B 75, ASTM B 88

ASTM B 111, ASTM B 315, ASTM B 395, ASTM B 466ASTM B 543

FERRITIC – MARTESITIC STEEL ASTM A 268STAINLESS STEEL ASTM A 249, ASTM A 312, ASTM A 358, ASTM A 409

ASTM B 673, ASTM B 674, ASTM A 731DUPLEX / SUPERDUPLEX ASTM A 789, ASTM A 790NICKEL AND NICKEL ALLOYS ASTM B 464, ASTM B 468, ASTM B 514, ASTM B 515

ASTM B 516, ASTM B 517, ASTM B 619, ASTM B 626ASTM B 704, ASTM B 705, ASTM B 725, ASTM B 730ASTM B 775

TITANIUM ASTM B 338, ASTM B 862COPPER AND COPPER ALLOYS ASTM B 467, ASTM B 543, ASTM B 608

STAINLESS STEEL ASTM A 167, ASTM A 176, ASTM A 240NICKEL AND NICKEL ALLOYS ASTM B 127, ASTM B 162, ASTM B 168, ASTM B 409

ASTM B 424, ASTM B 443, ASTM B 463, ASTM B 575TITANIUM ASTM B 265COPPER AND COPPER ALLOYS ASTM B 169, ASTM B 171, ASTM B 248

PLATES:

STAINLESS STEEL ASTM A 182, ASTM A 403, ASTM A 815NICKEL AND NICKEL ALLOYS ASTM B 366TITANIUM ASTM B 363COPPER AND COPPER ALLOYS ASTM B 61, ASTM B 62, ASTM B 271

NICKEL AND NICKEL ALLOYS ASTM B 462, ASTM B 564TITANIUM ASTM B 348COPPER AND COPPER ALLOYS ASTM B 62, ASTM B 271

STAINLESS STEEL ASTM A 276, ASTM A 479NICKEL AND NICKEL ALLOYS ASTM B 160, ASTM B 166, ASTM B 164, ASTM B 335,

ASTM B 408, ASTM B 425, ASTM B 446, ASTM B 472TITANIUM ASTM B 348COPPER AND COPPER ALLOYS ASTM B 148, ASTM B 271

ROUND, SQUARE AND HEXAGONAL BARS:

8

CATALOGO 14/11/05 13:35 Página 25

Page 26: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 26

Page 27: Aceros y Aleaciones_TUBOS

MAXIMUM RECOMMENDED PRESSURES FORSEAMLESS/STAINLESS STEEL TUBES (Kg/cm2)

Temperature Material Nominal size in inches / Presure Kg/cm2

°C 1/2” 3/4” 1” 1.1/4” 1.1/2” 2” 2.1/2” 3” 3.1/2”Schedule Schedule Schedule Schedule Schedule Schedule Schedule Schedule Schedule

AISI 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S-29° to 38° 304-321 159 207 126 163 99 171 78 134 68 112 54 92 57 84 47 68 41 59

347-316304 141 184 112 145 88 152 69 119 60 103 48 82 51 74 41 60 36 53

93° 321-347 141 184 112 145 88 152 69 119 60 103 48 82 51 74 41 60 36 53316 159 207 126 163 99 171 78 134 68 112 54 92 57 84 47 68 41 59304 127 165 101 130 79 137 62 107 54 91 43 74 46 67 37 54 32 47

149° 321-347 144 187 114 148 90 155 71 121 62 102 49 84 52 76 42 62 37 54316 152 197 120 155 95 164 75 128 65 111 52 88 54 80 44 65 39 57304 116 150 91 118 72 125 57 97 49 84 39 67 41 61 34 49 29 43

204° 321-347 134 174 106 137 84 144 66 113 57 96 45 78 48 70 39 57 34 50316 149 193 117 152 93 160 73 125 63 102 50 86 53 78 43 64 38 55304 106 138 84 108 66 114 52 89 45 73 36 61 38 55 31 45 27 39

260° 321-347 129 168 102 132 81 139 63 108 55 94 44 75 46 68 38 55 33 48316 146 190 115 149 91 157 72 123 62 101 49 84 52 77 43 62 37 54304 98 128 78 101 61 106 48 83 42 73 33 57 35 51 29 42 25 37

316° 321-347 126 164 100 129 79 136 62 106 54 94 43 73 45 66 37 54 32 47316 145 189 115 148 91 156 71 122 62 101 49 84 52 76 42 62 37 54304 95 123 75 97 59 102 46 80 40 62 32 56 34 50 28 40 24 35

343° 321-347 126 164 100 129 79 136 62 106 54 94 43 73 45 66 37 54 32 47316 145 188 144 148 90 156 71 122 62 101 49 84 52 76 42 62 37 54304 91 119 72 94 57 98 45 77 39 62 31 53 33 48 27 39 23 34

371° 321-347 126 163 99 128 78 135 62 106 53 94 42 73 45 66 37 54 32 47316 144 187 114 148 90 155 71 121 62 102 49 84 52 76 42 62 37 54304 88 115 70 90 55 95 43 74 37 62 30 51 31 46 26 38 22 33

399° 321-347 125 162 99 128 78 134 61 105 53 94 42 72 45 65 36 53 32 46316 143 186 113 147 90 154 70 121 61 101 49 83 51 75 42 61 37 53304 85 110 67 87 53 91 41 71 36 72 29 49 30 44 25 36 21 31

427° 321-347 123 160 98 126 77 133 60 104 53 94 42 71 44 65 36 53 31 46316 142 185 112 145 89 153 70 120 61 101 48 82 51 74 42 61 36 53304 82 107 65 84 51 88 40 69 35 61 28 47 29 43 24 35 21 30

454° 321-347 121 158 96 124 76 131 59 102 52 85 41 70 43 64 35 52 31 45316 140 182 111 143 87 151 69 118 60 101 48 87 40 70 41 60 36 52304 80 103 63 81 50 86 39 67 34 53 27 46 28 42 23 34 20 29

482° 321-347 120 155 94 122 75 129 59 101 51 85 40 69 43 63 35 51 30 45316 136 176 107 139 85 146 67 114 58 94 46 78 49 71 40 58 35 51304 77 100 61 79 48 83 38 65 33 53 26 44 27 40 22 33 19 28

510° 321-347 117 153 93 120 73 127 58 99 50 85 40 68 42 62 34 50 30 44316 128 166 101 131 80 138 63 108 55 94 43 74 46 67 37 55 33 48304 74 97 59 76 46 80 36 63 32 51 35 43 27 39 22 32 19 28

538° 321-347 115 149 90 117 71 123 56 96 49 82 39 66 41 60 33 49 29 43316 119 154 94 121 74 128 58 100 51 85 40 69 42 62 35 51 30 44304 72 93 57 74 45 77 35 60 31 51 24 41 26 38 21 31 18 27

566° 321-347 111 144 188 114 69 120 54 93 47 88 38 54 40 58 32 47 28 41316 103 134 82 106 65 111 51 87 44 75 35 60 37 54 30 44 26 38304 64 84 51 66 40 69 31 54 27 40 21 37 23 33 18 27 16 24

593° 321-347 108 140 85 110 67 116 52 90 45 76 36 62 38 56 31 46 27 40316 89 117 70 91 55 96 43 75 38 69 30 51 32 46 26 38 22 33304 51 67 40 52 31 55 24 42 21 34 16 29 17 26 14 21 12 18

621° 321-347 71 93 55 72 43 76 34 59 29 52 23 40 24 36 20 29 17 25316 75 99 59 77 46 81 36 63 31 54 25 43 26 38 21 31 18 27304 40 52 31 40 24 43 19 33 16 28 13 22 14 20 11 16 9 14

649° 321-347 44 58 34 45 27 48 21 37 18 39 14 25 15 22 12 18 11 16316 60 79 47 61 29 50 25 43 20 34 21 31 17 25 15 21304 28 38 22 29 17 31 13 24 12 20 9 16 10 14 8 12 7 10

677° 321-347 32 42 25 32 19 34 15 26 13 25 10 18 11 16 9 13 7 11316 47 62 36 48 28 50 22 39 19 32 15 26 16 24 13 19 11 17304 21 28 17 22 13 23 10 18 9 12 7 12 7 11 6 9 5 7

704° 321-347 24 31 18 24 14 25 20 10 17 7 7 13 8 12 6 10 5 8316 35 46 27 36 21 38 17 29 14 25 11 20 12 18 10 14 8 12304 15 21 12 16 9 17 7 13 6 11 5 9 5 8 4 6 4 5

732° 321-347 17 23 14 18 10 19 8 14 7 12 5 10 6 9 5 7 4 6316 26 35 20 27 16 28 12 22 11 19 8 15 9 13 7 11 6 9304 12 16 9 12 7 13 6 10 5 9 4 7 4 6 3 5 3 4

760° 321-347 13 18 10 14 8 14 6 11 5 10 4 8 4 7 3 5 3 5316 20 27 16 21 12 22 10 17 8 15 6 11 7 10 5 8 5 7304 8 11 7 9 5 9 4 7 3 6 2 5 3 4 2 3 2 3

788° 321-347 10 14 8 10 6 11 5 8 4 7 4 6 3 5 3 4 2 3316 16 21 12 16 10 17 7 13 6 11 5 9 5 8 4 6 4 6304 6 8 5 6 4 7 3 5 2 4 2 3 2 3 1 2 1 2

816° 321-347 8 11 7 9 5 9 4 7 3 6 6 8 3 4 2 3 2 3316 13 17 10 13 8 14 6 11 5 9 4 7 4 6 3 5 3 4

27

9

CATALOGO 14/11/05 13:35 Página 27

Page 28: Aceros y Aleaciones_TUBOS

28

Temperature Material Nominal size in inches / Presure Kg/cm2

°C 4” 5” 6” 8” 10” 12” 14” 16”Schedule Schedule Schedule Schedule Schedule Schedule Schedule Schedule

AISI 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S-29° to 38° 304-321 36 53 38 47 32 40 24 30 24 30 25 27 21 26 20 33

347-316304 32 47 34 42 28 35 22 30 21 26 22 24 17 21 16 18

93° 321-347 32 47 34 42 28 35 22 30 21 26 22 24 17 21 16 18316 36 53 38 47 32 40 24 33 24 30 25 27 21 26 20 23304 29 42 31 38 26 32 19 27 19 24 20 22 17 21 16 18

149° 321-347 33 48 35 43 29 36 22 30 22 27 23 25 19 23 18 20316 50 37 45 31 31 38 23 32 23 38 24 26 20 25 19 22304 26 38 28 34 23 29 18 24 17 22 18 20 15 19 14 16

204° 321-347 30 54 32 40 27 33 21 28 20 25 21 23 18 22 17 19316 34 49 36 44 30 37 23 31 22 28 23 25 20 24 18 21304 24 35 25 31 21 26 16 22 16 20 17 18 14 17 13 15

260° 321-347 29 42 31 38 26 32 20 27 19 24 20 22 17 21 16 18316 33 48 35 43 29 36 22 31 22 27 23 25 20 24 18 21304 22 32 24 29 20 24 15 21 15 18 15 17 13 16 12 14

316° 321-347 28 42 30 38 25 31 19 26 19 24 20 22 17 21 16 18316 33 48 35 43 29 36 22 30 22 27 23 25 20 24 18 21304 21 31 23 28 19 23 14 20 14 18 15 16 13 15 12 13

343° 321-347 28 42 30 37 25 31 19 26 19 24 20 21 17 20 16 18316 33 48 35 43 29 36 22 30 22 27 23 25 19 24 18 21304 21 31 23 28 19 23 14 20 14 18 15 16 13 15 15 13

371° 321-347 28 42 30 37 25 31 19 26 19 24 20 21 17 20 16 18316 33 48 35 43 29 36 22 30 22 27 23 25 19 23 18 20304 20 29 21 26 17 22 13 18 13 16 14 15 12 14 11 12

399° 321-347 28 41 30 37 35 31 19 26 19 23 20 21 17 20 15 18316 32 47 34 43 29 36 22 30 22 27 22 25 19 23 18 20304 19 28 20 25 17 21 13 18 13 16 13 14 11 14 10 12

427° 321-347 28 41 30 37 25 31 19 26 19 23 19 21 16 20 15 17316 32 47 34 42 28 35 22 30 21 27 22 24 19 23 18 20304 18 27 20 24 16 20 12 17 12 15 13 14 11 13 10 11

454° 321-347 27 40 29 36 24 30 18 25 18 23 19 21 16 20 15 17316 32 46 34 42 28 35 21 29 21 26 22 24 19 23 17 20304 18 26 19 23 16 20 12 17 12 15 12 14 10 13 10 11

482° 321-347 27 39 29 35 24 30 18 25 18 22 19 20 16 19 15 17316 31 45 33 40 27 34 21 28 21 25 21 23 18 22 17 19304 17 25 18 23 15 19 12 16 11 14 12 13 10 12 9 11

510° 321-347 26 39 28 35 24 29 18 25 18 22 18 20 16 19 14 17316 29 42 31 38 26 32 20 27 19 24 20 22 17 21 16 18304 17 24 18 22 15 18 11 15 11 14 11 13 10 12 9 10

538° 321-347 26 38 27 34 23 28 17 24 17 21 18 20 15 19 14 16316 27 39 28 35 24 29 18 25 18 22 19 20 16 19 15 17304 16 24 17 21 14 18 11 15 11 13 11 12 9 11 9 10

566° 321-347 25 37 27 33 22 28 17 23 17 21 17 19 15 18 14 16316 23 34 25 31 21 26 16 22 15 19 16 18 14 17 13 15304 14 21 15 19 13 16 9 13 9 12 10 11 8 10 7 9

593° 321-347 24 35 25 32 21 26 16 22 16 20 17 18 14 17 12 15316 20 29 21 26 18 22 13 18 13 16 14 15 12 14 10 9304 11 16 12 14 10 12 7 10 7 9 7 8 6 8 5 7

621° 321-347 15 22 16 20 14 17 10 14 10 13 10 11 9 11 8 9316 16 24 17 21 14 18 11 15 11 13 11 12 9 12 8 10304 8 12 9 11 7 9 6 8 5 7 6 6 5 6 4 5

649° 321-347 9 14 10 12 8 10 6 9 6 8 6 7 5 7 5 6316 13 19 14 17 11 14 9 12 9 11 9 10 8 7 6 8304 6 9 6 8 5 7 4 5 4 5 4 4 3 4 3 4

677° 321-347 7 10 7 9 6 7 4 6 4 5 4 5 4 5 3 4316 10 15 11 13 9 11 7 9 7 8 7 7 6 7 5 6304 4 7 5 6 4 5 3 4 3 4 3 3 2 3 2 2

704° 321-347 5 7 5 7 4 5 3 4 3 4 3 4 3 3 2 3316 7 11 8 10 7 8 5 7 5 6 5 5 4 5 4 4304 3 5 3 4 3 3 2 3 2 2 2 2 2 2 1 2

732° 321-347 3 5 4 5 3 4 2 3 2 3 2 2 2 2 2 2316 5 8 6 7 5 6 4 5 3 4 4 4 3 4 3 3304 2 4 2 3 2 3 1 2 1 2 1 2 1 2 1 1

760° 321-347 3 4 3 4 2 3 2 2 2 2 2 2 1 2 1 1316 4 6 4 6 4 5 3 4 3 3 3 3 2 3 2 2304 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1

788° 321-347 2 3 2 3 2 2 1 2 1 1 1 1 1 1 1 1316 3 5 3 4 3 4 2 3 2 3 2 2 2 2 1 2304 1 2 1 1 1 1 1 1 1 1 1 1 0,9 1 0,7 0,9

816° 321-347 2 3 2 2 1 2 1 1 1 1 1 1 1 1 1 1316 2 4 3 3 2 3 2 2 2 2 2 2 1 2 2 1

MAXIMUM RECOMMENDED PRESSURES FORSEAMLESS/STAINLESS STEEL TUBES (Kg/cm2)

CATALOGO 14/11/05 13:35 Página 28

Page 29: Aceros y Aleaciones_TUBOS

29

Temperature Material Nominal size in inches / Presure Kg/cm2

°C 1/2” 3/4” 1” 1.1/4” 1.1/2” 2” 2.1/2” 3” 3.1/2”Schedule Schedule Schedule Schedule Schedule Schedule Schedule Schedule Schedule

AISI 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S 5S 10S-29° to 38° 304-321 327 458 267 375 250 345 205 287 185 265 156 225 170 236 148 209 135 193

347-316304 291 406 237 333 222 306 182 255 164 234 138 200 151 209 131 185 120 171

93° 321-347 291 406 237 333 222 306 182 255 164 234 138 200 151 209 131 185 120 171316 327 458 267 375 250 345 205 287 185 265 156 225 270 236 148 209 135 193304 262 366 213 300 200 276 164 229 148 220 124 180 136 189 118 167 108 154

149° 321-347 297 415 242 340 226 313 186 260 167 230 141 204 154 214 134 189 122 175316 312 437 255 358 238 329 196 274 176 244 148 215 162 225 141 199 129 184304 238 333 194 273 182 251 149 209 134 162 113 164 124 178 107 152 98 140

204° 321-347 276 385 225 316 210 291 173 242 156 223 131 189 143 199 124 176 113 162316 305 427 249 350 233 322 192 268 172 242 145 210 159 220 138 195 126 180304 218 305 178 250 166 230 137 191 123 172 104 150 113 157 98 139 90 128

260° 321-347 265 371 216 308 202 280 166 233 150 212 126 182 138 191 120 169 109 156316 300 420 245 344 229 317 188 263 169 232 143 206 156 216 135 192 123 177304 202 283 165 232 154 213 127 177 114 165 96 139 105 146 91 129 83 119

316° 321-347 260 364 212 298 198 274 163 228 147 209 123 179 135 187 117 166 107 153316 298 417 243 342 228 315 187 262 168 236 142 275 155 215 135 191 123 176304 195 273 159 224 149 206 123 171 110 151 93 138 101 141 88 125 80 115

343° 321-347 259 362 211 297 198 273 163 227 146 202 123 178 135 187 117 165 107 153316 298 416 248 341 227 314 187 261 168 230 141 204 155 214 134 190 122 175304 188 263 154 216 144 199 118 165 106 152 89 129 98 136 85 120 77 111

371° 321-347 258 361 211 296 197 272 162 226 146 202 123 177 134 186 116 165 106 152316 298 416 243 341 227 314 187 261 168 230 141 204 155 214 134 190 122 175304 181 254 148 208 138 191 114 159 102 145 86 124 94 131 82 116 74 107

399° 321-347 257 359 209 294 196 270 161 225 145 202 122 176 133 185 116 164 105 151316 295 412 240 338 225 311 185 259 166 230 140 203 153 213 133 188 121 174304 174 244 142 200 133 184 109 153 98 135 83 120 91 126 79 111 72 103

427° 321-347 254 355 207 291 194 268 159 223 143 202 121 174 132 184 114 162 104 150316 292 409 238 335 223 308 183 256 165 230 139 201 145 211 132 187 120 172304 169 236 138 194 129 178 106 148 95 132 80 116 88 122 76 108 69 100

454° 321-347 250 349 203 286 190 263 157 219 141 195 119 171 130 180 113 159 103 147316 288 403 235 330 220 304 181 252 162 224 137 198 150 208 130 184 118 170304 164 229 134 188 125 173 103 144 92 132 78 112 85 118 74 105 67 96

482° 321-347 246 344 201 282 188 259 154 216 139 195 117 169 128 177 111 157 101 145316 279 390 228 320 213 294 175 245 158 224 133 192 145 201 126 178 115 164304 159 222 129 182 121 167 99 139 89 125 75 109 82 114 71 101 65 93

510° 321-347 242 338 197 277 184 255 152 212 136 195 115 166 126 174 109 154 99 142316 264 368 215 302 201 278 165 231 149 215 125 181 137 190 119 168 108 155304 153 214 125 176 117 162 96 134 86 125 73 105 80 110 69 98 63 90

538° 321-347 236 329 192 270 180 248 148 207 133 185 112 162 122 170 106 150 97 139316 244 342 199 280 186 258 153 214 138 195 116 168 127 176 110 156 100 144304 148 207 121 170 113 156 96 130 83 112 70 107 77 107 67 94 61 87

566° 321-347 229 320 186 262 174 241 143 200 129 181 108 159 119 165 103 146 94 135316 213 229 173 244 162 224 133 187 120 165 101 146 111 153 96 136 87 125304 134 189 109 154 101 141 83 117 75 107 63 91 69 96 59 85 54 78

593° 321-347 224 316 181 253 169 236 139 195 125 171 105 152 115 160 99 141 91 130316 186 263 151 214 141 196 116 163 104 143 87 127 95 133 83 118 75 108304 108 156 87 125 81 115 66 94 59 84 49 72 54 76 47 67 42 62

621° 321-347 151 218 121 175 113 160 92 131 82 112 69 101 75 106 65 93 59 86316 160 232 129 186 120 170 97 139 87 124 73 107 80 113 69 99 63 91304 85 122 68 98 63 90 51 73 46 65 38 56 42 60 36 52 33 48

649° 321-347 94 136 75 109 70 100 57 82 51 73 43 63 47 66 40 58 37 54316 128 185 103 148 96 136 78 111 70 103 58 86 64 90 55 79 50 73304 61 88 49 71 46 65 37 53 33 43 28 41 30 43 26 38 24 35

677° 321-347 68 98 54 78 50 72 41 59 37 52 31 45 34 47 29 42 26 38316 100 144 80 116 75 106 61 86 54 72 45 67 50 70 43 62 39 57304 46 66 37 53 34 49 28 40 25 34 21 31 23 32 20 28 18 26

704° 321-347 51 73 41 59 38 54 31 44 27 44 23 34 25 36 22 31 20 29316 75 109 60 87 56 80 46 65 41 56 34 50 37 53 32 46 29 43304 34 49 27 39 25 36 20 29 18 22 15 22 17 24 14 21 13 19

732° 321-347 37 54 30 43 28 40 23 32 20 26 17 25 18 26 16 23 14 21316 56 81 45 65 42 60 34 49 30 41 25 38 28 40 24 35 22 32304 26 38 21 30 19 28 16 22 14 20 12 17 13 18 11 16 10 15

760° 321-347 29 42 23 33 21 31 17 25 16 22 13 19 14 20 12 18 11 16316 44 64 35 51 33 47 27 38 24 34 20 29 22 31 19 27 17 25304 18 27 15 21 14 20 11 16 10 11 8 12 9 13 8 11 7 10

788° 321-347 22 32 18 26 16 24 13 19 12 15 10 17 11 15 9 16 8 14316 35 50 28 40 26 37 21 30 19 24 15 23 17 24 15 21 13 20304 14 20 11 16 10 15 8 12 7 10 6 9 7 10 6 8 5 8

816° 321-347 18 27 15 21 14 20 11 16 10 12 8 12 9 13 8 11 7 10316 28 40 22 32 21 30 17 24 15 20 12 18 14 20 12 17 11 16

MAXIMUM RECOMMENDED PRESSURES FORSEAMLESS/STAINLESS STEEL TUBES (Kg/cm2)

CATALOGO 14/11/05 13:35 Página 29

Page 30: Aceros y Aleaciones_TUBOS

30

Temperature Material Nominal size in inches / Presure Kg/cm2

°C 4” 5” 6” 8” 10” 12” 14” 16”Schedule Schedule Schedule Schedule Schedule Schedule Schedule Schedule

40S 80S 40S 80S 40S 80S 40S 80S 40S 80S 40S 80S 40S 80S 40S 80S-29° to 38° 304-321 125 181 110 162 100 156 88 138 79 110 68 92 62 84 54 73

347-316304 111 161 97 144 88 139 78 123 70 98 61 82 55 74 48 65

93° 321-347 111 161 97 144 88 139 78 123 70 98 61 82 55 74 48 65316 125 181 110 162 100 157 88 138 79 110 68 92 62 84 54 73304 100 145 88 118 80 125 70 110 63 88 55 74 50 67 43 58

149° 321-347 113 164 92 136 90 142 79 125 72 100 62 84 56 76 49 66316 119 173 105 155 95 149 84 132 76 105 65 88 59 80 52 70304 91 132 80 118 72 114 64 101 58 80 50 67 45 61 39 53

204° 321-347 105 152 92 136 84 132 74 116 67 93 58 78 52 70 46 61316 117 169 102 151 93 146 82 129 74 103 64 86 58 78 51 68304 83 121 73 108 66 104 58 92 53 73 46 61 41 56 36 48

260° 321-347 101 147 89 131 81 127 71 112 64 89 55 75 50 68 44 59316 115 166 101 149 91 144 80 127 73 101 63 84 57 77 50 67304 77 112 68 100 61 97 54 85 49 68 42 57 38 52 33 45

316° 321-347 99 144 87 129 79 124 70 110 63 87 54 73 49 66 43 58316 114 165 100 148 91 143 80 126 72 100 62 84 57 76 50 66304 75 108 65 97 59 93 52 82 47 65 41 55 37 50 32 43

343° 321-347 99 143 87 128 79 124 70 109 63 87 54 73 49 66 43 58316 114 165 100 147 91 142 80 126 72 100 62 84 57 76 49 66304 72 104 63 93 57 90 50 79 46 63 39 53 36 48 31 42

371° 321-347 99 143 86 128 78 123 69 109 63 87 54 73 49 66 43 58316 113 164 99 147 90 142 79 125 72 100 62 84 56 76 49 66304 69 100 61 90 55 87 48 77 44 61 38 51 34 46 30 40

399° 321-347 98 142 86 127 78 123 69 108 62 86 34 72 49 65 42 57316 113 163 99 146 90 141 79 125 72 99 62 83 56 75 49 66304 67 96 58 86 53 83 46 74 42 58 36 49 33 44 29 39

427° 321-347 97 140 85 126 77 121 68 107 62 85 53 71 48 65 42 56316 112 162 98 145 89 140 78 124 71 98 61 82 56 75 48 65304 64 93 56 84 51 81 45 71 41 57 35 47 32 43 28 37

454° 321-347 95 138 84 123 76 119 67 105 60 84 52 70 47 64 41 55316 110 159 96 143 88 138 77 122 70 97 60 81 55 74 48 64304 63 91 55 81 50 78 44 69 40 55 34 46 31 42 27 36

482° 321-347 94 136 82 122 75 118 66 104 60 83 51 69 47 63 37 55316 107 154 93 138 85 133 75 118 68 94 58 79 53 71 46 62304 60 88 53 78 48 76 42 67 38 53 33 44 30 40 26 35

510° 321-347 92 134 81 120 73 115 65 102 59 81 50 68 46 62 40 54316 101 146 88 130 80 126 70 111 64 88 55 74 60 67 44 59304 58 85 51 76 46 73 41 65 37 51 32 43 29 39 25 34

538° 321-347 90 130 79 116 72 113 63 69 57 79 49 66 45 60 39 52316 93 135 82 121 74 117 65 103 59 82 51 69 46 92 40 54304 56 82 49 73 45 71 39 62 36 50 31 42 28 38 24 33

566° 321-347 87 126 76 113 69 109 61 96 55 77 48 64 43 58 38 51316 81 118 71 105 65 102 57 90 52 71 44 60 40 54 35 47304 50 73 44 65 40 63 35 56 32 44 27 37 25 33 21 29

593° 321-347 84 122 74 109 67 105 59 93 53 74 46 62 41 56 36 49316 70 102 61 91 55 88 49 77 44 61 38 51 34 46 30 40304 39 58 34 51 31 49 27 43 24 34 21 29 19 26 16 22

621° 321-347 55 80 48 72 43 69 38 61 34 48 29 40 27 36 23 31316 58 85 51 76 46 73 40 64 36 51 31 42 28 38 25 33304 31 45 27 40 24 39 21 34 19 27 16 22 15 20 13 17

649 321-347 34 50 30 45 27 43 23 38 21 30 18 25 16 22 14 19316 46 68 40 61 37 59 32 52 29 41 25 34 23 31 20 27304 22 32 19 29 17 28 15 24 14 19 12 16 9 14 8 11

677° 321-347 24 36 21 32 19 31 17 27 15 21 13 18 10 16 9 12316 36 53 31 47 28 46 25 40 23 32 19 26 15 24 9 18304 16 24 14 22 13 21 11 18 10 14 9 12 8 11 7 9

704° 321-347 18 27 16 24 14 23 12 20 11 16 10 13 9 12 7 10316 27 40 24 35 21 34 19 30 17 24 14 20 13 18 11 15304 12 18 10 16 9 15 8 13 7 10 6 9 6 8 5 7

732° 321-347 13 20 12 18 10 17 9 15 8 12 7 10 6 9 5 7316 20 30 18 27 17 26 14 22 13 18 11 15 10 13 8 11304 9 14 8 12 7 12 6 10 6 8 5 7 4 6 4 5

760° 321-347 10 15 9 13 8 13 7 11 6 9 5 7 5 7 4 6316 16 28 14 21 12 20 11 18 10 14 8 11 7 10 6 9304 6 9 6 9 5 8 4 7 4 6 3 5 3 4 2 3

788° 321-347 8 12 7 10 6 10 5 9 5 7 4 6 4 5 3 4316 12 18 11 16 10 16 8 14 8 11 6 9 6 8 5 7304 5 7 4 6 4 6 3 5 3 4 2 3 2 3 2 2

816° 321-347 6 10 6 9 5 8 4 7 4 6 3 5 3 4 2 3316 10 15 9 13 8 13 7 11 6 9 5 7 5 6 4 5

MAXIMUM RECOMMENDED PRESSURES FORSEAMLESS/STAINLESS STEEL TUBES (Kg/cm2)

CATALOGO 14/11/05 13:35 Página 30

Page 31: Aceros y Aleaciones_TUBOS

31

BWG EQUIVALENTS IN INCHES AND MILLIMETRES

EQUIVALENTS IN INCHES AND MILLIMITRES

Bwg in mm Bwg in mm

0 .340 8.636 13 .095 2.4131 .300 7.620 14 .083 2.1082 .284 7.213 15 .072 1.8293 .259 6.578 16 .065 1.6514 .238 6.045 17 .058 1.4735 .220 5.588 18 .049 1.2446 .203 5.156 19 .042 1.0677 .180 4.572 20 .035 0.8898 .165 4.190 21 .032 0.8129 .148 3.759 22 .028 0.71110 .134 3.403 23 .025 0.63511 .120 3.048 24 .022 0.55912 .109 2.768 25 .020 0.508

Swg in mm Bwg in mm

0 .324 8.230 13 .092 2.3371 .300 7.620 14 .080 2.0322 .276 7.010 15 .072 1.8293 .252 6.401 16 .064 1.6264 .232 5.893 17 .056 1.4225 .212 5.385 18 .048 1.2196 .192 4.877 19 .040 1.0167 .176 4.470 20 .036 0.9148 .160 4.064 21 .032 0.8139 .144 3.658 22 .028 0.71110 .128 3.251 23 .024 0.61011 .116 2.946 24 .022 0.55912 .104 2.642 25 .020 0.508

SWG EQUIVALENTS IN INCHES AND MILLIMETRES

10

CATALOGO 14/11/05 13:35 Página 31

Page 32: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 32

Page 33: Aceros y Aleaciones_TUBOS

WEIGHT OF FITTINGS

(ANSI B16.11) 3000 lbs SCREWED FITTINGS

33

NOTE:All weights in this section are based on approximate weights for steel.Titanium weights can be calculated as 57% of the table values.

TYPE APPROXIMATE WEIGHTS IN Kg

SIZE INCHES 1/8 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2 2

SIZE METRIC 6 8 10 15 20 25 32 40 50

Round Nipples 0,023 0,04 0,055 0,1 0,2 0,242 – 0,405 0,56

Hexagon Nipples 0,032 0,04 0,072 0,1 0,16 0,24 0,38 0,455 0,55

#Hexagon

Reducing Nipples – 0,038 0,055 0,09 0,142 0,205 0,35 0,405 0,51

End Caps 0,026 0,04 0,06 0,106 0,14 0,34 0,454 0,7 1,3

Unions 0,16 0,16 0,21 0,325 0,5 0,9 1,12 1,45 2,19

90° Elbows 0,16 0,135 0,27 0,41 0,61 1 1,25 1,6 2,55

45° Elbows 0,12 0,11 0,23 0,34 0,555 0,85 1 1,4 2,1

Tees 0,255 0,225 0,325 0,6 0,8 1,41 1,4 2,27 3,05

*Reducing Tees – 0,25 0,4 0,7 0,98 1,73 2,01 2,605 3,4

Welding Bosses – 0,053 0,085 0,15 0,22 0,316 0,705 0,998 1,44

Couplings 0,035 0,05 0,08 0,15 0,22 0,31 0,71 1,05 1,5

Reducing Couplings – 0,07 0,105 0,185 0,285 0,396 0,872 1,4 1,71

Half Couplings 0,02 0,024 0,035 0,075 0,15 0,2 0,335 0,5 0,71

TYPE APPROXIMATE WEIGHTS IN Kg

SIZE INCHES 1/8 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2 2

SIZE METRIC 6 8 10 15 20 25 32 40 50

*Hexagon Bushes – 0,025 0,035 0,054 0,08 0,18 0,19 0,23 0,455

Square Head Plugs 0,009 0,016 0,029 0,057 0,095 0,172 0,255 0,4 0,58

Hexagon Head Plugs 0,029 0,029 0,057 0,085 0,142 0,227 0,51 0,624 1,021

Round Head Plugs 0,057 0,057 0,085 0,113 0,17 0,34 0,51 0,709 1,361

#Weights of the smallest reduction, i.e. the heaviest*Weights of the largest reduction, i.e. the heaviest

(ANSI B16.11) SCREWED FITTINGS

*Weights of the largest reduction, i.e. the heaviest

11

CATALOGO 14/11/05 13:35 Página 33

Page 34: Aceros y Aleaciones_TUBOS

34

(ANSI B16.11) 3000 lbs SOCKET-WELD FITTINGS

TYPE APPROXIMATE WEIGHTS IN Kg

SIZE INCHES 1/8 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2 2

SIZE METRIC 6 8 10 15 20 25 32 40 50

Couplings 0,039 0,05 0,06 0,115 0,18 0,25 0,4 0,48 0,8

#Reducing Couplings – 0,066 0,071 0,132 0,22 0,325 0,44 0,575 1,3

Half Couplings 0,04 0,054 0,085 0,135 0,17 0,32 0,485 0,6 1,02

Tees 0,265 0,21 0,255 0,31 0,325 0,6 0,85 1,29 1,9

*Reducing Tees – 0,289 0,323 0,415 0,448 0,81 1,32 1,675 2,55

Welding Bosses – 0,072 0,085 0,135 0,205 0,3 0,41 0,56 1,225

End Caps 0,02 0,035 0,058 0,085 0,13 0,21 0,3 0,475 0,73

90° Elbows 0,155 0,13 0,13 0,225 0,29 0,5 0,75 1,1 1,7

45° Elbows 0,072 0,06 0,085 0,18 0,222 0,36 0,555 0,85 1,2

Unions 0,157 0,157 0,188 0,28 0,45 0,775 1,2 1,4 2,25

#Weights of the smallest reduction, i.e. the heaviest*Weights of the largest reduction, i.e. the heaviest

CATALOGO 14/11/05 13:35 Página 34

Page 35: Aceros y Aleaciones_TUBOS

35

WEIGHT OF FITTINGS

(ANSI B16.11) 6000 LBS SOCKET-WELD FITTINGS

TYPE APPROXIMATE WEIGHTS IN Kg

SIZE INCHES 1/8 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2 2

SIZE METRIC 6 8 10 15 20 25 32 40 50

Couplings – 0,085 0,13 0,205 0,275 0,48 0,68 1,05 1,95

#Reducing Couplings – 0,1 0,148 0,272 0,355 0,5 0,75 1,275 2,2

Half Couplings – 0,094 0,15 0,25 0,34 0,65 0,751 1 2,1

Tees – – – 0,675 1,2 1,58 1,8 3,005 3,6

*Reducing Tees – – – 0,805 1,359 1,85 2,3 3,68 4,15

Welding Bosses – 0,09 0,135 0,2 0,27 0,4 0,6 1 1,78

End Caps – 0,105 0,175 0,188 0,23 0,41 0,63 0,8 1,4

90° Elbows – – – 0,4 0,628 1 1,4 2,35 3

45° Elbows – – – 0,369 0,58 0,905 1,125 2,125 2,6

TYPE APPROXIMATE WEIGHTS IN Kg

SIZE INCHES 1/8 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2 2

SIZE METRIC 6 8 10 15 20 25 32 40 50

Screwed/Plain 3000 lbs 0,040 0,054 0,085 0,135 0,170 0,320 0,485 0,600 0,925

Plain 6000 lbs 0,105 0,130 0,180 0,225 0,290 0,550 0,80 1,100 1,400

Screwed 6000 lbs 0,170 0,215 0,285 0,325 0,501 0,750 0,951 1,600 2,100

#Weights of the smallest reduction, i.e. the heaviest*Weights of the largest reduction, i.e. the heaviest

BS3799 SWAGE NIPPLES

#Weights of the smallest reduction, i.e. the heaviest*Weights of the largest reduction, i.e. the heaviest

(ANSI B16.11) 6000 LBS SCREWED FITTINGS

TYPE APPROXIMATE WEIGHTS IN Kg

SIZE INCHES 1/8 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2 2

SIZE METRIC 6 8 10 15 20 25 32 40 50

Round Nipples – – – 0,191 0,272 0,43 – 0,716 1,008

Hexagon Nipples 0,045 0,06 0,08 0,12 0,195 0,3 0,48 0,493 0,61

#Hexagon ReducingNipples 0,04 0,055 0,07 0,085 0,138 0,275 0,39 0,3 0,504

Couplings 0,08 0,085 0,105 0,2 0,45 0,945 1 1,85 3,4

Reducing Couplings 0,088 0,105 0,126 0,245 0,509 1,35 1,455 2,222 3,955

Half Couplings 0,06 0,065 0,08 0,115 0,225 0,454 0,525 0,95 1,6

End Caps 0,06 0,065 0,085 0,145 0,2 0,335 0,585 0,75 1,45

90° Elbows 0,285 0,275 0,475 0,7 1,6 3,05 3,4 6 9,4

45° Elbows 0,265 0,245 0,225 0,625 0,95 1,12 2,125 2,6 4,3

Tees 0,48 0,425 0,6 0,9 1,65 2,1 3,5 4,4 8,5

*Reducing Tees – 0,6 0,78 1,2 2 2,34 4,05 4,94 10,4

Welding Bosses – 0,085 0,115 0,21 0,46 0,9 1,1 1,85 3,25

#Weights of the smallest reduction, i.e. the heaviest*Weights of the largest reduction, i.e. the heaviest

CATALOGO 14/11/05 13:35 Página 35

Page 36: Aceros y Aleaciones_TUBOS

90° ELBOWS, BUTT-WELD FITTINGS (LONG RADIUS)

36

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Sch Sch Sch Sch Sch Sch Std Sch Sch Sch Sch Sch Sch Sch Sch XXS

Inches Metric 5s 10s 10 20 30 40s Wall 40 60 80s XS 80 100 120 140 160

1/2 15 0,03 0,05 0,06 0,06 0,09 0,09 0,12 0,12

3/4 20 0,04 0,07 0,08 0,08 0,11 0,11 0,15 0,15

1 25 0,07 0,14 0,15 0,15 0,2 0,2 0,28 0,38

11/4 32 0,1 0,23 0,26 0,26 0,35 0,35 0,44 0,6

11/2 40 0,15 0,3 0,4 0,4 0,55 0,55 0,65 0,95

2 50 0,3 0,5 0,7 0,7 0,95 0,95 1,4 1,7

21/2 65 0,55 0,85 1,4 1,4 1,5 1,5 2,5 3,2

3 80 1 1,25 2,5 2,5 2,9 2,9 3,75 5,5

31/4 90 1,2 1,65 3 3 4 4 – 8

4 100 1,6 2,1 4 4 6 6 7,5 9 12

5 125 2,7 3,65 6,8 6,8 9,3 9,3 12,7 15 18

6 150 4,4 5,45 11 11 16,8 16,8 23 26 29,5

8 200 8,8 10,2 17,25 19 22 22 27,25 34,8 34,8 38 40,5 52 55 54

10 250 16,8 18,15 25,85 33,15 41,5 53,9 53,9 53,9 61,16 75 85 97 109

12 300 24 27,25 37,2 49 60 60 61,25 81,7 80 80 107,4 123 140 157 180

14 350 28 39,95 50 59 70 70 70 83 109 94 94 135 188 190 224 247,45

16 400 38 51,6 64 78,3 95 95 95 125 162 125 125 202 260 274 323 367

18 450 48 65,4 82 99,85 139,15 120 120 176,15 231,5 158 158 290,55 390 405 422 545

20 500 58,4 84,9 100 146 194 146 146 228,35 311 194 194 390,45 476 508 607 770

22 550 – – 120 – – – 177,97 – – – 236 – – – – –

24 600 88 146 146 220 318,25 220 220 363,15 532,5 282 282 657,85 820 954 1100 1270

WEIGHT OF FITTINGS

CATALOGO 14/11/05 13:35 Página 36

Page 37: Aceros y Aleaciones_TUBOS

37

90° ELBOWS, BUTT-WELD FITTINGS (SHORT RADIUS)

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Sch Sch Sch Sch Sch Sch Std Sch Sch Sch Sch Sch Sch Sch Sch XXS

Inches Metric 5s 10s 10 20 30 40s Wall 40 60 80s XS 80 100 120 140 160

1/2 15 0,02 0,04 0,05 0,05 0,07 0,073/4 20 0,03 0,05 0,06 0,06 0,8 0,81 25 0,05 0,1 0,11 0,11 0,15 0,1511/4 32 0,08 0,17 0,18 0,18 0,26 0,2611/2 40 0,11 0,23 0,3 0,3 0,39 0,392 50 0,23 0,38 0,53 0,53 0,67 0,6721/2 65 0,41 0,64 1,05 1,05 1,05 1,053 80 0,75 0,94 1,88 1,88 2,03 2,0331/2 90 0,9 1,24 2,25 2,25 2,8 2,84 100 1,2 1,58 3 3 4,2 4,2 4,55 125 2,03 2,74 5,1 5,1 6,5 6,5 96 150 3,3 4,09 8,25 8,25 11,75 11,75 13,58 200 6,6 7,65 11,1 11,35 16,5 16,5 18,15 24,35 24,35 26,35 29 3210 250 12,45 13,61 17,35 21,35 31,13 31,13 37,7 37,7 37,7 40,85 50 53 6212 300 18 20,44 25 33,15 45 45 48 54,5 56 56 68 81,25 92 9914 350 21 29,96 37,5 39,5 52,5 52,5 52,5 54,45 74 66 66 93,5 124 120 138,816 400 28,5 38,7 48 52,2 71,25 71,25 71,25 104,3 106,7 104,3 104,3 138 171,5 166 19818 450 36 49,05 61,5 65,35 92,15 90 90 118 154,35 110,6 110,6 193 257,4 283 38720 500 43,8 63,68 75 109,5 135,8 109,5 109,5 154,35 208 135,8 135,8 261 332 376 43022 550 – – 90 – – – – – – – – – – – –24 600 66 109,5 109,5 165 214,3 165 165 256,5 355,5 197,5 197,5 443,5 530 621 680

CATALOGO 14/11/05 13:35 Página 37

Page 38: Aceros y Aleaciones_TUBOS

END CAPS, BUTT-WELD FITTINGS

38

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Sch Sch Sch Sch Sch Sch Std Sch Sch Sch Sch Sch Sch Sch Sch XXS

Inches Metric 5s 10s 10 20 30 40s Wall 40 60 80s XS 80 100 120 140 160

1/2 15 0,02 0,03 0,03 0,03 0,05 0,05 0,06 0,063/4 20 0,02 0,04 0,04 0,04 0,06 0,06 0,08 0,081 25 0,04 0,07 0,08 0,08 0,1 0,1 0,14 0,1911/4 32 0,05 0,11 0,13 0,13 0,18 0,18 0,22 0,311/2 40 0,08 0,15 0,2 0,2 0,28 0,28 0,33 0,482 50 0,15 0,25 0,35 0,35 0,46 0,46 0,7 0,8521/2 65 0,28 0,43 0,7 0,7 0,75 0,75 1,25 1,63 80 0,5 0,63 1,25 1,25 1,45 1,45 1,88 2,7531/2 90 0,6 0,83 1,5 1,5 2 2 – 44 100 0,8 1,05 2 2 3 3 3,75 4,5 5,15 125 1,35 1,83 3,4 3,4 4,65 4,65 6,35 7,5 96 150 2,2 2,73 5,5 5,5 8,4 8,4 11,5 13 14,758 200 4,4 5,1 10 10 11 11 13,6 17,4 17,4 19 20,25 26 27,5 2710 250 8,3 9,08 18,5 15,85 20,75 20,75 29,95 26,95 26,95 30,58 37,5 42,5 48,5 54,412 300 12 13,63 24,75 24,5 30 30 30,85 40,85 40 40 53,7 61,5 70 78,5 9014 350 14 20 25 37 35 35 35 40,85 54,5 47 47 67,5 94 95 112 123,7316 400 19 25,8 32 46,5 47,5 47,5 47,5 62,5 81 62,5 62,5 101 130 137 161,5 18318 450 24 32,7 41 56 69,45 60 60 87,15 115,75 79 79 145,25 195 202,5 211 272,520 500 29,2 42,45 50 73 97 73 73 113,5 155,5 97 97 195,23 238 254 303,5 38522 550 – – 60 – – – 88,98 – – – 118 – – – – –24 600 44 73 73 110 159 110 110 190,65 266,5 141 141 333,93 410 477 545 635

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Sch Sch Sch Sch Sch Sch Std Sch Sch Sch Sch Sch Sch Sch Sch XXS

Inches Metric 5s 10s 10 20 30 40s Wall 40 60 80s XS 80 100 120 140 160

1/2 15 0,01 0,01 0,03 0,03 0,05 0,053/4 20 0,02 0,02 0,06 0,06 0,09 0,091 25 0,04 0,05 0,1 0,1 0,13 0,13 0,15 0,211/4 32 0,05 0,07 0,14 0,14 0,19 0,19 0,23 0,311/2 40 0,08 0,1 0,2 0,2 0,23 0,23 0,3 0,352 50 0,1 0,13 0,25 0,25 0,3 0,3 0,55 0,621/2 65 0,14 0,18 0,35 0,35 0,45 0,45 0,9 13 80 0,25 0,36 0,7 0,7 0,85 0,85 1,45 1,831/2 90 0,4 0,5 1 1 1,3 1,3 – 2,754 100 0,43 0,55 1,1 1,1 1,6 1,6 2,5 2,75 3,55 125 0,8 1 2 2 2,7 2,7 4 5 5,56 150 1,2 1,5 3 3 4,4 4,4 6 7,5 8,18 200 2,2 2,75 4,5 5 5,5 5,5 7 8,35 8,35 11 15,5 18,5 15,45 13,1510 250 3,6 4,45 6 8 9 9 13,6 13,6 13,6 16,25 21 30 28 28,512 300 6 7,5 10 13 15 15 19 25,5 22,5 22,5 29,5 32,5 41 42 44,514 350 6,4 8,17 14 13,5 16 16 16 24,5 38 27 27 36,3 50 47 52 59,616 400 8,4 10,67 18 18 21 21 21 31,5 52,5 31,5 31,5 52,25 64 59 73 7918 450 10,4 13 22 22 30 26 26 42 66 36 36 72,5 75 88 93 10420 500 13,6 17 29 34 42 34 34 56,75 94,5 42 42 98,5 96 105 153 17022 550 – – 35,5 – – – 42 – – – 51 – – – – –24 600 20,8 26 44 52 74,5 52 52 96,5 120 60 60 150 118 200 250 285

45° ELBOWS, BUTT-WELD FITTINGS

WEIGHT OF FITTINGS

CATALOGO 14/11/05 13:35 Página 38

Page 39: Aceros y Aleaciones_TUBOS

39

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Sch Sch Sch Sch Sch Sch Std Sch Sch Sch Sch Sch Sch Sch Sch XXS

Inches Metric 5s 10s 10 20 30 40s Wall 40 60 80s XS 80 100 120 140 160

1/2 15 0,07 0,09 0,16 0,16 0,25 0,25 0,27 0,273/4 20 0,09 0,11 0,23 0,23 0,38 0,38 0,47 0,471 25 0,14 0,27 0,35 0,35 0,5 0,5 0,86 0,6511/4 32 0,35 0,45 0,9 0,9 1,05 1,05 1,25 1,1811/2 40 0,55 0,65 1,35 1,35 1,5 1,5 1,85 22 50 0,68 1,7 1,7 1,7 2,15 2,15 3,18 321/2 65 1,06 2,18 2,7 2,7 3 3 4 4,53 80 1,5 3 3,75 3,75 3,8 3,8 6,58 7,131/2 90 2 4,05 5 5 5,25 5,25 10,94 100 2,6 4,4 6,5 6,5 7,65 7,65 9 17 155 125 4 7,42 10 10 13,5 13,5 17,5 25 246 150 6,35 12,35 16 16 19,3 19,3 24 39,5 37,68 200 10,7 20 23 24,6 27 27 31,75 33 33 43,6 49,5 54 70,35 6810 250 18 28,15 34,7 40 45 45 60 60 60 67,5 74 93 98,5 120,312 300 26 47,45 59 56,6 65 65 70,5 95 78 78 115 136,2 150 176,5 183,8514 350 40,7 69,9 87,16 94,5 102 102 102 105 135 115 115 165 206 240 275 30016 400 43,95 72,65 90,8 100 110 110 110 167 206,5 167 167 249 335 330 385 42518 450 53,95 101,7 127,12 127 164 135 135 237,45 277 190 190 322 380 450 500 59020 500 67,2 169,8 199,76 168 245 168 168 320 378,65 245 245 459 540 590 720 79022 550 – – 220 – – – 220 – – – 280 – – – – –24 600 95,9 306,45 310 240 373 240 240 570,65 653,75 350 350 748 910 1100 1180 1310

EQUAL TEES, BUTT-WELD FITTINGS

WEIGHT OF FITTINGS

REDUCING TEES, BUTT-WELD FITTINGS

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Sch Sch Sch Sch Sch Sch Std Sch Sch Sch Sch Sch Sch Sch Sch XXS

Inches Metric 5s 10s 10 20 30 40s Wall 40 60 80s XS 80 100 120 140 160

1/2 15 0,07 0,09 0,16 0,16 0,25 0,25 0,27 0,273/4 20 0,09 0,11 0,23 0,23 0,38 0,38 0,47 0,471 25 0,14 0,27 0,35 0,35 0,5 0,5 0,86 0,6511/4 32 0,35 0,45 0,9 0,9 1,05 1,05 1,25 1,1811/2 40 0,55 0,65 1,35 1,35 1,5 1,5 1,85 22 50 0,68 1,7 1,7 1,7 2,15 2,15 3,18 321/2 65 1,06 2,18 2,7 2,7 3 3 3,85 4,23 80 1,5 3 3,75 3,75 3,8 3,8 6,13 6,631/2 90 2 4,05 5 5 5,25 5,25 10,94 100 2,6 4,4 6,5 6,5 7,65 7,65 9 15,9 155 125 4 7,42 10 10 13,5 13,5 17,5 23 23,156 150 5,6 12,35 14 14 19,3 19,3 24 32,7 37,68 200 10,7 20 23 24,6 27 27 31,75 33 33 43,6 49,5 49,25 55,6 51,310 250 17,45 26,3 33,15 38,6 43,5 43,5 55 55 55 65,83 63,5 88,5 95 11312 300 25,25 47,25 59 56,6 63 63 70,5 95 78 78 106,24 124,85 140,85 158 163,4514 350 40,7 69,9 87,16 94,5 102 102 102 105 135 115 115 162,28 206 235 275 30016 400 43,95 72,65 90,8 100 110 110 110 167 206,5 167 167 200 335 320 360 41018 450 53,95 101,7 127,12 127 164 135 135 237,45 256,5 190 190 278,87 380 440 475 55020 500 67,2 169,8 199,76 168 218 168 168 265,1 350,5 218 218 405,42 540 570 680 77022 550 – – 220 – – – 220 – – – 280 – – – – –24 600 94,45 268,99 272 227 373 237 237 390,45 544,8 350 350 606,1 910 1060 1140 1270

CATALOGO 14/11/05 13:35 Página 39

Page 40: Aceros y Aleaciones_TUBOS

ECCENTRIC, REDUCERS, BUTT-WELD FITTINGS

40

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Sch Sch Sch Sch Sch Sch Std Sch Sch Sch Sch Sch Sch Sch Sch XXS

Inches Metric 5s 10s 10 20 30 40s Wall 40 60 80s XS 80 100 120 140 160

1/2 153/4 20 0,03 0,03 0,07 0,07 0,1 0,1 0,15 0,141 25 0,05 0,07 0,13 0,13 0,16 0,16 0,23 0,211/4 32 0,07 0,09 0,18 0,18 0,22 0,22 0,27 0,311/2 40 0,12 0,14 0,26 0,26 0,35 0,35 0,48 0,452 50 0,15 0,23 0,41 0,41 0,57 0,57 0,95 0,921/2 65 0,32 0,41 0,77 0,77 1,01 1,01 1,35 1,353 80 0,4 0,5 1 1 1,35 1,35 1,9 1,831/2 90 0,55 0,68 1,3 1,3 1,89 1,89 – 3,24 100 0,65 0,82 1,6 1,6 2,27 2,27 3,65 3,65 3,855 125 1,1 1,35 2,75 2,75 3,92 3,92 6,35 6,35 6,356 150 1,6 2 3,95 3,95 5,94 5,94 7,5 10 98 200 2,6 3,27 5 5,58 6,5 6,5 8 9,86 9,86 11,8 13,5 16,35 16,5 14,510 250 4,3 5,45 7,25 8,99 10,7 10,7 14,48 14,48 14,48 17,25 20,45 24,5 28,5 29,512 300 6 7,7 9,7 13,21 15 15 16,35 22,25 19,79 19,79 28,15 32,65 38,15 44,25 4914 350 10,75 13,6 23 22,25 26,85 26,85 26,85 31,3 41,75 35,55 35,55 52,25 64 73 78 8616 400 13,25 16,35 28 27,5 33,15 33,15 33,15 44 56,75 44 44 73,5 83 97 112 12118 450 16 19,98 34 33,5 46,76 40 40 59,5 77,4 53,12 53,12 97,6 116 136 145 15920 500 23,8 29,75 50 59,45 79 59,45 59,45 93 124,85 79 79 159 163 178 305 34022 550 – – 57 – – – 65,35 – – – 86,71 – – – – –24 600 28,7 36,32 63 71,7 107,14 71,7 71,7 129,4 180,7 95,34 95,34 228 241 295 540 610

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Sch Sch Sch Sch Sch Sch Std Sch Sch Sch Sch Sch Sch Sch Sch XXS

Inches Metric 5s 10s 10 20 30 40s Wall 40 60 80s XS 80 100 120 140 160

1/2 153/4 20 0,03 0,03 0,07 0,07 0,1 0,1 0,15 0,141 25 0,05 0,07 0,13 0,13 0,16 0,16 0,23 0,211/4 32 0,07 0,09 0,18 0,18 0,22 0,22 0,27 0,311/2 40 0,12 0,14 0,26 0,26 0,35 0,35 0,48 0,452 50 0,15 0,23 0,41 0,41 0,57 0,57 0,95 0,921/2 65 0,32 0,41 0,77 0,77 1,01 1,01 1,35 1,353 80 0,4 0,5 1 1 1,35 1,35 1,9 1,831/2 90 0,55 0,68 1,3 1,3 1,89 1,89 – 3,24 100 0,65 0,82 1,6 1,6 2,27 2,27 3,65 3,65 3,855 125 1,1 1,35 2,75 2,75 3,92 3,92 6,35 6,35 6,356 150 1,6 2 3,95 3,95 5,94 5,94 7,5 10 98 200 2,6 3,27 5 5,58 6,5 6,5 8 9,86 9,86 11,8 13,5 16,35 16,5 14,510 250 4,3 5,45 7,25 8,99 10,7 10,7 14,48 14,48 14,48 17,75 20,45 24,5 28,5 29,512 300 6 7,7 9,7 13,21 15 15 16,35 22,25 19,79 19,79 28,15 32,65 38,15 44,25 4914 350 10,75 13,6 23 22,25 26,85 26,85 26,85 31,3 41,75 35,55 35,55 52,25 64 73 78 8616 400 13,25 16,35 28 27,5 33,15 33,15 33,15 44 56,75 44 44 73,5 83 97 112 12118 450 16 19,98 34 33,5 46,76 40 40 59,5 77,4 53,12 53,12 97,6 116 136 145 15920 500 23,8 29,75 50 59,45 79 59,45 59,45 93 124,85 79 79 159 163 178 305 34022 550 – – 57 – – – 65,35 – – – 86,71 – – – – –24 600 28,7 36,32 63 71,7 107,14 71,7 71,7 129,4 180,7 95,34 95,34 228 241 295 540 610

CONCENTRIC REDUCERS, BUTT-WELD FITTINGS

WEIGHT OF FITTINGS

N.B.– Weights are of the smallest reduction, i.e. the heaviest.

CATALOGO 14/11/05 13:35 Página 40

Page 41: Aceros y Aleaciones_TUBOS

41

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Sch Sch Sch Sch Sch Sch Std Sch Sch Sch Sch Sch Sch Sch Sch XXS

Inches Metric 5s 10s 10 20 30 40s Wall 40 60 80s XS 80 100 120 140 160

1/2 15 0,13 0,14 0,33/4 20 0,18 0,2 0,351 25 0,29 0,38 0,5 0,6611/4 32 0,41 0,54 0,67 0,9511/2 40 0,54 0,67 0,9 1,22 50 0,98 1,34 2,01 2,4621/2 65 1,54 2,05 2,69 3,713 80 2,1 2,8 3,93 5,1831/2 90 2,47 2,94 6,254 100 2,99 4,17 5,27 6,29 7,685 125 5,22 7,41 9,6 11,79 13,846 150 6,79 10,27 13,04 16,25 19,28 200 7,99 8,84 10,28 12,81 15,63 18,21 21,83 24,55 26,79 26,1610 250 12,1 14,87 17,86 23,8 23,94 28,13 33,57 38,98 45,54 50,4512 300 14,64 19,29 21,88 23,21 32,23 29,38 38,84 47,32 55,8 62,05 71,4314 350 18 15,8 28,57 28,57 32,59 44,2 39,73 54,9216 400 19,75 16,65 32,14 32,14 43,3 56,7 42,86 71,8818 450 24,25 21,3 44,2 38 56,25 74,2 50 91,5220 500 36 31,7 55,8 41,96 65,63 88,4 55,81 112,122 550 42,95 37 65 46,88 78 109 62,07 14224 600 50,05 45,55 75,9 50,45 91,52 128,6 67,41 160

STUB ENDS, BUTT-WELD FITTINGS (ANSI B16.9)

WEIGHT OF FITTINGS

STUB ENDS, BUTT-WELD FITTINGS (MSS-SP-43)

N.B. SIZE APPROXIMATE WEIGHTS IN Kg

Inches Metric Sch 5s Sch 10s Sch 40s Sch 80s1/2 15 0,03 0,04 0,09 0,123/4 20 0,04 0,06 0,12 0,161 25 0,06 0,08 0,15 0,2211/4 32 0,08 0,1 0,2 0,3111/2 40 0,11 0,14 0,28 0,392 50 0,17 0,2 0,41 0,6921/2 65 0,25 0,33 0,66 1,053 80 0,35 0,44 0,89 1,4631/2 90 0,5 0,63 1,26 1,544 100 0,61 0,76 1,52 2,495 125 1,06 1,33 2,66 3,556 150 1,2 1,51 3,02 5,498 200 2,09 2,61 5,22 9,9710 250 3,63 4,54 9,08 13,7512 300 5,33 6,67 13,25 19,6414 350 5,81 7,26 14,53 2916 400 6,54 8,17 16,34 37,518 450 7,72 9,65 19,3 49,2520 500 8,54 10,67 21,34 6022 550 9,8 11,6 23 77,524 600 10,26 12,83 25,65 88,25

CATALOGO 14/11/05 13:35 Página 41

Page 42: Aceros y Aleaciones_TUBOS

300 lbs PIPE FLANGES

42

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Socket Weld LapScrewed Weld Neck Blind Joint

1/2 15 0,5 0,5 0,82 0,82 0,5

3/4 20 0,91 0,91 0,82 0,91 0,91

1 25 0,91 0,91 1 1 0,95

11/4 32 1,27 1,27 1,36 1,27 1,27

11/2 40 1,36 1,36 1,81 1,36 1,36

2 50 2,27 2,27 2,72 2,27 2,27

21/2 65 3,63 3,63 4,08 3,18 3,63

3 80 4,08 4,08 4,54 4,08 4,08

31/2 90 5 5,44 5,9 5

4 100 5,9 6,8 7,71 5,9

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Socket Weld LapScrewed Weld Neck Blind Joint

5 125 6,8 8,62 9,07 6,8

6 150 8,62 10,89 11,79 8,62

8 200 13,61 17,69 20,41 13,61

10 250 19,5 23,59 31,75 19,5

12 300 29,03 36,29 49,9 29,03

14 350 35,38 49,9 59,42 47,63

16 400 42,18 63,5 77,11 63,5

18 450 54,43 68,04 94,8 72,57

20 500 72,12 81,65 123,4 88,45

24 600 95,25 117,93 186,4 124,74

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Socket Weld LapScrewed Weld Neck Blind Joint

1/2 15 0,68 0,68 0,91 0,91 0,68

3/4 20 1,13 1,13 1,36 1,36 1,13

1 25 1,36 1,36 1,81 1,81 1,36

11/4 32 2,04 2,04 2,49 2,72 2,04

11/2 40 2,95 2,95 3,18 3,18 2,95

2 50 3,18 3,18 3,63 3,63 3,18

21/2 65 4,54 4,54 5,44 5,44 4,54

3 80 5,9 5,9 7,26 7,26 5,9

31/2 90 7,26 9,07 9,53 7,26

4 100 9,53 11,34 12,25 9,53

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Socket Weld LapScrewed Weld Neck Blind Joint

5 125 11,79 15,42 15,88 11,79

6 150 15,88 20,41 22,68 15,88

8 200 24,49 31,75 36,74 24,49

10 250 34,93 44,91 57,61 34,93

12 300 49,9 64,41 83,46 63,5

14 350 74,39 84,37 107,1 86,18

16 400 99,79 111,6 139,3 113,4

18 450 127 138,4 176,9 133,8

20 500 147,4 171,5 223,2 167,8

24 600 222,3 247,2 342 249,5

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Weld LapScrewed Neck Blind Joint

4 100 11,79 15,88 14,97 11,34

5 125 14,06 19,5 19,96 13,15

6 150 19,96 25,85 27,67 19,05

8 200 30,36 40,37 45,36 29,03

10 250 41,28 57,15 70,31 50,8

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Weld LapScrewed Neck Blind Joint

12 300 58,51 80,29 102,5 68,9514 350 86,64 105,7 140,6 95,2516 400 114,8 133,4 180,5 12718 450 140,6 163,3 227,7 156,520 500 171,5 201,9 281,7 190,524 600 244,5 290,3 424,6 279

150 lbs PIPE FLANGES

400 lbs PIPE FLANGES

WEIGHT OF FLANGES

CATALOGO 14/11/05 13:35 Página 42

Page 43: Aceros y Aleaciones_TUBOS

43

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Socket Weld LapScrewed Weld Neck Blind Joint

1/2 15 1,27 1,27 1,36 0,91 1,27

3/4 20 1,36 1,36 1,59 1,36 1,36

1 25 1,59 1,59 1,81 1,81 1,59

11/4 32 2,04 2,04 2,27 2,72 2,04

11/2 40 2,95 2,95 3,63 3,63 2,95

2 50 3,63 3,63 4,54 4,54 3,63

21/2 65 5,44 5,44 6,35 6,3 5,44

3 80 6,8 6,8 8,16 9,07 6,8

31/2 90 9,53 11,79 13,15 9,53

4 100 14,97 16,78 18,6 14,97

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Socket Weld LapScrewed Weld Neck Blind Joint

5 125 28,58 30,84 30,84 28,58

6 150 36,29 36,74 39,01 36,29

8 200 44 50,8 63,05 44

10 250 80,29 88,45 108,9 88,45

12 300 97,52 102,5 133,8 108,8

14 350 117,5 157,4 171,5 131,5

16 400 166 218,2 239 181,4

18 450 215,5 251,7 301,6 212,7

20 500 277,6 313 387,8 285,8

24 600 370,1 4432 533 392,8

600 lbs PIPE FLANGES

900 lbs PIPE FLANGES

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Socket Weld LapScrewed Weld Neck Blind Joint

1/2 15 2,72 2,72 3,18 1,81 2,72

3/4 20 3,18 3,18 3,4 2,72 3,18

1 25 3,4 3,4 3,86 4,08 3,4

11/4 32 4,54 4,54 4,54 4,54 4,54

11/2 40 6,35 6,35 6,35 6,35 6,35

2 50 9,53 9,53 10,89 11,34 9,53

21/2 65 16,33 16,33 16,33 15,88 16,33

3 80 21,77 21,77 21,77 21,77

4 100 33,11 31,3 33,11 33,11

5 125 59,87 59,87 64,41 59,87

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Socket Weld LapScrewed Weld Neck Blind Joint

6 150 74,39 74,39 72,12 74,39

8 200 117 123,8 137 117

10 250 197,8 205,9 230 220

12 300 302,6 313 351,5 285,8

14 350 426,4 442,3 403,7

16 400 567 589,7 521,7

18 450 737,1 793,8 669

20 500 929,9 1009,3 805,2

24 600 1508,3 1644,4 1281,5

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Weld LapScrewed Neck Blind Joint

3 80 14,06 14,51 14,51 14,06

4 100 24,04 23,13 24,49 24,04

5 125 37,65 39,01 39,46 37,65

6 150 49 49,9 51,26 49

8 200 78 84,82 89,36 86,18

10 250 111,1 121,6 131,5 124,7

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Weld LapScrewed Neck Blind Joint

12 300 147,9 168,7 187,3 167,8

14 350 172,4 254,9 224,1 188,2

16 400 208,2 310,7 280,8 210,9

18 450 293,5 419,1 399,2 294,8

20 500 359,3 528,0 502,1 367,4

24 600 671,3 680,4 952,1 703,1

1500 lbs PIPE FLANGES

CATALOGO 14/11/05 13:35 Página 43

Page 44: Aceros y Aleaciones_TUBOS

ROUND BAR – metric

44

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Weld LapScrewed Neck Blind Joint

1/2 15 3,18 3,18 3,18 3,18

3/4 20 3,63 3,63 3,63 3,63

1 25 4,99 5,44 4,99 4,99

11/4 32 7,26 7,71 7,71 7,26

11/2 40 9,98 11,34 10,43 9,98

2 50 17,24 19,05 17,69 16,78

21/2 65 24,94 23,59 25,4 24,04

SIZE WEIGHTS IN Kg

mm Wt per ft Wt per M

0,5 0,0004 0,0015

1,0 0,0018 0,0062

1,5 0,0042 0,014

2 0,0076 0,025

2,5 0,012 0,039

3 0,017 0,055

3,5 0,023 0,076

4 0,03 0,099

4,5 0,038 0,125

5 0,047 0,154

5,5 0,057 0,187

6 0,068 0,222

6,5 0,079 0,26

7 0,092 0,302

7,5 0,106 0,347

8 0,12 0,395

8,5 0,136 0,445

9 0,152 0,499

9,5 0,169 0,556

10 0,188 0,617

11 0,227 0,746

12 0,271 0,888

13 0,317 1,04

14 0,369 1,21

15 0,424 1,39

16 0,482 1,58

17 0,543 1,78

18 0,61 2

19 0,68 2,23

20 0,753 2,47

SIZE WEIGHTS IN Kg

mm Wt per ft Wt per M

21 0,829 2,72

22 0,908 2,98

23 0,994 3,26

24 1,08 3,55

25 1,17 3,85

26 1,27 4,17

27 1,37 4,5

28 1,47 4,83

30 1,69 5,55

32 1,92 6,31

33 2,05 6,71

35 2,3 7,55

36 2,44 7,99

38 2,71 8,9

39 2,86 9,38

40 3,01 9,86

42 3,32 10,88

45 3,8 12,48

48 4,33 14,21

50 4,7 15,41

52 5,08 16,67

55 5,69 18,65

56 5,89 19,33

58 6,32 20,74

60 6,77 22,2

62 7,22 23,7

64 7,7 25,25

65 7,94 26,05

68 8,69 28,51

70 9,21 30,21

SIZE WEIGHTS IN Kg

mm Wt per ft Wt per M

72 9,74 31,96

75 10,57 34,68

80 12,03 39,46

90 15,22 49,94

100 18,79 61,65

110 22,74 74,6

120 27,07 88,8

130 31,7 104

140 36,88 121

150 42,37 139

160 48,16 158

170 54,26 178

180 60,96 200

190 67,97 223

200 75,3 247

220 90,8 298

240 108 355

250 117 385

260 127 417

280 147 483

300 169 555

320 192 631

340 217 713

350 230 755

360 244 799

380 271 890

400 301 986

500 469 1540

N.B. SIZE APPROXIMATE WEIGHTS IN KgInches Metric Slip-on

and Weld LapScrewed Neck Blind Joint

3 80 37,65 42,64 39,01 36,29

4 100 56,7 65,77 61,23 54,43

5 125 95,25 111,1 102,06 93

6 150 147,4 172,4 156,5 142,9

8 200 220 63,1 240,4 213,2

10 250 421,8 87,6 464,9 408,2

12 300 499 691,7 589,7 499

2500 lbs PIPE FLANGES

CATALOGO 14/11/05 13:35 Página 44

Page 45: Aceros y Aleaciones_TUBOS

45

WEIGHTS IN Kg

THICKNESS WT PER SQ FT WT PER SQ M 2000 2500 3000 4000 6000

x 1000 mm x 1250 mm x 1500 mm x 2000 mm x 2000 mm

5 mm 3,802 40,925 82 128 184 327 491

6 mm 4,563 49,111 98 153 221 393 589

8 mm 6,084 65,483 131 205 295 524 786

10 mm 7,604 81,845 164 256 368 655 982

12 mm 9,125 98,222 196 307 442 786 1179

15 mm 11,406 122,778 246 384 553 982 1473

20 mm 15,207 163,689 327 512 737 1310 1964

25 mm 19,01 204,622 409 639 921 1637 2456

30 mm 22,813 245,556 491 767 1105 1964 2947

40 mm 30,414 327,378 655 1023 1473 2619 3929

50 mm 38,02 409,244 819 1279 1842 3274 4911

PLATE – metric

CATALOGO 14/11/05 13:35 Página 45

Page 46: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 46

Page 47: Aceros y Aleaciones_TUBOS

47

MATERIALS INFORMATION

See inside for further details

TRADEMARKS

Some alloys presented in this catalogue are registered trade marks ® wich are theproperty of the registered owner:

• AL-6XN of ATI Properties Inc.• Ferralium of Meighs Ltd.• 17-4PH of Armco.• 20 Cb3 of Carpenter Technology, Co.• Hastelloy B3-C22-C276-C4 of Haynes International.• Incoloy: 028-330-800-800H-800HT-825-A286-DS; Inconel: 600-601-625-718-

X750 and Honel: 400-K500 of INCO Alloys International.

12

CATALOGO 14/11/05 13:35 Página 47

Page 48: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 48

Page 49: Aceros y Aleaciones_TUBOS

310S

310S

Alloy: AISI-310S(Cr. Ni. alloy)UNS-S31008

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

Ni Cr Mo Co Fe Cu C Mn Si P S N

Mini 19 24Max 22 26 0,08 2 1,5 0,045 0,030 (x)Balance x

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Representative Tensile Properties Typical Creep-Rupture Properties

UltimateTemp Tensile 0.2% Yield Elongation

°F Strength, psi Strength, psi %

70 80,000 35,000 521000 67,800 20,800 471200 54,100 20,700 431400 35,100 19,300 461600 19,100 12,200 48

Density Ib/in3 Melting Range °F

0.284 2470-2555

Coefficient* of Modulus ofThermal Thermal Elasticity

Temp Expansion, Conductivity Dynamic,°F in/in °F x 10-6 Btu•ft/ft2•hr•°F psi x 106

70 – 7.6 29.01000 9.5 13.6 23.01200 9.8 15.2 21.81400 10.05 16.8 20.51600 10.15 18.4 19.21800 10.3 20.0 –2000 10.6 – –

Stress, psi, for a 10,000 hrTemp Secondary Creep Rate Rupture

°F 1% in 10,000 hrs Strength, psi

1200 14,900 14,4001400 3,300 4,5001600 1,100 1,5001800 280 660

(x) cb = 10 x Cmini, 1,10 max

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

* 70°F to indicated temperature.

49

CATALOGO 14/11/05 13:35 Página 49

Page 50: Aceros y Aleaciones_TUBOS

44..ºº SSppeecciiffiiccaattiioonnss::

50

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-213 A-312 A-240 A-276 A-240 A-182 A-403 A-276A-312 A-473 A-580

B.S.

EN-10095,

X8CrNi25-21

W.Nr. 1.4841

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

Excellent resistance to oxidation under mildly cyclic conditions through 2000°F characterizes 310.Because of its high chromium and medium nickel contents, 310 has good resistance to sulfidation andother forms of hot corrosion.

310 is widely used in moderately carburizing atmospheres such as encountered in petrochemicalenvironments. The more severely carburizing atmospheres of industrial heat treating furnaces requie-re 330 or 333. 310 is not suggested for the severe thermal shock of repeated liquid quenching.

310 is often used at cryogenic temperatures, because of excellent toughness to 4 K, and low mag-netic permeability.

310 has a machinability rating of 42% relative to AISI B1112 steel. With high speed steel toolingthis is about 70 surface feet per minute. Forming operations should be at room temperature whene-ver possible.

• Oxidization resistance to 2000°F• Moderate strength at high temperature• Resistance to hot corrosion• Strength and toughness at cryogenic temperatures

Applications

• Kilns• Fluidized bed coal combustors• Radiant tubes• Tube hangers for petroleum refining and steam boilers• Coal gasifier internal components• Thermowells• Refractory anchor bolts• Burners, combustion chambers• Retorts, muffles, annealing covers• Saggers• Food processing equipment• Cryogenic structures.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

Weld with matching AWS E310-15 DC lime electrodes or ER310 bare wire.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

CATALOGO 14/11/05 13:35 Página 50

Page 51: Aceros y Aleaciones_TUBOS

316L

51

Alloy: AISI-316L(Cr. Ni. alloy)UNS-S31603

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

Ni Cr Mo Co Fe Cu C Mn Si P S N

Mini 10 16 2Max 14 18 3 0,030 2 0,75 0,045 0,030 0,10Balance x

0,2% proof stress 1% proof stress tensile strength elongation afterN/mm2 min. N/mm2 min. N/mm2 fracture (Lo=5do)

195 235 450-700 40

Temperature °C 100 150 200 250 300 350 400 450 500

0,2% proof stress 165 150 137 127 119 113 108 103 100

1% proof stress 200 180 165 153 145 139 135 130 128

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Mechanical properties at 20°C

Mechanical properties at elevated temperatures in N/mm2

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Specific gravity at 20°C .................................... 7,95 g/cm2

Thermal conductivity at 20°C ............................. 15 W/mKSpecific heat at 20°C ....................................... 500 J/kgKModulus of elasticity at 20°C ............................. 200000 N/mm2

Thermal expansion in 10-6 m/m °C .................... 20 to 100°C 16,520 to 200°C 17,520 to 300°C 17,520 to 400°C 18,520 to 500°C 18,5

44..ºº SSppeecciiffiiccaattiioonnss::

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-213 A-249 A-240 A-276 A-240 A-182 A-403 A-276A-312 A-312 A-472 A-580

A-554 A-479B.S.

W. Nr. 1.4404

316L

CATALOGO 14/11/05 13:35 Página 51

Page 52: Aceros y Aleaciones_TUBOS

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

Material is austenitic, stainless and acid resisting nickel, chromium, molybdenum steels with a verylow carbon content (ELC type).

Material features improved strength due to its nitrogen addition, which is of particular importancefor the 0,2% proof stress to be used as design basis.

Applications

Material 316L and Material No. 1.4435 are mainly used for parts and equipment in urea plant sub-jected to high pressures and temperatures, and to severe corrosion (steam separator, condenser, re-actor, stripper, scrubber). Both grades are also suitable for applications involving the attack of a varietyof chemicals in dyemills, in the textile, paper and leather industries, as well as the chemical, pharma-ceutical and plastics industries.

The steels are not magnetic.

Corrosion resistance. Intergranular corrosion

Owing to their alloying elements and to the melting technique employed. Material 316 L and 1.4435feature very good resistance to intergranular corrosion when tested according to DIN 50914. Their co-rrosion resistance is also found to be excellent when subjected to a Huey test according to ASTM A252 Practice C - a maximum corrosion rate of 0.247 g/m_hr 316L and 0.54 g/m_hr (1.4435) ob-tained as an average of 5 bolling periods of 48 hours each can be guaranteed.

Stress corrosion cracking and pitting

The alloying elements of Material No. 1.4466 give this grade improved resistance to stress corrosioncracking and pitting in high-chloride media (e.g. sea water) compared to that of conventional 18/8 steels.

Due to the increased Nickel content, Material No. 1.4465 has a considerably higher range of resis-tance to stress corrosion cracking than e.g. X2CrNiMo 1812 (TP 316 L).

Due to the Molybdenum content and the increased Chromium content there is a good corrosion re-sistance to flowing waters containing Chlorides.

Forming properties

Both grades can conveniently be cold formed, hot formed and machined.

Huey-test

Apart from the testing for resistance to grain disintegration the Huey-test also serves for investiga-ting whether there are any further inhomogeneities such as precipitations within the grain, sigma pha-se and inclusions of Ferrite. For this reason the Huey-test represents a very strict testing method,which includes a great number of parameters.

5,91 g/m2 24h=0.27 mm/year at the Huey-test. This extraordinarily low value can only be guaran-teed by special provisions at the production of the steel and by extensive quality control during the va-rious of production.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Welding presents no difficulties. With an approved welding technique for fully austenitic filler metalssound weld joints can be achieved up to a plate thickness of 80 mm. Welding should be carried out witha short arc and mean amperage taking care to prevent weave beads exeeding two times the electro-de diameter. Thick layers are to be avoided. Its is recommended to chip out the end craters. Interpasstemperature should not exceed 150°. Quite on general, no postheat-treatment is required.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

52

CATALOGO 14/11/05 13:35 Página 52

Page 53: Aceros y Aleaciones_TUBOS

317L

53

Alloy: AISI-317L(Cr. Ni. Mo. alloy)UNS-S31703

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

Ni Cr Mo Co Fe Cu C Mn Si P S N

Mini 11 18 3Max 15 20 4 0,35 2 0,75 0,040 0,030 0,10Balance x

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-213 A-249 A-240 A-276 A-240 A-182 A-403 A-276A-312 A-312 A-582 A-472 A-774 A-580

A-813-4 A-479 A-778B.S.

W.Nr. 1. 4438

X2 Cr Ni Mo 18164

AENOR Z2CND 19-15

B5 - 317S/2

JIS - SUS 317L

S.S. - 2367

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 515 MPa Elongation, mini: 40% in 2 inchYield strength, mini: 205 MPa Hardness: Brinell, max: 217

RcB, max: 96

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Physical Data

Density (lb/cu. in.) ............................... 0.29 or 8,00 Kg/dm3

Specific Gravity .............................................................. 7.9Specific Heat ............................................................... 0.12(Btu/lb/Deg F - [32-212 Deg F])Electrical Resistivity ....................................................... 444(microhm-cm (at 68 Deg F))Melting Point (Deg F) ................................................... 2550Modulus of Elasticity Tension ............................................. 28

44..ºº SSppeecciiffiiccaattiioonnss::

317L

CATALOGO 14/11/05 13:35 Página 53

Page 54: Aceros y Aleaciones_TUBOS

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

Principal Desing Features

317L is a low carbon version of 317 stainless. It possesses the same high strength and corrosionresistance and will produce stronger welds due to its low carbon content. Many users are shifting overto this alloy in lieu of 304 and 316.

Corrosion Resistance

Resistant to a wide variety of marine environments, salts, dilute nitric, acetic and sulfuric acids. Sig-nificantly higher resistance to pitting and crevice corrosion at ambient temperatures than 316 or 316Lstainless.

Hot Working

All common hot working processes are possible with this alloy. Heat to 2100-2300°F (1149-1260°C).Avoid working this material below 1700°F (927°C). For optimum corrosion resistance, a post-work annea-ling is recommended.

Cold Working

Shearing, stamping, heading and drawing can be successfully performed. To remove internal stres-ses, a post-work annealing is recommended.

Annealing

1850-2050°F (1010-1121°C), followed by rapid cooling.

Hardening

This alloy does not respond to heat treatment. Cold work will cause an increase in both hardnessand strength.

Machinability

Low speeds and constant feeds will minimize this alloy’s tendency to work harden. Tougher than 304stainless with a long stringy chip, the use of chip breakers is recommended.

Applications

Chemical and petrochemical process equipment, pulp and paper manufacturing and condensers infossil and nuclear fueled power generation stations.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

All common fusion and resistance methods except oxyacetylene welding have proven successful. UseAWS E/ER 317L filler metal for best results.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

54

CATALOGO 14/11/05 13:35 Página 54

Page 55: Aceros y Aleaciones_TUBOS

317LMN

55

Alloy: AISI-317LMN(Cr. Ni. Mo. alloy)UNS-S31703

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

Ni Cr Mo Co Fe Cu C Mn Si P S N

Mini 13,5 17 4 0,10Max 17,5 20 5 0,030 2 0,75 0,045 0,030 0,20Balance X

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-312 A-240

B.S.

W.Nr. 1. 4439 (X2 Cr Ni Mo N 17135)

SEN - 400

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 550 MPa Elongation, mini: 40%Yield strength, mini: 240 MPa Hardness: Brinell, max: 217

RcB, max: 96

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Physical Data

Density (lb/cu. in.) .................................... 0.29 or 8 Kg/dm3

Specific Heat ............................................................... 0.12(Btu/lb/Deg F - [32-212 Deg F])Melting Point (Deg F) ................................................... 2600Thermal conductivity ....................................................... 9.4Modulus of Elasticity Tension ............................................. 28

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

Cold bending

Heat treatment is in most cases not necessary after cold bending to normal bending radio. At a higherdegree of forming and at operational conditions which could cause stress corrosion in austeniticsteels, a stress-relieving annealing is reconmmended.

317LMN

CATALOGO 14/11/05 13:35 Página 55

Page 56: Aceros y Aleaciones_TUBOS

Corrosion Resistance

The addition of nitrogen provides a good austenitic stability for Material 317LMN giving it a superiorcorrosion resistance to that of 1.4435. Even after heat treatment e.g. welding, a good corrosion re-sistance is maintained as there is no possibility of the formation of harmful phases e.g. the sigma pha-se. The increased molybdenum content affords a high corrosion resistance in chlorine-ion-containingmedia. Pitting corrosion resistance is particularly improved.

Material 317LMN is characterized by good resistance inMixed acids – sulphuric acid / nitric acid, Hydrofluoric acid / nitric acidBleaching solutions – sodium chlorite, sodium-hypochloriteSea and brackish water – sodium chloride

Applications

Positive experiences with Material 317 LMN can be expected amongst others in the followingapplications:

• Fatty acid plants• Bleaching plants• Nuclear evaporation plants• Plants admitting aqueous chloride solutions.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Electrode rod welding as well as the WIG (TIG)-method is suitable for welding tubes into tube plates.The use of additives of the same type is recommended in order to obtain a weld free of ferrites and withthe favourable properties of the basic material. Welding should be carried out with as little heat as pos-sible. There is usually no need for further heat treatment.

Weldable by all common methods. Because of the carbon restriction in 317LMN, carbide precipita-tion along the weld boundaries will be minimized. Filler metal should be either 317L, LM or LMN, alt-hough Alloy 625 (Inconel tm) has been successfully employed.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

56

CATALOGO 14/11/05 13:35 Página 56

Page 57: Aceros y Aleaciones_TUBOS

321

57

Alloy: AISI-321(Cr. Ni. alloy)UNS-S32100

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

Ni Cr Mo Co Fe Cu C Mn Si P S N TI

Mini 9 17 (x)Max 12 19 0,08 2 0,75 0,045 0,030 0,10Balance X

(x) Ti: Ti 5x (c + n) mini, o.70 max.

Density Ib/in3 Melting Range °F

0.286 2550-2600

Coefficient* of Modulus ofThermal Thermal Elasticity

Temp Expansion, Conductivity Dynamic,°F in/in °F x 10-6 Btu•ft/ft2•hr•°F psi x 106

200 9.3 8.8 28.0400 9.4 9.7 26.5800 10.0 11.4 23.81000 10.3 12.1 22.5

Ultimate 0,2%Temp Tensile Yield

°F Strength, psi Strength, psi

400 62,000 20,500600 62,000 18,000800 62,000 17,000

Stress, psi to Rupture at Indicated TimeTemp

°F 1,000 hrs 10,000 hrs

1100 30,000 23,5001200 19,000 12,9001300 11,200 7,200

* 70°F to indicated temperature.

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 515 MPa Elongation, mini: 40%Yield strength, mini: 205 MPa Hardness: Brinell, max: 217

RcB, max: 95

Representative Tensile Properties Typical Stress-Rupture Strength

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8 Kg/dm3

321

CATALOGO 14/11/05 13:35 Página 57

Page 58: Aceros y Aleaciones_TUBOS

44..ºº SSppeecciiffiiccaattiioonnss::

58

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-213 A-249 A-240 A-276 A-167 A-182 A-403 A-276A-312 A-312 A-582 A-240 A-473 A-580A-376 A-554 A-479

B.S.

W.Nr. 1.4541

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

High carbon steels prone more to intercrystalline attack in weld zones and slower cooling sections.These steel avoids such attacks through its stabilization with Ti. The corrosion behaviour of this alloyin natural environments is very similar to the TP 304/304L alloys. Architecturally, it may not be ade-quate for near-industrial or onshore locations in Europe. Satisfactory in many low-chloride waters, it isprone to pitting or crevice corrosion in seawater. Water treatment, galvanic protection and deaerationcan influence the performance.

Features

• Oxidation resistant to 1600°F• Stabilized against weld heat affected zone (HAZ) intergranular corrosion• Resists polythionic acid stress corrosion cracking

Application

• Aircraft piston engine manifolds• Expansion joints• Refinery equipment• High temperature chemical process equipment

321 stainless is a titanium stabilized grade commonly used for service in the 1000-1600°F temperatu-re range. For service temperatures up to about 1600°F, a stabilizing treatment at 1550-1650°F, a stabili-zing treatment at 1550-1650°F, air cool, may be used to provide optimum resistance to intergranular co-rrosion and to polythionic acid stress corrosion cracking.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

321 is readily welded by all common methods including submerged arc. Appropriate weld fillers are AWSER347 bare wire and E347 covered electrodes.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

CATALOGO 14/11/05 13:35 Página 58

Page 59: Aceros y Aleaciones_TUBOS

321H

59

Alloy: AISI-321H(Cr. Ni. alloy)UNS-S32109

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

Ni Cr Mo Co Fe Cu C Mn Si P S N TI

Mini 9 17 0,04 (x)Max 12 19 0,10 2 0,75 0,045 0,030 0,10Balance X

Property at Value Unit Property at Value Unit

Density 8,027 Kg/m3 Melting Range 1400-1430 °C

Electrical Conductivity 25°C 1.25 % IACS Specific Heat 500 J/kg. °C

Electrical Resistivity 25°C 0.72 Micro ohm. m Relative Magnetic Permeability 1.02

Coefficient of Expansion 0-100°C 16.6 / °C

Modulus of Elasticity 20°C 193 GPa 0-315°C 17.2 / °C

Shear Modulus 20°C 77 GPa 0-540°C 18.6 / °C

Poisson’s Ratio 20°C 0.30 Thermal Conductivity 100°C 16.1 W / m. °C

(x) Ti: Ti 4x (c + n) mini, o.70 max.

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 515 MPa Elongation, mini: 40%Yield strength, mini: 205 MPa Hardness: Brinell, max: 217

RcB, max: 95

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess ((TTyyppiiccaall aannnneeaalleedd))::

44..ºº SSppeecciiffiiccaattiioonnss::

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-213 A-249 A-240 A-276 A-240 A-182 A-403 A-276A-312 A-312 A-582 A-473 A-580A-376 A-479

B.S.

W.Nr. 1.4878

321H

CATALOGO 14/11/05 13:35 Página 59

Page 60: Aceros y Aleaciones_TUBOS

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

This is the high carbon version of TP 321 which ensures greater creep resistance. Behaves muchthe same as TP 321 in oxidation resistance.

This grade is version of the most common stainless steel, grade 304. They contain carbide formingor stabilising elements such as titanium, niobium and tantalum, which form carbides in preference tochromium carbide, and so prevent sensitisation. The grades were more common before the develop-ment of steelmaking equipment for reliable and economical manufacture of 304L grade, which is nowused in most applications.

Grade 321 is stabilised with titanium, 347 with niobium (columbium, Cb, in USA practice), and 348with niobium plus tantalum, with a controlled cobalt content. Grade 348 is mainly used in nuclear ap-plications. Each grade has an ‘H’ version, with guaranteed high carbon (~0.07%), which can be used inpressure vessels to higher temperatures.

The grades are used:

• where the steel will be used at temperatures in the carbide precipitation range, 425 to 900°C,and subsequently exposed to corrosive environments.

• where heavy parts (> 5 mm thickness) are fabricated by welding, and will not be subsequently so-lution annealed.

In practice, grade 304L is most often used nowadays, except for components for feat treatmentequipment and furnaces which are used intermittently, and may face corrosive conditions while cool.

The grades have similar corrosion resistance to grade 304 which has not been sensitised. They arenot suitable for decorative applications, as the stabilising additions produce inclusions which impair sur-face quality. They are not available in BA finish, and are usually used as heavy sections in 2D or No 1finish.

Applications

Heat exchangers, furnaces, boilers in chemical and petrochemical plant.

Welded construction and parts heated in the carbide precipitation range, subsequently requiring thecorrosion resistance of grade 304: boilers, exhaust manifolds, fasteners, fire walls, furnace heatingelements, jet engine parts, mufflers for stationary engines, stack liners.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

60

CATALOGO 14/11/05 13:35 Página 60

Page 61: Aceros y Aleaciones_TUBOS

347

61

Alloy: AISI-347(Cr. Ni. alloy)UNS-S34700

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

Ni Cr Mo Co Fe Cu C Mn Si P S N Cb

Mini 9 17 (x)Max 13 19 0,08 2 0,75 0,045 0,030Balance X

Property at Value Unit Property at Value Unit

Density 8,027 Kg/m3 Melting Range 1400-1430 °C

Electrical Conductivity 25°C 1.25 % IACS Specific Heat 500 J/kg. °C

Electrical Resistivity 25°C 0.72 Micro ohm. m Relative Magnetic Permeability 1.02

Coefficient of Expansion 0-100°C 16.6 / °C

Modulus of Elasticity 20°C 193 GPa 0-315°C 17.2 / °C

Shear Modulus 20°C 77 GPa 0-540°C 18.6 / °C

Poisson’s Ratio 20°C 0.30 Thermal Conductivity 100°C 16.1 W / m. °C

(x) Cb: cb 10 x c mini, 1,00 max.

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-213 A-249 A-240 A-276 A-240 A-182 A-403 A-276A-312 A-312 A-582 A-473 A-580A-376 A-554 A-479

B.S.

W.Nr. 1.4550

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess ((TTyyppiiccaall aannnneeaalleedd))::

Tensile strength, mini: 515 MPa Elongation, mini: 40%Yield strength, mini: 205 MPa Hardness: Brinell, max: 201

RcB, max: 92

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

44..ºº SSppeecciiffiiccaattiioonnss::

347

CATALOGO 14/11/05 13:35 Página 61

Page 62: Aceros y Aleaciones_TUBOS

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

General Description:

Stainless steels are iron based alloys containing at least 10.5% Chromium. They achieve their stain-less characteristics through the formation of an invisible and adherent Chromium rich oxide film. Alloy347 is a general purpose austenitic stainless steel with a face centered cubic structure. It is essentiallynon-magnetic in the annealed condition and can only be hardened by cold working.

Niobium has been added to suppress grain boundary Chromium Carbide precipitation.

Finishes

No 1 (hot rolled, annealed and pickled), 2D (cold rolled).

Heat Treatment

Solution annealing is performed at 1000-1120°C, followed by rapid cooling. The grades cannot be har-dened by heat treatment. Stress relieving is rarely required due to their high ductility and frequent use athigh temperatures.

Typical Applications

Welded construction and parts heated in the carbide precipitation range, subsequently requiring the co-rrosion resistance of grade 304: boilers, exhaust manifolds, fasteners, fire walls, furnace heating elements,jet engine parts, mufflers for stationary engines, stack liners.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

These grades are readily weldable by most fusion techniques (GTAW/TIG, GMAW/MIG/MAG,MMAW/stick, SAW), with no preheat, postheat or control of interpass temperature needed. Grade347 welding consumables are used for 321 and 347 grades, and are prequalified in AS1554.6:1994for welding to most other austenitic grades. Pickling and passivation is not usually required for use atelevated temperatures.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

62

CATALOGO 14/11/05 13:35 Página 62

Page 63: Aceros y Aleaciones_TUBOS

410

63

Alloy: AISI-410(Cr. alloy)UNS-S41000

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

Ni Cr Mo Co Fe Cu C Mn Si P S N

Mini 11,5 0,08Max 0,75 13,5 0,15 1 1 0,040 0,030Balance X

Tempering Tensile 0.2% yield Elongation Reduction Hardness

Temp Strength Strength in 2” of Area, %

°F °C psi MPa psi MPa (50mm), % Brinell RC

Asquenched 193,450 1334 149,750 1032 17.0 56.8 388 42

300 149 188,525 1300 148,575 1024 17.3 59.7 388 42

500 260 181,550 1252 143,550 990 16.8 60.7 388 42

700 371 181,425 1251 144,650 997 16.0 61.6 361 39

1050 566 124,050 855 110,330 761 20.8 67.2 255 25

1150 621 117,530 810 103,745 715 21.3 66.1 235 22

1200 649 113,020 779 99,125 683 22,0 66,5 229 20

Annealed(1500/816) 75,610 521 43,590 301 34.5 74.5 143 –

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 450 MPa Elongation, mini: 20% Hardness: Brinell, max: 217Yield strength, mini: 205 MPa Cold dend: 180° RcB, max: 96

Heat Treated Condition. 1” (25mm) round bar, oil quenched from 1800°F (982°C)

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density 0.276 lb/in3 (7650 kg/m3); 8 kg/dm3).Melting Point (approx.) 2223°F (1495°C)Magnetic Permeability – In the annealed condition 410 will have a maximum permeability value of

900 Oersteds.Modulus of Elasticity 29 x 106 psi (200 GPa).Mean Specific Heat 32-212°F (0-100°C) 0.11 Btu/lb.F (460 J/kg.K)

410

Temper. Coeficient* of ThermalThermal Expansion Conductivity

°F °C in/in°Fx10-6 m/m.Kx10-6 Btu • ft/ft2 • hr •°F W/m.K

212 100 5.5 9.9 14.4 25.1

932 500 6.2 11.2 16.6 28.9

*70°F (21°C) to indicated temp.

Temperature ohm.circularmil/ft microhm.m

°F °C

68 20 343 0.57212 100 385 0.64392 200 433 0.72752 400 529 0.88

Electrical Resistivity

CATALOGO 14/11/05 13:35 Página 63

Page 64: Aceros y Aleaciones_TUBOS

44..ºº SSppeecciiffiiccaattiioonnss::

64

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-268 A-268 A-240 A-276 A-240 A-182 A-403 A-276A-511 A-473 A-479 A-580

W.Nr. 1.4006. (X12 Cr13; X10 Cr 13)

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

Type 410 is a corrosion and heat resistant 12% chromium steel. It is the most widely used of thehardenable stainless steels. Heat treated 410 has mechanical properties comparable to the enginee-ring alloy steel AISI 4130, coupled with the additional benefit of good corrosion resistance.

Hardenable stainless which may be tempered as high as 1350°F (732°C) to produce high impacttoughness. Oxidation resistant through 1500°F (816°C) intermittently, 1200°F (649°C) continuously.

Corrosion Resistance

410 stainless is highly resistant to atmospheric corrosion. Maximum corrosion resistance is obtained byhardening and polishing. Mild atmospheres, soft water (verify water analysis). Oxidizing saline solutions freeof chlorides, fluorides, iodides, bromides… Cold diluted nitric solutions. Certain cold diluted organic acids:picric, tannic, lactic… Non-corrosive products such as: alcohol, benzol, petroleum, oil, soap…

Metallurgy

The microstructure of annealed 410 consists of ferrite and carbides. Austenite forms in increasingamounts as the steel is heated above approximately 1450°F (790°C). Rapid cooling from above 1450°F(790°C) produces a partially or completely martensitic structure, depending upon the austenitizing tempe-rature and the analysis. A fully martensitic structure, or very nearly so, may be developed by oil quench from1800°F (982°C), or by air cooling if the section is light.

Chromium near the upper specified limit will reduce maximum hardness and will usually producesmall amounts of ferrite in with the hardened martensite. Heats of 410 with higher carbon will haveslightly greater hardness in the annealed condition, and greater hardness in the hardened condition.

Heat Treatment

Annealing: Heat uniformly to 1200-1400°F (650-760°C), remove from furnace and air cool. This shouldresult in Brinell hardness about 187.

For maximum softness, heat to 1500-1650°F (816-900°C), furnace cool slowly to 1100°F (593°C),after which air cooling is permissible. Brinell hardness should be approximately 155.

Hardening: Heat to 1750-1850°F (954-1010°C), soak at heat, and quench in oil. Light sections will al-so harden by air cooling. 410 will harden to some degree when heated 1500°F (816°C) and over unlessslowly cooled to below the critical temperature.

Tempering: Soak at heat at least one hour, longer for large sections, and air cool. Tempering 410 in therange 750-1050°F (400-570°C) results in decreased impact toughness and somewhat reduced corrosionresistance.

Applications

• Press plates. • Petrochemical equipment. • Gate valves. • Mining machinery. • Distillation trays.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Because 410 is an air hardening steel, it must be given a high preheat, at least 350-400°F (180-200°C) before welding, and immediately given a full anneal before the weldment cools. Otherwise themetal will harden, and cracking is likely. This nickel alloy is comparatively low strength, and therefore ac-commodates some of the strain which may otherwise contribute to cracking in the 410 weldment.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

CATALOGO 14/11/05 13:35 Página 64

Page 65: Aceros y Aleaciones_TUBOS

431

Alloy: AISI-431(Cr. Ni. alloy)UNS-S43100

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

65

Ni Cr Mo Co Fe Cu C Mn Si P S N C

Mini 1,25 15Max 2,5 17 0,2 1 1 0,04 0,03Balance X

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Yield strength 0.2: 200 GPa

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density 7,85 Kg/dm3

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Principal Design Features

431 is a martensitic stainless combining excellent impact strength at high hardness levels with thebest corrosion resistance of any martensitic stainless steels.

Machinability

In the fully annealed condition, 431 will gall and build up on the tools. Good surface finishes are noteasily obtained.

Hot Working

Heat to 2100-2200°F (1149-1204°C) for best results. Do not work material below 1650°F (900°C).

Cold Working

This alloy is easily drawn, spun, headed, sheared and bent compared with other stainless steels.

Annealing

1200-1250°F (650-677°C), furnace or air cool.

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings

composit Seamless Welded. Sheets Bars

DIN F-44

BS

ASTM AISI A-511 A-276 A-276 A-580 A-473

ISO

AFNOR

431

CATALOGO 14/11/05 13:35 Página 65

Page 66: Aceros y Aleaciones_TUBOS

66

Tempering

Temper for desired properties. Temperatures between 700-1050°F (371-565°C) will adversely af-fect impact strength and corrosion properties.

Hardening

1800-1950 F (982-1066°C), oil quench or ail cool for maximum properties.

Applications

431 has been successfully used in a variety of aircraft and general industrial applications. These in-clude fasteners, bolts, valve components an chemical equipment.

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 3 Sea water: 2 Symbols:

Hydrocloric acid: 3 Salts: 3 1. Good to excellent

Hydrofluoric acid: 3 Alkalis: 3 2. Acceptable

Phosphoric acid: 3 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 2 Strength & Stability: 3Carburization resistance: 2 Nitriding resistance: 2Sufidation resistance: 2 Carbonitriding resistance: 2

77..ºº WWeellddaabbiilliittyy::

Most electric welding procedures have proven successful with 431 stainless. Filler metal should beAWS E/ER410. To avoid cracking, pre-heat the workpiece to 400-600°F (204-316°C). After air coo-ling, treat at 1200°F (649°C) to reattain maximum properties.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

CATALOGO 14/11/05 13:35 Página 66

Page 67: Aceros y Aleaciones_TUBOS

Alloy: UNS S31254(Cr, Ni, Mo)UNS: S31254

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

UNS S31254

67

Ni Cr Mo Co Fe Cu C Mn Si P S N

MiniMax

18 20 6,2 Rem 0,7 0,020 0,5 0,4 0,20

20°CYield strength Rp0.2 N/mm2 min 300

Rp1.0 N/mm2 min 340Tensile strength Rm N/mm2 min 650Elongation A5 % min 35Hardness HB max 210Impact value KCV J/cm2 min 120

20°C

Density g/cm3 8.0Modulus of elasticity kN/mm2 200Linear expansion 20 – 100°C x 10–6/°C 16.5Thermal conduction W/m°C 13.5Heat capacity J/kg°C 500Electric resistivity n W m 850

50°C 100°C 200°C 300°C 400°C

Rp0.2 N/mm2 min 270 235 195 175 160Rp1.0 N/mm2 min 305 270 225 205 190Rm N/mm2 min 635 615 560 525 510

Temp.°C

Solidification range 1400-1325Scaling temperature in air 1000Hot forming 1200-1000Quench annealing 1170 water*)Pressure vessel application (–60)–400

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile properties at elevated temperature

Characteristic temperatures

* 1130 air/water below 2 mm

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

44..ºº SSppeecciiffiiccaattiioonnss::

Forgings: F-44

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

The high levels of chromium, particulary of molybdenum, endow S31254 with an extremely good re-sistance to pitting and crevice corrosion. The addition of copper provides improved resistance in cer-tain acids. Furthermore, due to its relatively high nickel content in combination with the high levels of

UNS S31254

CATALOGO 14/11/05 13:35 Página 67

Page 68: Aceros y Aleaciones_TUBOS

chromium and molybdenum, S31254 possesses a good resistance against corrosion. Numerous fieldtests, as well as practical experience, show that S31254 is resistant to crevice corrosion in sea wa-ter, even at increased temperatures.

S31254 is delivered in an annealed condition (1150-1200°C, rapid cooling) and has an austeniticstructure. In certain cases there may be traces of intermetallic phases (chi-and sigma phase) in thecentre of the material. Normally, however, this has no influence on the impact strength or on the co-rrosion resistance. When exposed to a temperature range of between 600-1000°C, these phases canprecipitate at the grain boundaries. If the given recommendations for hot forming, welding and heattreatment are followed, there will be no precipitation affecting the corrosion resistance.

CORROSION RESISTANCE

General corrosion

In a solution containing halides such as chloride, bromide or fluoride ions conventional stainless ste-els can readily be attacked by localized corrosion in the form of pitting, crevice corrosion or stress co-rrosion cracking. In certain cases, however, the presence of halides can accelerate the general (uni-form) corrosion. This applies especially to cases where halides occur in nonoxidizing acids.

Pitting corrosion

In a solution with a chloride concentration exceeding that of sea water, S31254 possesses a verygood resistance up to high temperatures.

Intergranular corrosion

S31254 has a very low carbon content. Therefore, as far as the connection with the heat input isconcerned, there is little risk of carbide precipitation. Due to the low carbon content and the generalchemical composition, this steel passes the Strauss test (ASTM A 262 Practice E) even after one hourof sensitizing at 600-1000°C.

However, due to the high alloying element content of the steel, intermetallic phases can precipitate atthe grain boundaries as in the above mentioned temperature range. These precipitations do not involve arisk of intergranular corrosion in the corrosive media where this steel is used. Thus, welding can be ca-rried out without any risk of intergranular corrosion. However, in a hot concentrated nitric acid, these pha-ses can cause risk to intergranular corrosion in the heat-affected zone.

Crevice corrosion

The weak point of the conventional stainless steel grades is their limited resistance to crevice corro-sion. In sea water, for example, there is a considerable larger risk of crevice corrosion under gaskets,deposits or fouling than of pitting on the free surfaces.

S31254 is completely free from attacks, even after exposure to sea water at 60°C. Conventionalstainless steel grades, on the other hand, are attacked already at low temperatures by crevice co-rrosion.

Stress corrosion cracking

Under favourable conditions, stress corrosion cracking can occur in all stainless steels, with the ex-ception of those ferritic grades which are not alloyed with nickel or copper.

For austenitic steels, the resistance to stress corrosion cracking increases with the rise of the nic-kel and molybdenum contents.

S31254 possesses a very good resistance to stress corrosion cracking. However, this steel gradedoes not pass the SCC test in a 45% boiling magnesium chloride test solution, which is the severesttest procedure to detect stress corrosion cracking. The same happens with ferritic steels, alloyed withnickel or copper and ferritic-austenitic steels.

PROCESSING

Hot working

Hot working should be carried out in the temperature range of between 1150-1000°C. Higher tem-peratures will reduce the workability. Fairly heavy scaling occurs at temperatures exceeding 1150°C.To ensure dissolution of possible precipitations of secondary phases from the hot forming, the subse-

68

CATALOGO 14/11/05 13:35 Página 68

Page 69: Aceros y Aleaciones_TUBOS

quent heat treatment shall take place at min. 1150°C, followed by the quickest possible cooling. If a co-oling rate is too low, it can cause a reduced corrosion resistance.

Cold working

S31254 possesses very good cold formability. Bending, pressing and other forming operations canbe carried out without any difficulty. Thus, practical experience obtained from the pressing of elbows,tees, reducers, etc. has been very favourable. The steel workhardens rapidly.

MACHINING

Like other austenitic steels, S31254 is tough. The relatively high hardness and the tendency to-wards work-hardening must be taken into account when this grade is machined.

Fully satisfactory machining results can be obtained when selecting the right choice of tools and ma-chining data.

Applications

Up to the present S31254 has been supplied for the following applications:

– Use of equipment in contact with sea water such as heat exchangers, cooling water pipes andeven in cases where stagnant conditions can occur. Desalation plants.

– Equipment at pulp bleaching plants, such as drums, vats and press rolls for filter washers, andpipelines for pulp and filtrate.

– Components in gas cleaning systems, e.g. in pulp and metallurgical industries, and in power stations.– Tanks and pipelines for different chemicals with high halide levels.– Equipment used for the destillation of tall oil.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

S31254 possesses good weldability and can be welded using conventional welding methods forstainless steel.

Sheets and plates in grade S31254 have a homogeneous composition. Remelting of the parent me-tal, such as during welding without filler metal, may cause microscale variations in composition for ele-ments such as chromium, nickel and, particularly, molybdenum. This phenomenon occurs in all highlyalloyed stainless steels. These variations may reduce the pitting resistance of the weld.

The following welding instructions should be observed:

1. The material may not be subjected to abrasive contact with copper/brass items. Penetration ofCu/Zn into the grain boundaries can give rise to crack formation.

2. P 12 welding consumables should be used for all welding methods. TIG- and plasma -arc- weldingwithout filler wire should be avoided in cases where post-weld annealing is impossible.

3. Ignite the electrode in the joint since ignition burns beside the weld can give rise to corrosionattacks.

4. Weld with low heat input, the run energy should not exceed 1.5 KJ/mm. Weaving should be avoi-ded in horizontal position. Do not use unnecessarily high ampearages or thicker electrodes thannecessary.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

69

CATALOGO 14/11/05 13:35 Página 69

Page 70: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 70

Page 71: Aceros y Aleaciones_TUBOS

AL-6XN®

Alloy: AL6XN®

(Cr. Ni. Mo alloy)UNS-N08367

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

71

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Ni Cr Mo Co Fe Cu C Mn Si P S N C

Mini 23,5 20 6 0,18Max 25,5 22 7 0,75 0,3 2 1 0,04 0,03 0,25Balance X

For Metal <3/16 inch thick sheet, >3/16 inch thick plate, Welded Tube, Welded Pipe Welded Pipe >3/16Temperature not strip, seamless bar, forgings <3/16 inch thick wall inch thick wall

exceeeding

°F °C 45YS (310) 45YS (310) 45YS (310) 45YS (310)100TS (717) 100TS (717) 100TS (717) 100TS (717)

100 38 28.6 (197) 27.1 (187) 24.3 (167) 23.1 (159)

200 93 26.2 (181) 26.2 (181) 22.2 (153) 22.2 (153)

300 149 23.8 (164) 23.8 (164) 20.2 (139) 20.2 (139)

400 204 21.0 (151) 21.0 (151) 18.7 (129) 18.7 (129)

500 260 20.5 (141) 20.5 (141) 17.4 (120) 17.4 (120)

600 316 19.4 (134) 19.4 (134) 16.5 (114) 16.5 (114)

650 343 19.0 (131) 19.0 (131) 16.1 (111) 16.1 (111)

700 371 18.6 (128) 18.6 (128) 15.8 (109) 15.8 (109)

750 399 18.3 (126) 18.3 (126) 15.5 (107) 15.5 (107)

800 427 18.0 (124) 18.0 (124) 15.3 (105) 15.3 (105)

Maximum Allowable Design Stress Values in tension, ksi (Mpa)DIMENSIONALLY STABLE Under Cited conditions

KEY: YS = Minimum yield strength 0.2% offset; TS = Minumum tensile strengthAll product forms have a minimum 30% elongation in 2” or 4DValues shown are for comparison only. Always consult current editions of codes and standars for values for us inValues are as published in 2001 edition of Code. Always consult current editions of codes and standards for values

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density 8 Kg/dm3

AL-6XN®

CATALOGO 14/11/05 13:35 Página 71

Page 72: Aceros y Aleaciones_TUBOS

44..ºº SSppeecciiffiiccaattiioonnss::

72

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM B-690 A-312 A-240 B-691 B-240 A-462 B-462 B-691B-829 B-675 B-688 B-472 B-688 B-564 B-366

A-249A-270A-269

B.S.

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

AL-6XN® alloy is a nickel molybdenum alloy with excellent resistance to chloride pitting and crevicecorrosion. AL-6XN® has been used for seawater heat exchangers, chemical process tanks and pipeli-nes, offshore oil and gas seawater heat exchangers.

Corrosion Resistance

AL-6XN alloy has proven to be resistant to a broad range of very corrosive processing environments. Ex-ceptional corrosion resistance is obtained to chloride-induced corrosion in the forms of pitting, crevice andstress corrosion cracking. AL-6XN alloy also has excellent general corrosion resistance to various acids andsalt solutions. This is achieved due to the higher levels of:

• Nitrogen – which retards the formation of chi phase during manufacturing and field welding• Chromium – provides good resistance to oxidizing environments• Molybdenum – improves resistance to chlorides.

Cost Comparison

Al-6XN alloy initially is more expensive than 300 series stainless steels. However, life-cycle costs forsystems utilizing the alloy can be far less than the comparable costs of the initial installation, mainte-nance, and subsequent replacement of lesser alloys used in aggressive environments. In addition tomaterial replacement, labor costs, and production downtime caused by system failures of 300 seriesstainless steels used in very corrosive environments, consideration must also be given to the associa-ted costs of product contamination caused by corrosion related failures. Studies have shown the ini-tial cost comparison of Al-6XN raw material to other alloys as follows:

304L stainless steel = factor of 1 (base)316L stainless steel = 1.15 (x) 304L stainless steelAL-6XN Alloy = 3 (x) 304L stainless steelC-276 / C-22 = 5 (x) 304L stainless steel

When selecting materials for process systems, guidelines should be followed giving consideration tothe service environment. The inclusion of corrosion control and the correct material selection is themost efficient and economical means for controlling corrosion and adding life to a piping system.

Fabrication

The toughness and ductility of the AL-6XN alloy provides for relative ease of fabrication in the shopor field environments. Satisfactory machining may be achieved by the selection of the correct tools andmachine set-ups.

General or Uniform Corrosion

General corrosion is rather predictable. The uniform attack of an entire area exposed to a corro-sive media usually is expressed as an average loss-of-metal-thickness over a given period of time andis expressed in units such as mils (0.001 inch) per year, or mpy. Table 1 compares the immersioncorrosion resistance, conducted in accordance with ASTM G-31, of five alloys in eight different boi-ling acid and alkali solutions. These data illustrate the performance of the alloys in a variety of envi-

CATALOGO 14/11/05 13:35 Página 72

Page 73: Aceros y Aleaciones_TUBOS

ronments and do not necessarily simulate a particular process or industry environment. Note thatthe AL-6XN alloy has a much lower general corrosion rate than the 300 series stainless steels inthese aggressive environments.

Table 1: Corrosion Resistance in Boiling Solutions

73

Rate ASTM G-31 Corrosion Rate in Mils Per Year (mm/y)Test Solution (Boiling) Type 316L Type 317L Alloy 904L Al-6XN Alloy 276

20% Acetic Acid 0.12 (0.003) 0.48 (0.01) 0.59 (0.02) 0.12 (0.003) 0.48 (0.01)

45% Formic Acid 23.41 (0.60) 18.37 (0.47) 7.68 (0.20) 2.40 (0.06) 2.76 (0.07)

10% Oxalic Acid 44.90 (1.23) 48.03 (1.14) 27.13 (0.69) 7.32 (0.19) 11.24 (0.28)

20% Phosporic Acid 0.60 (0.02) 0.72 (0.02) 0.47 (0.01) 0.24 (0.006) 0.36 (0.009)

10% Sodium Bisulfate 71.57 (1.82) 55.75 (1.42) 8.88 (0.23) 4.56 (0.12) 2.64 (0.07)

50% Sodium Hydroxide 77.69 (1.92) 32.78 (0.83) 9.61 (0.24) 11.4 (0.29) 17.77 (0.45)

10% Sulfamic Acid 124.3 (3.16) 93.26 (2.39) 9.13 (0.23) 9.36 (0.24) 2.64 (0.067)

10% Sulfuric Acid 645.7 (16.15) 298.3 (7.58) 100.8 (2.53) 71.9 (1.83) 13.93 (0.35)

CCCT1 CPT2 CPT3

Product °C °F °C °F °C °F

304 <27.5 <-2.5316 27.5 2.5 59 15317 35 1.7 66 18.9 77 25904L 68 20 104 40 113 45AL-6XN 110 43 177 80.5 172 78

Pitting Corrosion

Probably the most important characteristic of a stainless steel alloy exposed to chloride contai-ning solutions is its resistance to pitting and crevice attack. The pitting resistance of an austeniticstainless steel may be correlated to alloy composition in terms of the Pitting Resistance EquivalentNumber. PREN = %Cr + 3.3 (%Mo) + 16 (%N); where chromium, molybdenum and nitrogen are inweight percent. Increasing the molybdenum in the alloy produces greater resistance to pitting. The-refore high molybdenum-high chromium alloys generally provides the best pitting resistance.

Another important consideration is the chloride pitting potential of stainless steel. This is an in-dication of the susceptibility of the alloy to localized corrosion. If the potential is more positive, thechances of pitting are reduced.

The Critical Pitting Temperature (CPT) is the minimum solution temperature at which pitting isfirst observed. When compared to the other alloys in these tests, the AL-6XN alloy demonstrateda significantly greater resistance to pitting.

Critical Pitting Temperatures

1. Based on ASTM G-48B (6% FeCI3 for 72 hours with crevices)2. Based on ASTM G-48A (6% FeCl3 for 72 hours)3. Test Solution: 4% NaCI + 1%Fe3(SO4)3 + 0.01M HCI

Increasing the acidity (decreasing the pH), of a solution beyond a certain value may result in adramatic increase in the general corrosion rate. This value is referred to as the “depassivation pH”,above which the rate is low and below which the rate is high. Corrosion rates in an acidified 3.5%sodium chloride solution at room temperature for austenitic stainless steel, ferritic stainless steel,and AL-6XN stainless show that AL-6XN alloy is the most resistant of the austenitic stainless alloys.The AL-6XN alloy corrosion rate does not appreciably increase until the solution pH falls below 0.3.

CATALOGO 14/11/05 13:35 Página 73

Page 74: Aceros y Aleaciones_TUBOS

Crevice Corrosion

Crevice corrosion is another form of localized corrosion that occurs when the corroding metal is inclose contact with anything that makes a tight crevice. Metal degradation at the mating surface of asanitary clamp fitting and gasket is usually the result of crevice corrosion. Crevice corrosion is usuallythe first to occur and is predictable as to when and where it will take place. Like pitting, the presenceof chlorides makes the reaction proceed at a fast rate. There is a “critical crevice corrosion tempera-ture” (CCCT) below which corrosion will not occur. The greater the difference between the CCCT andthe operating temperature, the greater the probability that crevice corrosion will occur.

Intergranular Corrosion

The most common example of intergranular corrosion is the formation of chromium carbide inthe heat-affected zone (HAZ) of higher carbon stainless steel duringwelding. These carbides formalong the grain boundaries. Because the carbides require more chromium than is locally available,the carbon depletes chromium from the area around the carbon. The grain boundary zone is left lowin chromium and creates a new, low chromium alloy in that region. A mismatch in galvanic poten-tial between the base metal and the grain boundary results, so galvanic corrosion begins. As thegrain boundaries corrode, the grain and the chromium carbides drop out like particles of rusty sand.The surface of the metal develops a “sugary” appearance.

Intergranular corrosion also can occur whenever intermetallic compounds such as chi or sigmaphase form. These compounds usually form when some type of heating occurs, such as welding, he-at treatment, or metal fabrication. Understanding how they form makes it relatively easy to controltheir formation. Since AL-6XN stainless has low carbon, chromium carbide formation usually is nota problem. However, chi phase may be a problem as it forms when the weld metal cools after wel-ding, especially in the heat affected zone, or if heat treatment is improperly performed, or if the alloyis held for a short time in the 1200-1800°F (650-1000°C) range.

Stress Corrosion Cracking

Because the AL-6XN alloy has increased resistance to SCC it has been used successfully in appli-cations such as chemical process equipment, brewery equipment, feed-water heaters, and flue gasreheaters. AL-6XN alloy is very resistant to SCC at temperatures less than 121°C. The thresholdtemperature for initiating SCC decreases with increasing chloride content.

Applications

74

AL-6XN alloy is currently in use in the follo-wing industries:

• Food Processing• Pharmaceutical• Biopharmaceutical• Brewery• Desalination• Semi-conductor• Aerospace• Pulp & paper

It is used in contact with these products:

• Sports drinks• Ketchup• Soy sauce• Barbecue sauce• Salsa• Fine chemicals• Cosmetics• Pharmaceuticals

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.The low carbon and high nitrogen contents minimize the precipitation of carbides and secondary

phases that can occur during welding. Field welding can be easily achieved provided that a suitable over-matched filler ring is used and the material has been properly cleaned and prepared for welding. Wel-ding procedures are similar to those used with other austenitic stainless steels.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

CATALOGO 14/11/05 13:35 Página 74

Page 75: Aceros y Aleaciones_TUBOS

75

Alloy: 904L®

(Cr. Ni. Mo alloy)UNS-N8904

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

904L®

Ni Cr Mo Co Fe Cu C Mn Si P S N

Mini 23 19 4 1 0,02Max 28 23 5 2 2 1 0,045 0,035Balance X

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM B-673 B-674 B-625 B-649 B-625 A-182 B-366 B-649B-674 B-649

B.S.

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 490 MPa Elongation, mini: 35%Yield strength, mini: 215 MPa Hardness: Brinell, max: –

HRB, max: 70/90

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density (lb / cu. in.) .......................................... 0.285 and 8 Kg/dm3

Specific Gravity ........................................................................... 7.9

Specific Heat (Btu/lb/Deg F - [32-212 Deg F]) ............................. 0.12

Electrical Resistivity (microhm-cm [at 68 Deg F]) ............................ 480

Modulus of Elasticity Tension ...................................................... 28.4

44..ºº SSppeecciiffiiccaattiioonnss::

AF-NOR-ZIN CDU 25,20DIN-1.4539

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

Principal Design Features

904L is an austenitic stainless steel designed for moderate to high corrosion resistance. Its low carboncontent improves cleanliness and weld strength.

Corrosion Resistance

High leves of chromium, nickel, molybdenum and copper give 904L good resistance to stress corrosioncracking, chloride pitting and to reducing media such as hot phosphoric acid and dilute sulfuric acid. In the-se areas it is superior to 316 and 317.

904L®

CATALOGO 14/11/05 13:35 Página 75

Page 76: Aceros y Aleaciones_TUBOS

This austenitic speciality with its high molybdenum and a reduced carbon contets offers excellent resis-tance to:

• reductive acids like sulphuric and phosphoric acid• concentrated organic acids, even at elevated temperatures• salt and soda solutions• sea water

Special characteristic:

Extraordinary resistance to pit corrosion, stress corrosion and intergranular corrosion.Structure after heat treatment, austenitic.With application up to 400°C and an operation up to 100000 h, grade 904L is resistant to intercrys-talline corrosion acc. to DIN 50914.

Machinability

Slow speeds and positive feeds will minimize this alloy’s tendency to work harden and glaze. Use chip bre-akers where possible to overcome problems with long draggy chips.

Hot Working

Hot work should proceed after uniform heating to 2000-2200 F. Do not work the material at less than1800°F. Full annealing should follow any hot work to retain maximum ductility and corrosion resistance.

Cold Working

Although higher forces are required, 904L will respond in a similar fashion to other austenitic stainlesssteels like 304, 316 or 317. Most common operations can be successfully performed.

Annealing

1920-1990°F (1050-1090°C), rapid cooling.

Hardening

This alloy does not respond to heat treatment. It may only be hardened by cold reduction.

Applications

Utility scrubber assemblies, acid and fertilizer production equipment. Desalation plants.For highly critical corrosion problems in the chemical and petrochemical industry, pulp and paper industry

as well as for flue gas desulphurization plants.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Most common fusion and resistance methods may be employed. For maximum corrosion resistan-ce, it is recommended to use filler metals of equal or higher alloy content.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

76

CATALOGO 14/11/05 13:35 Página 76

Page 77: Aceros y Aleaciones_TUBOS

Alloy: UNS S31803(Cr. Ni. alloy)UNS: S31803

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

UNS S31803

77

Ni Cr Mo Co Fe Cu C Mn Si P S N

Mini 4,5 21 2,5 0,08Max 6,5 23 3,5 0,03 2 1 0,03 0,02 0,20Balance X

heat-treated 0.2 yield tensile elongation notch impact, toughnesscondition point strength (L – 5 d) (ISO-V-specimen) min.

min. % min. J ft • lbsN/mm2 N/mm2

psi psi long transv. long. transv.quenched 480 680-880 25 72flat products 69600 98600-127600 53profile products 450 680-880 30 140

65250 98600-126600 103

°C 50 100 150 200 250 280°F 122 212 302 392 482 536

N/mm2 410 360 335 310 295 285psi 59150 52200 48575 44950 42775 41325

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

At room temperature

At higher temperatures:

0.2% yield point min.

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Specific gravity g/cm3 7.8Specific heat J/kg K 0.377Thermal conductivity W/m K 16Coefficient of linearexpansion 20-100°C 10–6/K 12Electrical resistivity microohm • cm 80Modulus of elasticityat 20°C kN/mm2 200

Characteristic temperatures

Temp. °CSolidification range 1445-1385Scaling temperature in air 1000Sigma phase formation 700-900Carbide precipitation 450-800475 embrittlement 350-525Hot forming 1150-950Quench annealing 1020-1070Stress relief annealing 1020-1070Range for pressure vessel application (–10) –280

UNS S31803

CATALOGO 14/11/05 13:35 Página 77

Page 78: Aceros y Aleaciones_TUBOS

78

44..ºº SSppeecciiffiiccaattiioonnss::

Norms Material Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

Seamless Welded. Sheets Bars Flanges

DIN 1.4462 1.4462 1.4462 F-51

BS

ASTM A479-A182 A789 A790 A240 A276 A182 A815

ISO

AFNOR Z3CND22.05AZ

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Designed to provide and excellent combination of both strength and corrosion resistance for a wi-de variety of applications.

The alloy can be considered a second generation of those alloys whose structure consists of appro-ximately 50% austenite and 50% ferrite by design of chemical composition. This duplex or two-phasestructure provides good resistance to stress-corrosion in chloride and hydrogen suphide environments.The alloy develops almost twice the yield strength of the standard austenitic stainless steels, althoughthe ultimate tensile strength on which allowable design stress is usually based, is only 20% above theaustenitic grades.

A widely used duplex steel combining high strength and corrosion resistance in various organicacids, anorganic acids, aggressive coolingwaters and hydrous H2S/NaCl mixtures. With a near equalmix of austenite and ferrite, the give yield strength 30% higher and tensile strengths marginally higherthan comparable nitrogen-containing austenitics. High resistance to general corrosion and specificallyto pitting and crevice corrosion. Their resistance to stress-corrosion cracking in neutral chlorides is su-perior to that of the austenites. In high chloride acidic or moderately sour environments where hydro-gen or sulphide stress cracking is more likely, higher alloyed austenitics need also to be considered. Im-pact values are high and transition temperatures of base materials vary around –50°C. However, theproportion and orientation of ferrite in welds and base materials may significantly affect toughness atsubzero temperatures. Exposure to moderate and high temperatures and less rapid cooling may cau-se embrittlement.

Metallurgical structure

After solution annealing at 1900-2000°F (1040°C-1100°C), the precipitation free Duplex structu-re contains about 40% ferrite and 60% austenite.

The ferritic/austenitic structure is maintained also at higher temperatures. This is due to the nitro-gen addition, a strongly austenite stabilizing elements, as wel as to the precipitation free state. The pre-sence of nitrogen, dissolved in the austenitic constituent, retards remarkably the carbide precipitation.This effect, together with the decrease of carbon content to max. 0.03%, results in a very good resis-tance against intergranular corrosion even after holding in the critical temperature range of 600-950°C/1100-1750°F.

Preheat and interpass temperature:

Wall thickness:max. 6 mm/0.236 in. ................................................. none6 to 20 mm/0.236 to 0.787 in ................................... 80°C/176°Fmore than 20 mm/0.787 in ........................................ 120 to 150°C/248 to 300°F

Micrographs show the heat-affected zones (HAZ) and the as-weld structure of a multilayer weldingof 4.7 inch (12 mm) sheet with matching filler metal, contrary to commercial Duplex steel grades, whe-re no part of the HAZ of Duplex has become completely ferritic. Exposed to the Streichertes (ASTM

CATALOGO 14/11/05 13:35 Página 78

Page 79: Aceros y Aleaciones_TUBOS

262, Practice B), these specimens did not undergo intergranular corrosion and after a 180° bending–no cracks have been observed.

CORROSION RESISTANCE

General corrosion is characterized by an uniform attack of the steel surface when it comes into con-tact with a corrosive medium. The resistance is normally considered good if the corrosion rate is lessthan 0.1 mm/year, due to its high chromium and molybdenum content.

Duplex has a better resistance than type 316 and 317 in most mediums.

Intergranular corrosion

Thanks to the Duplex structure and the low carbon content, Duplex has a very high resistance tointergranular corrosion. In general, when welding ferritic-austenitic steels, a narrow heat-affected zo-ne, close to the fusion line is obtained, where the structure may become fully ferritic. Chromium car-bides precipitate rapidly in such a zone; thus, producing a risk of intergranular corrosion. However, Du-plex has a balanced composition which ensures a sufficient amount of austenite in the heat affectedzone to minimize the risk of undesirable carbide precipitation.

Sulphide strees corrosion cracking

The presence of hydrogen sulphide in chloride solutions entails the risk of stress cracking also atlower temperatures. The resistance of Duplex stainless steels varies with the chemical composition andthe microstructure. One example of the types of environments where sulphide stress corrosion crac-king may occur is in sour oil and gas wells. Duplex has proved to be very resistant in such environ-ments. Contrary to chloride induced stress corrosion cracking, sulphide stress corrosion cracking alsoattacks the ferritic phase. Laboratory tests have shown that Duplex has a high resistance to sulphidestress corrosion cracking.

Pitting and crevice corrosion

The resistance to these types of corrosion is increased by an addition of chromium, molybdenumand nitrogen.

Stress corrosion cracking

Conventional austenitic stainless steels may be attacked by stress corrosion cracking in chloride en-vironments at elevated temperatures. Duplex stainless steels with a continuous ferrite phase, are muchless prone to this type of corrosion.

Corrosion fatigue

The high mechanical strength combined with the very good corrosion resistance gives Duplex a highcorrosion fatigue strength.

PROCESSING

Hot forming should be carried out in the temperature range of 1200-900°C/2200-1650°F. Afterthis a final heat treatment is required.

However, it should be borne in mind that the mechanical stength of the material is low at high tem-peratures.

At temperatures below 950°C embrittling can take place on account of the combination of strainand exposure in the sigma phase field.

At room temperature cold working can be done without any problems. Cold working >10% entails al-so a final heat treatment. Work hardening is higher than that of austenitic stainless steels, necessitates,however, accordingly higher forces of deformation and tools with higher maintenance of cutting power.

79

CATALOGO 14/11/05 13:35 Página 79

Page 80: Aceros y Aleaciones_TUBOS

MACHINING

With high speed tools the same cutting data can be applied as with type 316. However, when ce-mented carbide tools are used the cutting speeds have to be reduced by 20%.

HEAT TREATMENT

All forms of supply are normally delivered in the solution-annealed condition. The temperature ofsolution annealing ranges between 1040 and 1100°C/1900-2000°F. Up to 2 mm/0.078 in. quen-ching can be carried out in air, for thicknesses greater than 2 mm/0.078 in. water quenching willbe necessary.

80

Hot working heat-treatment°C °C°F cooling medium °F time min. cooling medium

1200-900 air 1040-1100 just soaking <2 mm/0.78 in. air2200-1650 1900-2000 >2 mm/0.078 in. water

Structure after heat treatment: ferrite–austenite. Stress relief treatments can in special cases be performed at 550-600°C

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Duplex is easily weldable by all welding processes.Duplex steels require somewhat more careful attention when being welded than normal austenitic

steels. The following precautions should be observed:

– The material should be welded without preheating.– Welding should be performed using a low heat input. The material should be allowed to cool, pre-

ferably below 150°C between passes. Do not use higher amperage than necessary. Increasedelectrode diameter means higher heat input, if not compensated by higher welding speed.

Duplex can be welded using the following methods:

– Manual metal arc with covered electrodes– Gas shielded arc welding such as TIG, plasma and MIG– Submerged arc welding

Post weld heat treatment is normally not necessary. In cases where heat treatment is considered,for example for stress relieving, this should be carried out at the temperature range of between 1020-1070°C.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

CATALOGO 14/11/05 13:35 Página 80

Page 81: Aceros y Aleaciones_TUBOS

81

Alloy: Ferralium-255 (SD 40)®

(Cr. Ni. Mo. alloy)UNS-S32550

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

FERRALIUM-255®

Ni Cr Mo Co Fe Cu C Mn Si P S N

Mini 4,5 24 0,08Max 6,5 27 3,5 0,03 2 1 0,20Balance X

Solution SolutionTreated & Treated

Stress Relieved & Aged

0.2% Proof Stress tons f/in2 31.7 36.9N/mm2 490 570

Tensile Strength tons f/in2 47.9 53.7N/mm2 740 830

Elongation on 5.65 So, % 25 23Izod Impact ft•lb 44 37V-notch at 20°C Joules 60 50Brinell Hardness 220-270 250-330

All figures are minimum, except where a range is quoted.

The composition above is that shown for UNS S3250 in ASTM A240. The composition of Ferraliumalloy 255[SD40] falls within this range but the exact proprietary compositional range is confidential andis not released. The standard requirements for Pitting Resistance Equivalent (PRE.N) are met, wherePRE.N = %Cr + 3.3%Mo + 16%N > 40.0.

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

At room temperature Typical Properties

Ferralium alloy 255 is normally supplied in the solution-treated and stress relieved condition. The ex-cellent mechanical properties obtained in this condition can be raised further by ageing and if requiredshoud be stated at the order stage.

ELEVATED AND LOW TEMPERATURE PROPERTIES

The recommended maximum continuous operating temperature for Ferralium alloy 255-3SF is275°C. The alloy can be used for occasional short periods at slightly higher temperatures but careshould be exercised.

The lowest temperture for which Ferralium alloy 255-3SF can be considered is around minus 50°C. TheV-notch impact at minus 18°C is typically 80-100 Joules.

FATIGUE CHARACTERISTICS

Ferralium alloy 255-3SF has excellent resistance to fatigue and corrosion fatigue, making it particularlysuitable for items such as shafts in seawater environments.

Solution Treated &Stress Relieved

Tensile Strength 780 N/mm2

0.2% Proof Strees 540 N/mm2

Elongation 28%Izod Impact >100 JoulesUltimate Torsional 800 N/mm2

Stress0.2% Proof Stress 400 N/mm2

Angle of Twist 1020 degrees

FERRALIUM-255®

CATALOGO 14/11/05 13:35 Página 81

Page 82: Aceros y Aleaciones_TUBOS

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

82

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-789 A-789 A-240 A-240 A-182 A-815A-790 A-790 A-473/9

Density at 20°C kg/m3 7806g/cc 7.81lb./in3 0.282

Mean Coefficient of Thermal Expansion, °K-1 20°-100°C 11.1 x 10-6

20°-200°C 11.5 x 10-6

20°-300°C 12.0 x 10-6

20°-400°C 12.4 x 10-6

20°-500°C 12.9 x 10-6

Thermal Conductivity, W/m°K 0°C 13.620°C 14.240°C 14.760°C 15.280°C 15.8100°C 16.3200°C 18.4

Specific Electrical Resistance at 20°C microhm-m 0.80microhm-cm 80microhm-in 31

Magnetic Permeability 33Young’s Modulus Ib.f/in2 29 x 106

N/mm2 199 x 103

Torsional Modulus Ib.f/in2 11 x 106

N/mm2 75 x 103

Poisson’s Ratio 0.32

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

Description

Ferralium alloy 255-3SF is a high strength, high alloy duplex stainless steel made under the same Patentwhich covers the standard Ferralium alloy 255. It has an even more closely controlled composition and he-at treatment so as to achieve the optimum corrosion resistance from the alloy system but can be machi-ned and welded as readily as the alloy 255.

This wrought alloy which complements the advanced cast Ferralium alloy 255-3SC has been de-veloped especially for the more critical applications in oil and gas production both offshore and ons-hore, and in naval ships – in fact wherever a high degree of resistance to pitting and crevice attackin addition to general corrosion resistance is important. Its resistance to acids, notably to sulphu-ric acid up to about 65% concentration, is also significantly improved so that it is very useful forhandling all kinds of contaminated waters.

Compared with other commercially available duplex alloys such as W.NR 1.4462 (often designated2205) it has higher strength but retains good ductility and its corrosion resistance is of a significantly hig-

CATALOGO 14/11/05 13:35 Página 82

Page 83: Aceros y Aleaciones_TUBOS

her order in both sea water and acids. Against the conventional high alloy austenitic alloys characterisedby UNS NO8904 it has both higher strength and much better resistance to selective attack, approachingthat of the so-called “6Mo” alloys although the PRE (pitting resistance equivalent) values of the latter areslightly higher. However it must be appreciated that PRE is not an absolute measure and is merely a broadmethod of grading by calculation from the Cr, Mo and N contents of the alloy. The PREN value for Ferraliumalloy 255-3SF exceeds 37. As with Ferralium alloy 255, a significant copper content in Ferralium alloy 255-3SF enhances the basic corrosion resistance of the high alloy duplex structure (approximately 50:50) con-trolled by the chromium, molybdenum, nickel and nitrogen contents. In particular, the copper tends to re-tard pitting and crevice attack and benefits resistance to sulphuric acid.

Ferralium alloy 255-3SF is relatively “noble” in a galvanic table, comparing with titanium, and has a restpotential of +0.04 volts (S.C.E.) in 3% Na Cl.

The good resistance to erosion provided by Ferralium alloy 255 is equalled by the alloy 255-3SF, espe-cially in the age-hardened condition.

In the solution-treated condition the hardness of alloy 255-3SF is within the limit set by NACE MR-01-75 and Ferralium alloy 255 in the wrought form is now included by name in this Material Recommendation.The UNS number for Ferralium alloy 255-3SF is S32550.

CORROSION RESISTANCE

Crevice Corrosion

The 300 series austenitic stainless steels are particularly susceptible to a breakdown of their passive filmunder crevice conditions in sea water and other corrosive waters. Some highly alloyed ferritic stainless ste-els resist crevice corrosion attack much more successfully, as can ferritic/austenitic alloys.

Ferralium alloy 255-3SF is even better than wrought Ferralium alloy 255 which already led the field inresisting this form of attack. For comparison and grading of materials it is widespread practice to use ac-celerated tests in FeCl3. The table below shows comparisons between Ferralium alloy 255-3SF, some otherwrought duplex alloys and austenitic alloys. The critical crevice temperatures were determined on speci-mens having a bold (uncovered) to crevice area ratio of approximately 20:1; significant changes in the abo-ve ratio may alter the critical crevice temperature.

Critical Crevice Corrosion Temperatures in 10% FeCl36H20 (pH1)

83

CCT°C

Ferralium alloy 255-3SF 30Ferralium alloy 255 202205 (1.4462) 17.5

CCT°C

CN7M modified (4.5 Mo) (cast) 0 to 12.5DP3 (25Cr/7Ni/3Mo + W) 10316 stainless steel – 2.5

Pitting Corrosion

The pitting resistance of most duplex stainless steels is superior to that of the standard austenitic alloyssuch as types 316 and 317 even in low carbon grades.

Ferralium alloy 255-3SF offers a further advance in pitting resistance compared with Ferralium alloy255, already outstanding in this respect. The critical pitting temperature of alloy 255-3SF in 3% NaCl so-lution is compared with some other wrought alloys below.

The results presented in the table may be less than claimed elsewhere for the alloys other than the Fe-rralium alloys. This can be due to the difference in detail between the precise test methods employed. Allthe figures were established by an identical procedure used in the same test equipment so that they repre-sent a true comparison.

Critical Pitting Temperatures in 3% NaCl (deaerated)

CCT°C

Ferralium alloy 255-3SF 40Ferralium alloy 255 302205 (1.4462) 20

CCT°C

CN7M modified (4.5 Mo) (cast) 20316 stainless steel 0

CATALOGO 14/11/05 13:35 Página 83

Page 84: Aceros y Aleaciones_TUBOS

The presence of copper in Ferralium alloy 255-3SF, as in alloy 255, is particularly benefical in aiding theresistance to initiation and particularly to propagation of pitting attack. A minimum of 1% copper is essen-tial to ensure the optimum resistance to pitting.

Stress Corrosion

The stress corrosion cracking resistance in chloride environments of Ferralium alloy 255-3SF is, in com-mon with standard alloy 255, greatly superior to that of the standard austenitic stainless steels. A consi-derable amount of test data and service experience with Ferralium alloy 255 has demonstrated the alloy’sexcellent performance in resisting this form of attack. Alloy 255-3SF is identical in performance to the stan-dard alloy and data can be provided if required.

One factor in handling sea water is that in many situations it may be polluted. For example, harbour wa-ter and oil field water may contain considerable amounts of dissolved hydrogen sulphide. This can destroythe passivation of stainless steels, leading to accelerated pitting, increased propensity to crevice attack andpotentially most damagingly to stress corrosion cracking. The beneficial effect of copper in stabilising thepassive film helps Ferralium alloy 255-3SF to combat these forms of attack and the modified chemistry ofthe alloy further improves resistance to the stress corrosion hazard created by the presence of H2S. Whe-re Ferralium alloy 255 is required to meet the requirements of NACE MR-01-75, in which it appears by na-me, this is satisfied by supplying the alloy in the solution treated and stress-relieved condition.

Acids

Ferralium alloy 255-3SF possesses far superior resistance to sulphuric acid compared with conventio-nal austenitic stainless steels such as type 316. For many years alloy 255 has been used very successfullyin the lower and higher concentrations of sulphuric acid.

The selection chart is based on tests on material machined and later tested rather than on freshly abra-ded samples. Freshly abraded samples or activated samples may exhibit different rates of corrosion. Thisis of particular significance in aggressive non-oxidising acid conditions.

The application of Ferralium alloy 255-3SF in sulphuric acid can be further extended in strongly aera-ted solutions and in the presence of oxidising substances but it is essential to carry out tests to esta-blish suitability.

The outstanding resistance of Ferralium alloy 255-3SF to commercial phosphoric acid containing impu-rities such as hydrofluoric acid, chlorides and sulphuric acid combined with its excellent resistance to wearand erosion renders the alloy of special interest for critical components on pumps, valves and fluid hand-ling equipment generally in the production of fertilizer grade phosphoric acid where hot abrasive slurries areinvolved. Ferralium alloy 255-3SF and the cast alloy 255-3SC can often replace more expensive highly allo-yed stainless steels and nickel based alloys.

Ferralium alloy 255-3SF will successfully resist a wide range of acid mixtures such as sulphuric/nitric,phosphoric/nitric and nitric/adipic and is highly resistant to acetic, formic and other organic acids wherehalide contamination may be present.

PITTING AND CREVICE CORROSION IN CHLORIDE ENVIRONMENTS

Ferralium 255 & Ferralium SD40 possess outstanding resistance to pitting and crevice corrosion in ma-rine and seawater environments. They match the resistance of any other superduplex stainless steel andare far superior to the so-called marine grades of stainless steel, such as AISI 316 and 317, and the stan-dard type duplexes such as Alloy 2205. The carefully controlled composition of Ferralium SD40, which isspecifically designed as an offshore grade of superduplex and which has a substantial content of nitrogenand molybdenum, gives a Pitting Resistance Equivalent (PREN) > 40.0, where PREN = %Cr + 3.3%Mo +16%N.

84

CATALOGO 14/11/05 13:35 Página 84

Page 85: Aceros y Aleaciones_TUBOS

CORROSION RESISTANCE GUIDE

85

FERRALIUM

Conc. Temp. °C alloy CF-8M (316) CN-7M

w/w 255-3SF

Acetic Acid 0-50% Boiling •1 • •

Acetic Acid Vapour – Hot • z •

Acetic Anhydride – to Boiling • • •

Ammonium Carbamate

(urea production) – to 120 • z z

Ammonium Chloride All 75 •2 z •

Ammonium Hidroxide – – • • •

Citric Acid All to Boiling • z •

Copper Sulphate + 10% H2SO4 – to Boiling • z •

Formic Acid – 20 •1 z •

Hydrochloric Acid 2% 100 • t –

Nitric Acid 0-60% Boiling • •5 •

Nitric Acid 70% Boiling z z5 z

Phosphoric Acid All to 100 • • •

Phosphoric Acid 0-60% Boiling • z •

Phosphoric Acid 60%-70% 120 z t z

Phosphoric Acid 88% Boiling q t q

‘Wet Process’ 25%-35% 80 •3 q •

Phosphoric Acid in P2O5

production of phosphate 45%-55% 80-90 •3 q •

fertilisers P2O5

Potassium Chloride 0-30% to Boiling z2 z •

Sea Water See separate information

Sodium Chloride 0-10% to Boiling •2 z •

Sodium Hydroxide All 20 • z •

Sodium Hydroxide All Boiling z z z

Sulphuric Acid 0-98% 40 • t •

Sulphuric Acid 5%-30% 80 • t •

Sulphuric Acid 30%-50% 60 • t z

Sulphuric Acid 98% 100 • t •

Sulphuric Acid 98% 150 z t z

Sulphuric Acid (fuming) –Oleum – to 80 z4 z z

Sulphuric Acid/Nitric

Acid Misture 43% H2SO4,

25% HNO3, 32% H2O – 100 • z •

• Excellent resistance, usually at less than 0.15 mm/year

z Good resistance, <0.50 mm/year

q Suitable under some conditions. Plant tests recommended

t Poor resistance. Not normally recommended

Notes:1. Ferralium alloy 255 more resistant to pitting in the presence of chlorides.2. Ferralium alloy 255 more resistant to pitting and selective attack under crevi-

ce and stagnant conditions.3. Plant tests recommended.4. Plants tests recommended.5. Data relates to CF-8C (347).

CATALOGO 14/11/05 13:35 Página 85

Page 86: Aceros y Aleaciones_TUBOS

EROSION AND WEAR

The resistance of Ferralium alloy 255-3SF to erosion, cavitation and wear is extremely good, being thesame as that of the standard alloy 255. Many established applications utilise this property to advantagemost notably in pumps and valves.

MACHINING

FERRALIUM alloy 255-3SF can be readily machined and although considerably harder than the austeni-tic stainless steels, the same techniques can generally be used. High speed tools can be used but speedscan be substantially increased by the use of carbide tipped tools.

In common with many stainless steels and high strength materials, heavy machining on Ferralium alloy255-3SF can sometimes result in slight movement during subsequent operations. This may be accetuatedby surface work hardening if blunt tools are used.

Whilst this movement is not significant in most cases, components requiring specially close tolerancesshould be given a stress relief.

STRESS CORROSION CRACKING

The stress corrosion cracking resistance in chloride environments is far superior to any of the standardaustenitic grades. Ferralium 255 & Ferralium SD40 have been successfully tested to 100% of yieldstrength in boiling seawater and the tests have shown that the alloys are not susceptible to stress corro-sion cracking, even under these extreme conditions.

CORROSION IN ACIDS AND SALTS

The corrosion resistance of Ferralium 255, which is designed specifically as a chemical grade su-perduplex, is generally superior to that of the standard austenitic types in sulphuric, phosphoric, ni-tric and many other acids and salts. Ferralium 255 is highly resistant to acetic acid, formic acid andother organic compounds. They are particulary suitable for the higher concentrations and tempera-tures where pitting and preferential corrosion are common causes of failure with standard austeni-tics in the presence of chloride and other impurities.

Ferralium 255 & Ferralium SD40 are proprietary super duplex stainless steels, containing appro-ximately 26% chromium, 6% nickel, 1.6% copper, 3.3% molybdenum and 0.24% nitrogen. The ma-terials are the latest refinement of the Ferralium series of superduplex stainless steels and FerraliumSD40 was specifically introduced to comply with those specifications calling for a Pitting ResistanceEquivalent (PREN) > 40.0.

The main features of Ferralium 255 & Ferralium SD40 are:

• Excellent corrosion resistance in a wide variety of corrosive chemicals including sulphuric, phosp-horic and nitric acids.

• Outstanding resistance to pitting and crevice corrosion in seawater and other chloride containingenvironments, Pitting Resistance Equivalent (PREN) exceeds 40.0.

• High strengh compared to austenitic and 22% chrome duplex stainless steels.• Excellent ductility and impact strength at both ambient and sub-zero temperatures.• High resistance to abrasion, erosion and cavitation erosion.• Excellent resistance to stress corrosion cracking in chloride containing environments compared

to standard austenitics.

Since the original Ferralium grade was invented at Langley Alloys in the 1960’s, the Ferralium alloyseries have been providing excellent service in a wide variety of corrosive environments. Some of theexisting industries and applications where the alloys have been successfully used are listed below.

• Chemical Process Industry. Sulphuric Acid Production, Nitric Acid Processes, Polypropylene Pro-duction, PVC Production, Titanium Dioxide Production, Caustic Evaporators, Equipment HandlingOrganic and Fatty Acids.

86

CATALOGO 14/11/05 13:35 Página 86

Page 87: Aceros y Aleaciones_TUBOS

87

• Marine Industry and Shipbuilding. Propellers and Shafts, Rudders, Shaft Seals, Pumps, Boltsand Fasteners, Valves, Instrumentation, Oil and Chemical Tankers.

• Oil and Gas Industry. Pumps, Valves, Pipe, Vessels, Welllhead Equipment, Subsea Equipment.• Pollution Control. Fans and pumps, Wet Scrubbers, Incinerators.• Copper Semlting. ID Fans, Tuyeres bars, Wet Scrubbers, Leaching Area Precipitators.• Pulp and Paper Industry. Black liquor heater tubes, Digester Blow Valves, Rotary Feed Valves,

I.D. Fans, Brownstock Washers, Precipitators, Bleaching Components.• Food Industry. Sugar Cane Centrifuges, Corn and Vegetable processing plant.• Agrochemicals. Fertiliser Production (Wet phosphoric acid).• Civil Engineering. Statue of Liberty supporting structure, Swimming Pools, Sewage Treatment.

HEAT TREATMENT

The standard solution heat-treatment for Ferralium alloy 255-3SF is carried out at 1060°C followed byrapid quench, preferably in water. Uniformity of temperature within a range of ± 10°C is essential and ade-quate time should be allowed so as to ensure that the material is fully soaked throughout at the tempera-ture. Quenching should be carried out immediately on removal from the furnace, with the minimum of coo-ling in air during transfer to the quenche tank.

Stress Relief

This should be carried out by heating to 350°C and holding for two hours at temperature followed by aircool. Depending upon the nature of the component, the extent of machining and the tolerances required,this treatment may be carried out at one or more stages of the machining cycle.

Ageing

We recommend that ageing heat-treatment is carried out only by the manufacturer, as it requires a verycareful control.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

There is very extensive experience in the welding of the standard wrought Ferralium alloy 255 andFerralium alloy 255-3SF can be welded equally readily.

It is recommended that only Ferralium alloy 255 HB flux coated electrodes be used to weld Ferraliumalloy 255-3SF. These electrodes have been specially developed to ensure sound welds and satisfactoryproperties in the deposited metal. The use of any other electrodes will be most unlikely to result inwelds with both acceptable ductility and the corrosion resistance of the parent metal.

Pre-heat before weldings is not required and maximum interpass temperature is 300°C. Heat in-put should be as low as possible consistent with achieving sound welds.

Ferralium alloy 255-3SF is normally supplied in the solution-treated (and stress relieved) condition,which is the ideal for welding of the alloy.

Welds in light sections and minor repair welds do not generally require post-weld heat-treatment butheavy section welds should preferably be given a solution treatment after welding so as to ensure ma-ximum corrosion resistance and ductility.

Carbon steel and standard austenitic stainless steels can be welded to Ferralium alloy 255-3SF usingeither Ferralium alloy 255 HB electrodes or one of the specialised electrodes developed for welding ofdissimilar materials.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

CATALOGO 14/11/05 13:35 Página 87

Page 88: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 88

Page 89: Aceros y Aleaciones_TUBOS

Alloy: UNS-S32760 (Super Duplex) F-55

(Cr. Ni. Mo. alloy)

UNS-S32760

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

89

SD-F55UNS S32760

Ni Cr Mo Co Fe Cu C Mn Si P S N W

Mini 6 24 3 0,5 0,2 0,5Max 8 26 4 1 0,03 1 1 0,03 0,01 0,3 1Balance X

WROUGHT(UNS S32760)

YIELD SRENGTH 550 MPa(0.2% offset) (80 Ksi)TENSILE STRENGTH 750 MPa

(109 Ksi)ELONGATION IN 50 mm 25%HARDNESS 28 HRC MAX

PRODUCT TEMP YIELD TENSILEFORM STRENGTH STRENGTH

0.2% OFFSET(°C) (°F) (MPa) (ksi) (MPa) (ksi)

FORGINGS 20 68 550 80 750 109BAR 50 122 500 73 725 105

100 212 470 68 700 102PLATES 150 302 450 65 680 99(up to 30mm) 200 392 430 62 670 97

250 482 400 58 650 94300 572 385 56 635 92

PRODUCT TEMP YIELD TENSILEFORM STRENGTH STRENGTH

0.2% OFFSET(°C) (°F) (MPa) (ksi) (MPa) (ksi)

PLATES 20 68 550 80 750 109(31 TO 70mm) 50 122 470 68 700 102

100 212 430 62 670 97150 302 400 58 620 90200 392 380 55 610 88250 482 370 54 600 87300 572 360 52 590 86

PREN = % Cr + 3.3% Mo + 16% NPREN > 40PHASE BALANCE – 50 ± 15% FERRITE

It should be noted that the UNS S32760 designation merely specifies a broad compositional ran-ge, whereas the composition is tightly controlled in strict accordance with “MDS” specifications. Thisensures a consistent quality product is produced, and the stated corrosion, mechanical an physical pro-perties are maintained.

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

The following guaranteed minimum properties are available in the solution annealed condition.

Room temperature Elevated temperatures:

SD-F55UNS S32760

CATALOGO 14/11/05 13:35 Página 89

Page 90: Aceros y Aleaciones_TUBOS

The above properties for forgings are typical values for section thicknesses up to 300 mm solid or250 mm in an annulus with a minimum bore of 100 mm. As the properties from forgings are very de-pendent upon the product route and the actual forging ratio then properties and design are by agree-ment for other than standard items.

It is not recommended for uses which involve extended exposure to temperatures greater than300°C (572°F) as there is a substantial reduction in toughness.

Impact Strength

It has good impact strength. There is no true ductile brittle transition, just a gradual decrease in im-pact energy as the temperature is lowered. The impact energy varies according to product type andproduction route. The impact strength is slightly less than that of parent metal.

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density

The density is 7.84 g/cm3(7840 kg/m3 or 489 lb/ft3) at 20°C (68°F)

Specific Heat Thermal Conductivity

Typical specific heats: Typical values

90

TEMP SP. HT.(°C) (J KG-1 K-1)

20 482100 500150 513200 523250 535300 547

TEMP THERMAL COND(°C) (Wm-1 K-1)

20 12.9100 14.4150 15.4200 16.3250 17.3300 18.2

Thermal Expansion

The typical thermal expansion coefficient is much lowerthan that of austenitic stainless steel and reasonably close tothat of carbon steel, as follows:

RESISTIVITY (10-6 ohm m)

TEMP WROUGHT(°C) ZERON 10020 0.851100 0.897150 0.927200 0.956250 0.985300 1.014

LINEAR THERMAL EXPANSION COEFF(10-6 K-1)

Temperature, °C 20-100 20-200 20-300ZERON 100 12.8 13.3 13.8CARBON STEEL 11.5 12.2 12.9AUSTENITICSTAINLESS STEEL 16.8 17.2 17.6

Resistivity

Typical values of resistivity areshown below.

Magnetic Permeability

At room temperature the peak relative magnetic permeability is typically 29.

Young’s Modulus

The modulus is a function of austenite/ferrite ratio and production route. Variations of ± 5% arefound with both wrought and cast products. The typical value at room temperature is 190 GPa(27600 ksi).

Poisson’s Ratio

The typical value at room temperature is 0.32.

CATALOGO 14/11/05 13:35 Página 90

Page 91: Aceros y Aleaciones_TUBOS

Fasteners ASTM-A-320.

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

This is a highly alloyed duplex stainless steel for use in aggresive environments. Its properties include:

• Guaranteed corrosion performance (PREN > 40).• High resistance to pitting and crevice corrosion.• Excellent resistance to stress corrosion cracking in both chloride and sour environments.• High resistance to erosion corrosion and corrosion fatigue.• Excellent mechanical properties.• Possibilities for weight reduction over austenitic, standard duplex and nickel base alloys.

The combination of the above properties makes the optimum choice in a range of industries. Oil andgas industry applications include process, seawater, firewater, and subsea pipework systems, with asso-ciated risers, manifolds, pressure vessels, valves and heat exchangers. Applications in other industriesinclude pipework systems and associated engineering equipment for pollution control, pulp and paper, po-wer generation, flue gas desulphurisation, chemical, pharmaceutical, desalination, mining, metallurgicaland marine industries.

CORROSION RESISTANCE

It is highly resistant to corrosion in a wide range of organic and inorganic acids. The copper content gi-ves excellent resistance to corrosion in many non-oxidising acids. Commercial acid applications often con-tain chlorides and other impurities which can cause corrosion of some stainless steels. It offers much im-proved corrosion performance in these environments.

It is also highly resistant to strong alkalis. The production of caustic soda results in hot, strong solutionsand even in 60 wt% caustic soda, SD-F55 has very low corrosion rates (<0.1 mm/y). Caustic soda is oftenfound with chlorides in extraction processes and even with 10g/l chloride, SD-F55 has excellent corrosionresistance. Three years service experience of fabricated pipework in 2M caustic soda with chlorides at230°C has been excellent.

Pitting Corrosion

Exposure to 6% FeCl3 for 24 hours in accordance with ASTM G48 method A to determine the maximumtemperature at which no pitting occurs (the critical pitting temperature, CPT) has given the following results:

Solution annealed wrought: 70-80°C (158-176°F) depending on product form and manufacturing route.These values are for single exposure testing; testing a single specimen at a series of increasing tempe-

ratures gives a higher CPT value.

Crevice Corrosion

The resistance to localised corrosion is often assessed by use of the PREN number (%Cr + 3.3%Mo +16%N). It is made to a minimum PREN of 40, ensuring a guaranteed and high resistance to pitting and cre-

91

44..ºº SSppeecciiffiiccaattiioonnss::

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-790 A-790 A-240 A-276 A-240 A-182 A-988A-789 A-789 A-479 A-988 A-815

A-928 A-473B.S. EN10028-7 EN10088-3

EN1088-2 EN10273DIN 1.4541

CATALOGO 14/11/05 13:35 Página 91

Page 92: Aceros y Aleaciones_TUBOS

vice corrosion. Has been in service in sea water since 1986 as castings, and since 1989 as wrought pi-pes and fittings giving satisfactory performance.

At sea water temperatures above ambient (20°C) the risk of crevice corrosion increases. Resists crevi-ce corrosion up to 55°C but is limited by the pitting resistance of the welds to about 40°C. With the appli-cation of post weld treatments sea-water temperatures up to 65°C have been handled successfully. Shortterm elevated temperature upsets are not uncommon in cooling water circuits. Laboratory tests haveshown that does not suffer crevice corrosion easily during short upsets to 70°C, and when corrosion doesinitiate, repassivation occurs rapidly on cooling, from 42°C.

Stress Corrosion Cracking

SD-F55 has excellent resistance to stress corrosion cracking (SCC) in both chloride environments, andprocess environments containing H2S and CO2.

In brines with lower chloride contents can tolerate much higher pressures of H2S. As the pH, at tempe-rature and pressure, increases, so does the resistance to sulphide SCC.

Hydrogen Embrittlement

In common with all high strength steels, duplex and super duplex stainless steels can be susceptible tohydrogen embrittlement if stressed above the specified minimum yield strength in the presence of hydrogen.

Hydrogen embrittlement therefore becomes an area for consideration when these steels are used sub-sea with conventional cathodic protection.

However, the proper application of normal design stress criteria and coating technology has allowedmany subsea projects to utilize duplex and super duplex stainless steels successfully for a number of years.

MANUFACTURING

Heat Treatment

Should be solution annealed in the temperature range 1100-1140°C (2012-2084°F) followed by waterquenching.

Hot Forming

Hot forming should be carried out in the temperature range 1100°C TO 1280°C (2012-2336°F). It isrecommended that this is followed by solution annealing and water quenching. Components should subse-quently be pickled or fully machined.

Cold Forming

It can be adequately cold formed by various processes but the high mechanical properties should be ta-ken into account. It is recommended that any cold work in excess of 10%-15% is removed by solution an-nealing and water quenching. It should be noted that cold working above these limits can result in hardnesslevels above standard.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.Where a solution anneal and quench as a post-weld heat treatment is to be carried out, is usually

welded with matching composition consumables. With overalloyed consumables, no post-weld heat tre-atment is necessary. Corrosion and mechanical properties similar to the parent metal can be obtai-ned folowing recommended procedures.

77..ºº PPrroodduucctt,, wwee ssuuppppllyy::

xx Plates xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

92

CATALOGO 14/11/05 13:35 Página 92

Page 93: Aceros y Aleaciones_TUBOS

93

Alloy: UNS-S32750(Cr. Ni. alloy)

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

UNS S32750

Ni Cr Mo Co Fe Cu C Mn Si P S N

Mini 6 24 3 0,24Max 8 26 5 0,5 0,03 1,20 0,80 0,035 0,020 0,32Balance X

Density Kg/dm-3 7.8Thermal conductivity 12.90W m-1 K-1 at 20°CSpecific heat capacity J kg-1 K-1 460-500Coefficient of thermal 13expansion 10-6 K-1

Electrical resistivity 0.916m ohm m

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 700 MPa Elongation, mini: 25%Yield strength, mini: 450 MPa Hardness: Brinell, max: –

RcB, max: 285

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

44..ºº SSppeecciiffiiccaattiioonnss::

Norm Tubes Plates Shapes, Strips Flanges Fittings WireSeamless Welded Sheets Bars Forgings

ASTM A-790 A-790 A-240 A-276 A-240 A-182 A-988A-789 A-789 A-479 A-988 A-815

A-928 A-473B.S. EN10028-7 EN10088-3

EN1088-2 EN10273

DIN – 14410Fasteners ASTM-A-320.

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

Super-Duplex Stainless Steels

The first-generation Duplex stainless steels were developed more than 70 years ago in Sweden foruse in the sulfite paper industry. Duplex alloy were originally created to combat corrosion problems cau-sed by chloride-bearing cooling waters and other aggressive chemical process fluids.

Called Duplex because of its mixed microstructure with about equal proportions of ferrite and austeni-te, Duplex stainless steels are a family of grades, which range in corrosion performance depending on their

UNS S32750

CATALOGO 14/11/05 13:35 Página 93

Page 94: Aceros y Aleaciones_TUBOS

alloy content. The term “Super-Duplex” was first used in the 1980’s to denote highly alloyed, high-performan-ce Duplex steel with a pitting resistance equivalent of >40 (based on Cr% + 3.3 Mo% + 16N%).

With its high level of chromium, Super-Duplex steel provides outstanding resistance to acids, acid chlo-rides, caustic solutions and other environments in the chemical / petrochemical, pulp and paper industries,often replacing 300 series stainless steel, high nickel superaustenitic steels and nickel-based alloys.

The chemical composition based on high contents of chromium, nickel and molybdenum improvesintergranular and pitting corrosion resistance. Additions of nitrogen promote structural hardening byinterstitial solid solution mechanism, which raises the yield strength and ultimate strength values wit-hout impairing toughness. Moreover, the two-phase microstructure guarantees higher resistance to pit-ting and stress corrosion cracking in comparison with conventional stainless steels.

From the introduction of its first-generation, Duplex steel has seen a steady increase in popularity.Recently, the production of highstrength, corrosion resistant super-duplex coil has been implementedin the marine and chemical industries, architecture and mast riggings, wire lines, lifting and pulleyequipment and well service strands. In fact, development of wire processing techniques has enabledthe production of steel wires down to 1 mm in diameter.

The various Alloys

Super-Duplex falls under the Duplex stainless steel grouping. Duplex stainless steels are graded fortheir corrosion performance depending on their alloy content. Today, modern Duplex stainless steel canbe divided into four groups:

• Lean Duplex such as 2304, which contains no deliberate Mo addition;• 2205, the work-horse grade accounting for more than 80% of duplex usage;• 25Cr duplex such as Alloy 255 and DP-3;

Benefits

• High strength.• High resistance pitting, crevice corrosion resistance.• High resistance stress corrosion cracking, corrosion fatigue and erosion.• Excellent resistance to chloride stress-corrosion cracking.• High thermal conductivity.• Low coefficient of thermal expansion.• Good sulfide stress corrosion resistance.• Low thermal expansion and higher heat conductivity than austenitic steels.• Good workability and weldability.• High energy absorption.

Applications

• Heat exchangers, tubes and pipes for production and handling of gas and oil.• Heat exchangers and pipes in desalination plants.• Mechanical and structural components• Power industry FGD systems.• Pipes in process industries handling solutions containing chlorides.• Utility and industrial systems, rotors, fans, shafts and press rolls where the high corrosion fati-

gue strength can be utilized.• Cargo tank, vessels, piping and welding consumables for chemical tankers.• High-strength, highly resistant wiring.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

94

CATALOGO 14/11/05 13:35 Página 94

Page 95: Aceros y Aleaciones_TUBOS

Alloy: 17-4PH®

(Cr. Ni. Cu. alloy)UNS-S17400

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

95

17-4PH®

Ni Cr Mo Co Fe Cu C Mn Si P S N Nb

Mini 3 15 3 (x)Max 5 17 5 0,07 1 1 0,04 0,03Balance X

Solution Annealed &Age Hardened Condition psi Mpa %

Tensile strength, min. 135,000 931Yield Strength(0.2% offset), min. 105,000 724Elongation in 2”,(or 50 mm) or 4D, min. 16

(x) Nb + Ta = 0,15 to 0,45

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 930 MPa Elongation, mini: 16%Yield strength, mini: 274 MPa

Mechanical Properties according to ASTM A564-Type 630 grade 1150M

Representative Tensile Properties, Longitudinal Direction

Elong. Impact,UTS 0.2% YS % in 2” Red. of Hardness Charpy V-Notch

Property ksi ksi or 4XD Area % Brinell Rockwell ft.lbs.

H 900** 200 185 14 50 420 C 44 15H 925 190 175 14 54 409 C 42 25H 1025 170 165 15 56 352 C 38 35H 1075 165 150 16 58 341 C 36 40H 1100 150 135 17 58 332 C 35 25H 1150 145 125 19 60 311 C 33 30H 1150-M 125 85 22 68 277 C 27 100

** For applications requiring greater impact toughness, aging for 4 hours develops typical properties UTS – 196 ksi, 0.2% YS – 181 ksi, Elong. In 2” – 14%, Reduction of Area –52%, Hardness – Rockwell C43, and Charpy V-notch impact – 20 foot-pounds.

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Melting Range 2560-2625°F (1404-1440°C)

For condition H 900:

Density, lb/in3 ................................... 0.282Electrical resistivity, ohm • circular mil/ft . 463Magnetic Permeability, atH = 100 Oersted .................................... 90

H = 200 Oersted .................................... 56Maximum ............................................ 135

17-4PH®

CATALOGO 14/11/05 13:35 Página 95

Page 96: Aceros y Aleaciones_TUBOS

Mean Coefficient of Thermal Expansion, inch/inch °Fx10-6

96

Bar Billet Forgins

ASTM A564-Type 630 A564-Type 630 A564-Type 630W. Nr 1.4562 1.4562 1.4562

44..ºº SSppeecciiffiiccaattiioonnss::

AFNOR = 27 CNU 17.04

–100 to 70°F ....................................... 5.870 to 200°F ......................................... 6.070 to 400°F ......................................... 6.1

70 to 600°F ......................................... 6.370 to 800°F ......................................... 6.5

Thermal Conductivity Btu • ft/ft2 • hr • °F

at 300°F ...................................... 10.3500°F ...................................... 11.3860°F ...................................... 13.0

900°F ...................................... 13.1Specific Heat, Btu/lb°F ........................ 0.11

Poisson’s Ratio, 70°F ......................... 0.272

Modulus of Elasticity, psi x 106

Tension, 70°F ............................... 28.5200°F ............................. 28.0400°F ............................. 27.0

600°F ............................. 26.0

Torsion, 70°F ............................... 11.2

55..ºº CChhaarraacctteerriissttiiccss,, aapppplliiccaattiioonnss::

Alloy 17-4 PH is a martensitic, precipitation-hardening, chromium-nickel-copper stainless steel. Itprovides an excellent combination of high strength an hardness, short time, low temperature heat tre-atment and good mechanical properties at temperatures up to 316°C (600°F). In addition, it offers co-rrosion resistance comparable to that of Type 304 in most applications. This grade may be used in eit-her the solution heat treated condition (Condition A) or in one of a variety of precipitation-hardenedconditions, depending on the particular properties desired.

17-4 PH is an age-hardening martensitic alloy combining high strength with the corrosion resistan-ce of stainless steel. Hardening is achieved by a short-time, simple low-temperature treatment. Unlikeconventional martensitic stainless steels, such as type 410, 17-4 PH is quite weldable. The strength,corrosion resistance and simplified fabrication can make 17-4 PH a cost-effective replacement for highstrength carbon steels as well as other stainless grades.

Features

• High tensile strength and hardness to 600°F(316°C).

• Corrosion resistant.• Excellent oxidation resistance to about 1100°F

(593°C).

• Fabricable.• Simple low-temperature heat treatment.• Creep-rupture strength to 900°F (482°C).

Applications

• Gate valves.• Aircraft structures, accessories, engine parts.• Chemical processing machinery.• Food processing machinery.

• Pump shafts, gears, plungers.• Valve stems, balls, bushings, seats.• Pulp & paper mill equipment.• Fasteners.

CATALOGO 14/11/05 13:35 Página 96

Page 97: Aceros y Aleaciones_TUBOS

Heat Treatment

At the solution treating temperature, 1900°F (1040°C), the metal is austenitic but undergoes trans-formation to a low-carbon martensitic structure on cooling to room temperature. This transformationis not complete until the temperature drops to 90°F (32°C). Subsequent heating to temperatures of900 to 1150°F (480 to 620°C) for one to four hours precipitation strengthens the alloy. This harde-ning treatment also tempers the martensitic structure, increasing ductility and toughness.

Solution annealing should be performed in air, argon or dry hydrogen. Cracked ammonia and endot-hermic atmospheres are likely to contaminate the metal. Remove machining oils and forming lubricantsbefore solution annealing. Plasma cut surfaces should be ground or machined off before heat treat-ment to avoid possible cracking.

Heat Treatment for 17-4 PH and Their Designation

Designation .............. ProcessingCondition A* ............. Heated at 1900°F ± 25°F for 1/2 hour, air (Solution treated) cooled or oil

quenched to below 90°F. Normally performed at mill.H 900 ..................... Condition A material heated at 900ªF ± 15°F for 1 hour and air cooled. Maxi-

mum hardness but low toughness. Sensitive to stress corrosion cracking. He-ating 4 hours improves toughness with about 4 ksi reduction in tensile andyield.

H 925, H 1025, ...... Condition A material heated 4 hours at specified temperature, and air cooled.H 1075, H 1100H 1150,H 1150-M ... Condition A material heated at 1400 ± 25°F for 2 hours, air cooled, then he-

ated at 1150 ± 15°F for 4 hours and air cooled. This heat treatment used formaximum toughness, and for cryogenic applications to -320°F.

* For most applications 17-4 PH should not be used in Condition A. This is true even though the desired tensile strength may beprovided by that condition. While the alloy is relatively soft in Condition A, the structure is untempered martensite that has lowfracture toughness and ductility, with poor resistance to stress-corrosion cracking. Superior service performance is assuredby using 17-4 HP in the heat-treated condition.

Dimension change in hardening 17-4 PH undergoes a volume-contraction when it is hardened. Thisproduces a predictable change in dimensions that must be taken into consideration if parts made of17-4 PH must be manufactured to close tolerances.

The dimensional contraction in hardening Condition A material to Cond. H 900 amounts to 0.0004-0.0006 inches per inch. Hardening to cond. H 1150 produces a contraction of 0.0008-0.0010 in-ches per inch. Dimensional changes for other conditions are proportional.

ASME Section VIII, Div. 1 Code Case 2223-2 lists the following allowable design stresses. No wel-ding permitted except nonpressure parts. See case 2223-1 for rules.

97

Temp Allowable Stress, ksi

°F Condition

H 1100 H 1150

100 40.0 38.6200 40.0 38.6300 40.0 38.6400 38.9 37.5500 38.1 37.6600 37.5 36.2

CATALOGO 14/11/05 13:35 Página 97

Page 98: Aceros y Aleaciones_TUBOS

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Sections up to 1” thick are normally welded in the annealed (A) condition. Highly restrained joints orheavier sections are best welded in conditiones H1100 or H1150. Welding of 17-4 PH in conditionsH900 through H1075 is not recommended.

No preheat is usually necessary for sections up to 4” thick. For restrained welds a 200-300°F (100-150°C) preheat is beneficial.

Matching composition ER630 wire or E630 covered electrodes (AMS 5803, 5825 or 5827) arenormally used. Joints to carbon or low alloy steel may be made with ERNiCr-3 wire or ENiCrFe-3 cove-red electrodes. For GMAW, 75%Ar 25%He shielding gas is suggested.

Postweld heat treatment is required. For single pass welds on condition A base metal, simply agingto codition H 900 through H 1150 usually suffices (H 900 condition has very low notch toughness).For multipass welds the structure should be solution annealed after welding, followed by an aging tre-atment 900-1150°F.

Notches must be avoided and partial penetration welds with their built-in notches are quite undesi-rable. For improved notch toughness in the weld bead, consider making the root pass only with ERNiCr-3 (alloy 82) wire to maximize ductility.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

98

CATALOGO 14/11/05 13:35 Página 98

Page 99: Aceros y Aleaciones_TUBOS

Alloy: Carpenter: 20 Cb 3®

(Ni. Cr. alloy)UNS-N08020

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

99

20CB3®

Ni Cr Mo Co Fe Cu C Mn Si P S Nb

Mini 32 19 2 3 (x)Max 38 21 3 4 0,07 2 1 0,045 0,035Balance X

(*) = Nb + Ta = 8 x C -1

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 591 MPa Elongation: 30%Yield strength, 0.2: 241 MPa HRB: 95

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,03 Kg/dm3

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

It is un austeritic stainless steel developed to resist maynly sulphuric and chloridric acid, hot solu-tions, between 20-40%. It also offers higher resistance to corrosion than standard 316. It possesoutstanding resistance to pitting and stress corrosion cracking.

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 1 Sea water: 2 Symbols:

Hydrocloric acid: 2 Salts: 2 1. Good to excellent

Hydrofluoric acid: Alkalis: 2 2. Acceptable

Phosphoric acid: 2 3. Inadequate

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

BS

ASTM B-729 B-474 B-463 B-473 B-463 B-473 B-462 B-366B-464

20CB3®

CATALOGO 14/11/05 13:35 Página 99

Page 100: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 100

Page 101: Aceros y Aleaciones_TUBOS

Alloy: Hastelloy B-3®

(Cr, Ni, Mo, alloy)UNS-N10675

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

101

B3®

Ni Cr Mo Co Fe Cu C Mn Si P S N W

Mini 1 27 1Max 3 32 0,01 3 0,03 3 0,10 0,03 0,015 3Balance X

Test Ultimate Tensile Yield Strength ElongationTemperature Strenght at 0,2% Offset in 2 in (51 mm)

°F °C Ksi MPa Ksi Mpa %

Room Room 125,0 860 60,6 420 53,4200 95 120,7 830 55,3 380 56,9400 205 110,0 760 47,0 325 59,7600 315 104,4 720 43,5 300 63,4800 425 102,0 705 42,4 290 62,01000 540 97,8 675 39,0 270 59,01200 650 103,5 715 45,6 315 55,8

22..ºº MMeecchhaanniiccaall pprrooppaarrttiieess**::

* Limited data for 0,125* (3,2 mm)bright annealed sheet

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Physical Property Temp., °F British Units Temp., °C Metric UnitsDensity Room 0,333 Ib/in 3 Room 9,22 g/cm3

Melting Temperature 2500-2585 1370-1418Electrical Resistivity Room 53,8 microhm-in Room 137 microhm-cm

200 53,9 microhm-in 100 137 microhm-cm400 54,1 microhm-in 200 137 microhm-cm600 54,3 microhm-in 300 138 microhm-cm800 54,4 microhm-in 400 138 microhm-cm1000 55,4 microhm-in 500 140 microhm-cm1200 57,5 microhm-in 600 143 microhm-cm1400 54,7 microhm-in 700 142 microhm-cm

130 microhm-cm 78-200 5,7 microhm-in.-°F 25-100 10,6 x 10-6 m/m-°CMean Coefficient of 78-400 6,1 microhm-in.-°F 25-200 11,1 x 10-6 m/m-°CThermal Expansion 78-600 6,3 microches/in.-°F 25-300 11,4 x 10-6 m/m-°C

78-800 6,5 microches/in.-°F 25-400 11,6 x 10-6 m/m-°C78-100 6,6 microches/in.-°F 25-500 11,6 x 10-6 m/m-°C78-1200 6,5 microches/in.-°F 25-600 11,8 x 10-6 m/m-°C78-1400 7,1 microches/in.-°F 25-700 12,2 x 10-6 m/m-°C

B3®

CATALOGO 14/11/05 13:35 Página 101

Page 102: Aceros y Aleaciones_TUBOS

44..ºº SSppeecciiffiiccaattiioonnss::

DIN .............................. NiMo29CrWerkstoff-Nr. ................. 2.4600VdTÜV-Werkst.-BI. .......... 517DIN .............................. 17744, 17750, 17751, 17752, 17753ASTM ........................... B-333, B-335, B-564, B-619, B-622ASME ........................... SB-333, SB-335, SB-619, SB-622, SB-626

The alloy is also covered by ASTM specifications B-333 (plate, sheet and strip), B-335 (bar), B-366(welded fittings), B-564 (forgings), B-619 (welded pipe), B-622 (seamiess pipe and tube and B-626(welded tube).

55..ºº AApppplliiccaattiioonnss,, cchhaarraacctteerriissttiiccss::

B-3 alloy is an additional member of the nickel-molybdenum family of alloys with excellent resistance tohydrochloric acid at all concentrations and temperatures. It also withstands sulfuric, acetic, fomic andphosphoric acids, and other nonoxidizing medis. B-3 alloy has a special chemistry designed to achieve a le-vel of thermal stability greatly superior to that of its predecessore, e.g. HASTELOY B-2 alloy. B-3 alloy hasexcellent resistance to pitting corrosion cracking and to knife-line and heat-affected zone attack.

Fabrication

The improved thermal stability of B-3 alloy minimizes the problems associaled with fabrication ofB-2 alloy components. This is due to the reduced tendency to precipitate deleterious intermetalic

102

Physical Property Temp., °F British Units Temp., °C Metric UnitsDensity Room 0,333 Ib/in 3 Room 9,22 g/cm3

Melting Temperature 2500-2585 1370-1418Thermal Diffusivity Room 4,6 x 10-3 in2/sec. Room 3,0 x 10-3 cm2/sec.

200 4,9 x 10-3 in2/sec. 100 3,2 x 10-3 cm2/sec.400 5,4 x 10-3 in2/sec. 200 3,4 x 10-3 cm2/sec.600 5,8 x 10-3 in2/sec. 300 3,7 x 10-3 cm2/sec.800 6,3 x 10-3 in2/sec. 400 4,0 x 10-3 cm2/sec.1000 6,6 x 10-3 in2/sec. 500 4,4 x 10-3 cm2/sec.1200 7,3 x 10-3 in2/sec. 600 4,5 x 10-3 cm2/sec.1400 7,5 x 10-3 in2/sec. 700 4,9 x 10-3 cm2/sec.

Physical Property Temp., °F British Units Temp., °C Metric UnitsThermal Conductivity Room 78 Btu-in./ft.2 hr.-°F Room 11,2 W/m-K

200 83 Btu-in./ft.2 hr.-°F 100 12,1 W/m-K400 93 Btu-in./ft.2 hr.-°F 200 13,4 W/m-K600 104 Btu-in./ft.2 hr.-°F 300 14,6 W/m-K800 116 Btu-in./ft.2 hr.-°F 400 16,3 W/m-K1000 129 Btu-in./ft.2 hr.-°F 500 17,9 W/m-K1200 142 Btu-in./ft.2 hr.-°F 600 19,6 W/m-K1400 156 Btu-in./ft.2 hr.-°F 700 21,4 W/m-K

Specific Heat Room 0,089 Btu/Ib.-°F Room 373 J/kg-K200 0,092 Btu/Ib.-°F 100 382 J/kg-K400 0,098 Btu/Ib.-°F 200 409 J/kg-K600 0,102 Btu/Ib.-°F 300 421 J/kg-K800 0,104 Btu/Ib.-°F 400 431 J/kg-K1000 0,104 Btu/Ib.-°F 500 436 J/kg-K1200 0,112 Btu/Ib.-°F 600 434 J/kg-K1400 0,143 Btu/Ib.-°F 700 595 J/kg-K

CATALOGO 14/11/05 13:35 Página 102

Page 103: Aceros y Aleaciones_TUBOS

103

phases in B-3 alloy, thereby, affording it greater ductility than B-2 alloy during and following variousthermal cycling conditions.

B-3 alloy has good overall forming. It may be forget or otherwise hotworked, providing that it is heldat 2250°F (1230°C) for a time sufficient to bring the entire piece to temperature. Since it is low car-bon alloy, the use of lower hot finishing temperatures may be necesary to achieve grain size control.

B-3 alloy may also be formed by cold working. Although it does work-harden somewhat rapidly, B-3alloy components can be made using all common cold forming techniques.

Limited tests in boiling 20 percent hydrochloric acid indicate that the uniform corrosion resistanceof B-3 alloy is not affected by cold reductions up to 50 percent as compared to that of the alloy in thesolution heat-treated condition.

B-3 alloy can be welded by all common welding techniques, although oxyacetylene and submergedarc welding processes are not recommended when the fabricated item is to be used in corrosive ser-vice. Special precautions should be taken to avoid excessive heat input.

Heat Treatment

All wrought forms of B-3 alloy are furnished in the solution heatreated condition unless otherwisespecified, B-3 alloy is solution heat- treated al 1950°F (1065°C) and rapid quenched, except for brightannealed sheet or heat-treated at 2100°F (1150°C) and cooled in hydrogen.

Applications

B-3 alloy is suitable for use in all applications previously requiring the use of B-2 alloy. Like B-2 alloy,B-3 is not recommended for use in the presence of ferric or cupric salts as these salts may cause ra-pid corrosion fallure. Ferric or cupric salts may develop when hydrochloric acid comes in contact withiron or copper.

AQUEOUS CORROSION RESISTANCE

Average Unform Corrosion Resistance in Boiling Acids*

AveageConcentration Corrosion Rate Per Year

Acid Madium Weight Percent Mils mmAcetic Acid 10 0,2 0,005

30 0,2 0,00550 0,2 0,00570 0,2 0,005

99 (Glacial) 0,7 0,017Formic Acid 10 0,4 0,010

20 0,6 0,01530 0,6 0,01540 0,5 0,01360 0,3 0,00889 0,2 0,005

Hydrochloric Acid 1 0,3 0,0052 1,2 0,035 3,8 0,1010 5,5 0,1415 6,6 0,2220 12,1 0,31

(As-welded) 20 13,6 0,35(50 ppm Fe*) 20 60,0 2,0

CATALOGO 14/11/05 13:35 Página 103

Page 104: Aceros y Aleaciones_TUBOS

104

AveageConcentration Corrosion Rate Per Year

Acid Madium Weight Percent Mils mmPhosphoric Acid 10 2,4 0,06(chemically pure) 30 2,0 0,05

50 3,0 0,0885 2,9 0,07

Sulfuric Acid 2 0,4 0,0105 0,7 0,01810 0,8 0,02020 1,2 0,0330 1,2 0,03

(50 ppm Fe*) 30 18,8 0,4840 1,2 0,0350 1,7 0,04

(As-welded) 50 2,4 0,06(Aged 48 Hrs @ 1000°F (540°C) 50 2,0 0,05

60 2,3 0,0670 6,6 0,17

* Data from three production heats, for material in the solution heat-treated condition, unless noted. Test values were determi-ned from an average of four 24 hour exposures.

Comparative Uniform Corrosion Resistance in Boiling Acids

Average Corrosion Rates Per Year, Mils (mm)

B-3? B-2 Type MONIEL 400Acid Medium alloy alloy 316L alloy

50% Acetic Acid 0,2 (0,005) 0,4 (0,010) 0,2 (0,005) -

40% Formic Acid 0,5 (0,013) 0,7 (0,018) 41 (1,041) 2,1 (0,053)

50-55% Phosphoric Acid 30, (0,076) 6 (0,152) 18 (0,457) 4,5 (0,114)

50% Sulfuric Acid 1,7 (0,043) 1,2 (0,030) >20,000 (>500) 185 (4,699)

20% Hydrochloric Acid 12 (0,305) 15 (0,381) >20,000 (>500) 1587 (40,310)

Average Corrosions Rates Per Year For Indicated Temperatures

125°F (52°C) 175°F (79°C)% HF Mils mm Mils mm

1 8,6 0,22 11,1 0,283 8,7 0,22 12,7 0,325 9,0 0,23 13,7 0,3510 10,0 0,25 15,9 0,4120 11,8 0,30 22,8 0,5848 13,4 0,34 35,0 0,8970 31,6 0,80 – –

Average Uniform Corrosion Resistance in HF Solutions*

* Data from three production heats, for material in the solution heat-treated condition.

CATALOGO 14/11/05 13:35 Página 104

Page 105: Aceros y Aleaciones_TUBOS

105

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Those in the welding industry, however, should be aware of the potencial hazards associated withwelding fumes, gases, radiation, electric shock, heat, eye injuries, bums, etc.

Nickel-, cobalt-, and iron-base alloy products may contain, in varying concentration, the following ele-mental constituents: aluminum, cobalt, chromium, copper, iron, manganese, molybdenum, nickel andtungsten. For specific concentretions of these and other elements present, refer to the Material SafetyData Sheets (MSDS) available from Haynes International, Inc.

Inhalation of metal dust or fumes may cause adverse health affects. Exposure to dust or fumeswhich may be generated in working these alloy may also cause eye irritation, skin rash and effect on ot-her organ systems.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

CATALOGO 14/11/05 13:35 Página 105

Page 106: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 106

Page 107: Aceros y Aleaciones_TUBOS

107

Alloy: Hastelloy-C22®

(Ni. Cr. Mo. alloy)UNS-06022

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

C22®

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings

composit Seamless Welded. Sheets Bars

DIN 2.4611

BS

ASTM B-622 B-622 B-619 B-575 B-574 B-575 B-462 B-574B-462

Ni Cr Mo Co Fe Cu C Mn Si P S V W

Mini 20 12,5 2 2,5Max 22,5 14,5 2,5 6 0,015 0,5 0,08 0,02 0,02 0,35 3,5Balance X

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 690 MPa Elongation, mini: 45%Yield strength, mini: 310 MPa HRB= 100 máx

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,69 kg/dm3. Melting point: 2550 °FSpecific heat: 0,1 (Btu/Ib/Deg F-[32-212 Deg F])Expansion coefficient: 619Thermal conductivity: 70

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnssss::

A nickel-chromium-molydenum alloy which has outstanding resistance to both reducing and oxidisingmedia and because of its resistability can be used where ‘upset’ conditions are likely to occur.

By virtue of its contents of chromium, molybdenum and tungsten, and controlled iron, this alloy exhibitsexcellent resistance to both oxidizing and reducing acid environments as well as those containing mixedacids. It is particularly useful for resistance to pitting and crevice corrosion in acid-halide environments.

Applications include the chemical processing, pollution control, flue gas desulfurization, waste inci-neration, and paper pulp and paper processing industries.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

C22®

CATALOGO 14/11/05 13:35 Página 107

Page 108: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 108

Page 109: Aceros y Aleaciones_TUBOS

Alloy: Hastelloy-C276®

(Ni. Cr. Mo. alloy)UNS-N10276

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

109

C276®

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2.4819 17744 17751 17750 17752 17750

BS

ASTM B-622 B-619 B-575 B-574 B-575 B-574 B-564 B-366B-626

ISO NiMo16Cr15Fe6W4 9722 6207 6208 9723 6208 9724 9725

Ni Cr Mo Co Fe Cu C Mn Si P S V W

Mini 14,5 15 4 3Max 16,5 17 2,5 7 0,010 1 0,08 0,04 0,03 0,35 4,5Balance X

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 690 MPa Elongation, mini: 40%Yield strength, mini: 293 MPa HRB= 100 máxDureza HB < 240

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,89 kg/dm3. Melting range: 1325 a 1370 °CSpecific heat: 427 J/Kg. KExpansion coefficient: 11,7x10-6/K at 100°CThermal conductivity: 10,6 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy C-276 is a nickel-chromium-molybdenum alloy having perhaps the broadest general corrosionresistance of all commonly used alloys. It was developed initially for use with wet chlorine, but it alsooffers excellent resistance to strong oxidizers such as cupric and ferric chlorides, and to a variety of ch-lorine compounds and chlorine contaminated materials.

This alloy is used extensively to combat the high temperature and high presure corrosive conditionsencountered in drilling for sour petroleum deposits and in other oil field applications.

This alloy is characterised by:

• excellent resistance to a wide range of corrosive media, under oxidising and reducing conditions• outstanding resistance to localised corrosion such as pitting and crevice corrosion, as well as to

chloride-ion stress-corrosion cracking

C276®

CATALOGO 14/11/05 13:35 Página 109

Page 110: Aceros y Aleaciones_TUBOS

Applications

Alloy C-276 finds wide application in the chemical and petrochemical industries.Typical applications include:

• flue gas desulphurisation systems• organic syntheses involving acid choride catalysts• MDI and TDI production• vinyl chloride monomer production• production of hydrofluoric acid• sulphuric acid coolers• chlorine driers• production tubing in corrosive oil and gas wells• melamine production• methionine synthesis• pickling baths• aramide plastics production

Alloy C-276 is the improved version of alloy C and is resistant to numerous media including strongly oxi-dizing chemicals (for example iron and cupric chloride) warm polluted acids, solvents, chloride and mediacontaminated by chloride (organic and inorganic), dry chloride, formic and acetic acid, acetic anhydride,sea water and saline solutions. Furthemore, alloy C-276 is resistant when exposed to damp chlorine gas,hypochlorite and chlorodioxide solutions. Alloy C-276 combines this excellent corrosion resistance with im-mensely improved machineability. This alloy does not separate grain boundaries in the zone influenced bywelding so that it is suited for most chemical applications even without heat-tratament.

Alloy C-276 is a nickel-chromium alloy with high molybdenum and tungsten but low iron and siliconcontents, which provides superior corrosion resistance to a wide variety of environments. The compo-sition is specially formulated to maintain corrosion resistance, even in the weld heat-affected zone, thusmaking Alloy 276 suitable even in the as-welded condition. The alloy has excellent resistance to gene-ral pitting and stress-corrosion cracking and resists oxidation up to approximately 1038°C (1900°F).The alloy has shown remarkable corrosion resistance in the especially corrosive areas of flue gas de-sulphurisation systems, such as outlet ducting leading to the stack. It has also been used to solve co-rrosive problem areas in sewage treatment plants.

Alloy C-276 is used extensively in severe operating enviroments, including those encountered in che-mical processing, pulp and paper, air pollution control, waste treatment and other disposal, and otherapplications.

C-276 exhibits excellent resistance to ferric and cupric chlorides, hot contaminated organics andinorganics, chlorine, firmic acid, acetic acid, acetic anhydride, sea water and brine. It is one of the fewalloys that is resistant to wet chlorine gas, hypochlorite, and chlorine dioxide.

• Chemical Process Equipment –heat exchangers, reactors and vessels, evaporators, pumps, val-ves and piping for procesing sulfuric acid, pesticides, phenol, styrene, vinyl chloride, chlorine andother chemicals.

• Pulp and Paper –bleaching, head boxes, and wastegas scrubbers.• Ore Processing –uranium and aluminium sulfate.• Waste Treatment and Disposal –sewage sludge incinerators, industrial and municipal incinera-

tors, chemical and toxic waste incinerators.• Air Pollution Control – power plant scrubbers and related equipment, electrostatic precipitators,

reheaters, wastehert recovery systems, industrial boiler scrubbers, marine inert-gas scrubbers.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

110

CATALOGO 14/11/05 13:35 Página 110

Page 111: Aceros y Aleaciones_TUBOS

111

Alloy: Hastelloy-C4®

(Ni. Cr. Mo alloy)UNS-N6455

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

C4®

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2.4610 1.7744 2.4610 2.4610

ASTM B-574-85 B-622 B-619 B-575 B-574 B-575 B-366B-626

Ni Cr Mo Co Fe Cu C Mn Si P S Ti

Mini 14 14Max 18 17 2 3 0,015 1 0,08 0,04 0,03 0,7Balance X

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 690 MPa Elongation, mini: 40%Yield strength, mini: 310 MPa HRB= 100 max

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,64 kg/dm3. Melting point: 2600 °FSpecific heat: 0.102 (Btu/lb/DegF-[32-212 DegF] Expansion coefficient: 6

Thermal conductivity: 79

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

An alloy with outstanding resistance to a wide range of severe corrosive environments, including hotacids. It is also very resistant to stress-corrosion craking in hot chloride and alkaline solutions and topitting and crevice corrosion. Applications include fasteners and chemical process equipment.

C-4 alloy is a nickel-chromium-molybdenum alloy with outstanding high temperature stability as evi-denced by high ductility and corrosion resistance even after aging in the 1200 to 1900°F (649 to1038°C) range. This alloy resists the formation of grain-boundary precipitates in the weld heat-affectedzone, thus making it suitable for most chemical process applications in the as-welded condition C-4 alloyalso has excellent resistance to stress-corrosion cracking and to oxidizing atmospheres up to 1900°F(1038°C).

C-4 alloy has exceptional resistance to wide variety of chemical process enviroments. These inclu-de hot contaminated mineral acids, solvents, chloride and chlorine contaminated media (organic andinorganic), dry chlorine, formic and acetic acids, acetic anhydride, and seawater and brine solutions.

Laboratory precipitation studies on C-4 alloy indicate that the intermetallic precipitates (Mu phase)associated with other nickel alloys in the 1200 to 2000°F (649 to 1093°C) temperature range havenot been detected. Fine intergranular M6C carbides can form but their damaging effect is minimal.

C-4 alloy can be forged, hot-upset, and impact extruded. Although the alloy tends to work-harden,it can be successfully deep-drawn, spun, press formed or punched. All of the common methods of wel-ding can be used to weld C-4 alloy, although the oxy-acetylene and submerged are processes are not

C4®

CATALOGO 14/11/05 13:35 Página 111

Page 112: Aceros y Aleaciones_TUBOS

recommended when the fabricated item is intended for use in corrosion service. Special precautionsshould be taken to avoid excesive heat input.

Wrought forms of C-4 alloy are furnished in the solution heat-treated condition unless other wi-se specified. C-4 alloy is a solution heat-treated at 1950°F (1066°C) and rapid quenched.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

112

CATALOGO 14/11/05 13:35 Página 112

Page 113: Aceros y Aleaciones_TUBOS

Alloy: Incoloy-028®

(Ni. Cr. Mo. alloy)UNS-N08028

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

113

ALLOY-028®

Ni Cr Mo Co Fe Cu C Mn Si P S V

Mini 29,5 36 3 0,6Max 32,5 28 4 1,4 0,030 2,5 1 0,030 0,030Balance X

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

(Annealed)

Tensile Strength, ksi ...................... 73MPa .................. 500

Yield Stregth (0,2% Offset), ... ksi ..... 31MPa .................. 214

Elongation, % ........................... 40Hardness (HRB) ....................... 80-90

(Cold Worked)

Tensile Strength, ksi ................ 130MPa .............. 896

Yield Stregth (0,2% Offset), . ksi ... 110MPa .............. 758

Elongation, % ....................... 15Hardness (HRB) ............... 33 max.

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density, Ib/in3 .......................................... 0,29g/cm3 ......................................... 8,0

Specific Heat (32-212°F), Btu Ib °F(microm/m °C) ......................................... 0,105

(0-100°C), J/Kg °C ....................... 450Coefficient of Expansion, 10-6 in/in °F(microm/m °C)

70-200°F (21-93°C) ...................... 8,3 (15,0)70-500°F (21-260°C) .................... 8,8 (15,9)70-800°F (21-427°C) .................... 9,3 (16,8)

A annealed product, tested al room temperature

44..ºº SSppeecciiffiiccaattiioonnss::

Thermal ConducitivityA,Btu in/ft2 h °F ................ 66

W/m °C ........ 11,4Electrical ResistivityA,ohm circ mil/ft ................ 594

micro ohm m .. 0,99Young’s ModulusA, 103 ksi . 29,0

GPa ............... 200

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 1.4563

ASTM B-668B-709 B-668 B-709 B-709

ISO FeNi31Cr27

Mo3,5CuI

AFNOR ZNINCDU31,27

ALLOY-028®

CATALOGO 14/11/05 13:35 Página 113

Page 114: Aceros y Aleaciones_TUBOS

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy 028 is a highly alloyed austenitic stainless steel offering resistance to a variety of corrosive me-dia. By virtue of its contens of chromium and molybdenum, the alloy offers resistance to both oxidizingand reducing acids and salts. The presence of copper increases its resistance to sulfuric acid. The alloyis used in the chemical and petrochemical processing industry. Alloy tubes are cold worked to highstrength levels for downhole service in moderately corrosive deep sour gas wells.

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Sea water: 2 Symbols:

Hydrocloric acid: case dependent Salts: case dependent 1. Good to excellent

Hydrofluoric acid: case dependent Alkalis: case dependent 2. Acceptable

Phosphoric acid: 2 3. Inadequate

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

114

CATALOGO 14/11/05 13:35 Página 114

Page 115: Aceros y Aleaciones_TUBOS

Alloy: Incoloy-330®

(Ni. Cr. Mo. alloy)UNS-N08330

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

115

330®

Ni Cr Mo Co Fe Cu C Mn Si P S Pb Sn

Mini 34 17 0,75Max 37 20 1 0,08 2 1,5 0,03 0,03 0,005 0,025Balance X

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

At Room Temperature Typical Cree-Rupture Properties

TensileStrength, 0.2% Yield Elongation Hardness

psi Strength, psi % Rb

85,000 39,000 47 70-85

Density Ib/in3 Melting Range °F

0.287 2450-2540

Coefficient* of Modulus ofThermal Thermal Elasticity

Temp Expansion, Conductivity Dynamic,°F in/in °F x 10-6 Btu•ft/ft2•hr•°F psi x 106

70 – 7,2 28,51400 9,7 13,7 21,01600 9,8 14,2 19,51800 10,0 14,7 18,0

Stress, psi, for a 10,000 hrTemp Minimum Creep Rate Rupture

°F of 1% in 10,000 hrs Strength, psi

1400 3600 43001600 2100 17001800 500 6302000 – (280)

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

*70°F to indicated temperature.

44..ºº SSppeecciiffiiccaattiioonnss::

Density: 8,08 Kg/dm3

Specific heat: 460 J/Kg • K

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 1.43331.4886

ASTM B-511-2 B-546 B-535 B-715 B-536 B-511 B-536 B-511 B-366B-535-6 B-710 B-546 B-512 B-512

330®

CATALOGO 14/11/05 13:35 Página 115

Page 116: Aceros y Aleaciones_TUBOS

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Performance Profile

A-330 is the workhorse of the heat resistant alloys. It has good strength, carburization and oxida-tion resistance to about 2200°F. These properties are enhanced by a nominal 1,25% silicon addition.330 has been designed to withstand the thermal shock of liquid quenching.

A-330 finds wide application in high temperature industrial environments where good resistance tothe combined effects of carburization and thermal cycling is a prime requisite. A-330 remains fully aus-tenitic at all temperatures and is not subject to embrittlement from sigma formation.

A-330 is worked by forming and machining procedures similar to those used with the austeniticstainless steels or nickel-chromium alloys. Forming at room temperature is suggested whenever pos-sible. Heat treatment is not necesary after most forming or welding operations. When required, thesuggested full anneal is 1900-2050°F, rapid air cool or water quench.

Machinability rating 20-25% of B1112.A-330 is highly resistant to chloride ion stress corrosion cracking and is a useful engineering choi-

ce for those applications where common stainless has failed by stres corrosion.

Features

• Oxidation resistant to 2200°F• Resistant to carburization and nitriding• Resistant to thermal shock• Good strength at elevated temperature• Metallurgical stability• Chloride ion stress corrosion cracking resistance

Applications

• Furnaces containers-carburizing, carbonitriding, annealing malleablizing• Muffles, retorts• Bar frame heat treating baskets• Quenching fixtures• Radian tubes• Salt pots, both neutral and cyanide• Furnace fans and shafts• Conveyors• Hot pressing platens• Tube hangers for crude oil heaters and steam boilers

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.A-330 may be readily welded using A-330-04 weld fillers of matching composition. Do not use AWS

ER330. Keep interpass temperatures low, do not preheat, do use reinforced stringer beads.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

116

CATALOGO 14/11/05 13:35 Página 116

Page 117: Aceros y Aleaciones_TUBOS

117

Alloy: Incoloy-800®

(Ni. Cr. alloy)UNS-N08800

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

800®

Ni Cr Mo Co Fe Cu C Mn Si P S Al Ti

Mini 30 19 39,5 0,15 0,15Max 35 23 2 0,75 0,10 1,50 1 0,015 0,60 0,60Balance

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 520 MPa Elongation, mini: 30%Yield strength, mini: 205 MPa HRB= 86 max

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,02 kg/dm3. Melting range: 1355 to 1385 °CSpecific heat: 502 J/Kg. K Expansion coefficient: 14,2 x 10-6/K

Termal conductivity: 11,7 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 1.4876

BS NA15 3074 3072 3076 3073 3076

ASTM B-408 B-514 B-407 B-514 B-409 B-408 B-409 B-408B-409 B-515 B-163 B-515 B-564 B-564 B-366

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::Alloy 800 is an iron-nickel-chromium alloy with moderate strenght and good resistance to oxidation

and carburization at elevated temperatures. It is particularly useful for high-temperature equipment inthe petrochemical industry because the alloy does not form the embrittling sigma phase after long ti-me exposure at 1200°F (649°C). Excellent resistance to chloride stress-corrosion cracking is anotherimportant feature of alloy 800.

ApplicationsTypical application for aloy 800 are - Heat exchangers and process piping; carburizing fixtures and

retorts; furnace components; electric range heating-element sheathing; extruded tubing for ethyleneand steam methane reforming furnaces; ammonia effluent coolers.

66..ºº CCoorrrroossiioonn ddaattaa::Sulphuric acid: 2 Sea water: 2 Symbols:Nitric acid: 2 Salts: 2 1. Good to excellentPhosphoric acid: 2 Alkalis: 2 2. Acceptable

3. Inadequate

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

800®

CATALOGO 14/11/05 13:35 Página 117

Page 118: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 118

Page 119: Aceros y Aleaciones_TUBOS

Alloy: Incoloy-800H®

(Ni. Cr. alloy)UNS-N08810

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

119

800H®

800H®

Ni Cr Mo Co Fe Cu C Mn Si P S Al Ti

Mini 30 19 39,5 0,05 0,15 0,15Max 35 23 0,75 0,10 1,50 1 0,015 0,60 0,60Balance

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 1.4958 17459/460 17459 17460 17460 17460

BS NA15(H) 3074 3072 3076 3073

ASTM B-407 B-515 B-409 B-408 B-409 B-564 B-366B-163 B-514 B-564

ISO MC-FeNi32Cr21APTi

AFNOR

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 450 MPa Elongation, mini: 30%Yield strength, mini: 170 MPa HRB= 86 max

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8 kg/dm3. Melting range: 1350 to 1400 °FSpecific heat: 500 J/Kg. KExpansion coefficient: 15,8 x 10-6/K (20-300°C)

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy 800H is an austenitic heat resistant alloy mean for high temperature structural applications.The strength of 800H is achieved by controlled levels of carbon, aluminum and titanium alone with a2100°F (1149°C) minimum anneal to achieve grain size ASTM5 or coarser.

Alloy 800H is essentially the same as Alloy 800, except that the carbon content is maintained at theupper portion of the carbon range of the alloy.

This, combined with an annealing treatment that produces a coarser grain size, provides an alloyof higher creep and rupture strength.

These features, in addition to the alloy´s good high-temperature corrosion resistance, produce analloy that is most useful for application requiring long-time operation at elevated temperatures and/orin corrosive atmospheres.

Features

• High desing stresses for ASME Section VIII aplication to 1650°F (899°C)• Seamless pipe and tube 5” O.D. and under to 1800°F (982°C), Section VIII

CATALOGO 14/11/05 13:35 Página 119

Page 120: Aceros y Aleaciones_TUBOS

• Useful oxidation resistance through 1900°F(1038°C)• Resistant to chloride ion stress corrosion cracking

Application

Range of application: alloy 800H is employed where maximum creep-rupture strength is required.

• Ethylene furnace quench boilers• Reformer outlet pigtails and manifolds• Heat exchangers• Pressure vessels

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Sea water: 2 Symbols:

Hydrocloric acid: Salts: 2 1. Good to excellent

Nitric acid: 1 Alkalis: 2 2. Acceptable

Phosphoric acid: 2 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 1 Strength & Stability: 1Carburization resistance: 1 Nitriding resistance: –Sufidation resistance: 1 Carbonitriding resistance: 2

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.800H is commonly joined by 82 (ERNiCr-3) bare wire for applications under 1450°F (788°C). 330-

04 (N08334) bare wire and 330-04-15 (W88334) covered electrodes offer a close match of thermalexpansion coefficients. For applications 1600°F (871°C) and higher 333 (N06333) bare wire and 333-07-16 covered electrodes offer greater strenght.

To avoid possible stress relaxation grain boundary cracking of N08811 in applications above 1000°F(538°C) the welded fabrication may be heated 1650°F (899°C) for about one hour per inch (25mm) ofthickness, 30 minutes minimum, air cooled.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

120

CATALOGO 14/11/05 13:35 Página 120

Page 121: Aceros y Aleaciones_TUBOS

Alloy: Incoloy-800HT®

(Ni. Cr. alloy)UNS-N08811

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

121

800HT®

Ni Cr Mo Co Fe Cu C Mn Si P S Al Ti

Mini 30 19 39,5 0,06 0,15 0,15 (x)Max 35 23 0,75 0,10 1,50 1 0,015 0,60 0,60Balance

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 1.4959 17459/60 17460 17460 17460

BS NA15HT

ASTM B-407 B-515 B-409 B-408 B-409 B-564 B-366B-163

ISO

AFNOR

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 450 MPa Elongation, mini: 30%Yield strength, mini: 170 MPa HRB= 86 máx

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8 kg/dm3. Melting point: 1350 to 1380 °CSpecific heat: 455 J/Kg. KExpansion coefficient: 15,8 x 10-6/K (20-300°C)

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

The high nickel and chromium contents of Alloy 800HT ensure excellent resistance to oxidation. Thealloy is also very resistant to carburisation, nitriding and oxidising sulphur-bearing atmospheres.

The protective oxide film wich is formed is adherent in both static and cyclic conditions of heatingand cooling, and resistance to carburisation is enhanced when a thin film of oxide is first formed on thealloy.

Resistance to hydrogen is excellent and alloy 800HT is a standard material used in the produtionof hydrogen in steam / hydrocarbon reforming processes.

Application

Due to high strength during long periods of service and resistance to carburisation and nitriding,Alloy 800HT has found many applications in steam/hydrocarbon reforming, for components such as:

(x) Al + Ti = 0.85 to 1.20

800HT®

CATALOGO 14/11/05 13:35 Página 121

Page 122: Aceros y Aleaciones_TUBOS

pigtails, headers/collectors/manifolds, transfer piping, catalyst tubes (in low pressure processes) andquench-system piping.

Typical applications include:

• ethylene pyrolysis tubing in convection and radiant sections – resistance to carburisation and go-od mechanical properties.

• ethylene dichloride cracking tubes – resistance to carburisation and to dry hydrogen chloride andchlorine

• cracking tubes used in the production of acetic anhydride and ketenehigh strength, resistance tocarburisation and the formation of sigma phase

• components, e.g. heat exchangers, piping systems etc, in coal conversion plants• steam generator tubing in helium cooled, high temperature reactor systems – high strength, re-

sistance to helium and to steam

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Sea water: 2 Symbols:

Hydrocloric acid: 3 Salts: 2 1. Good to excellent

Hydrofluoric acid: – Alkalis: 2 2. Acceptable

Phosphoric acid: 2 3. Inadequate

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

122

CATALOGO 14/11/05 13:35 Página 122

Page 123: Aceros y Aleaciones_TUBOS

Alloy: Incoloy 825®

(Cr, Ni, Mo alloy)UNS-N08825

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

123

825®

Ni Cr Mo Co Fe Cu C Mn Si P S N Al Ti

Mini 38 19,5 2,5 22 1,5 0,6

Max 46 23,5 3,5 3 0,05 1 0,5 0,03 0,2 1,2

Balance

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess ((aannnneeaalleedd))::

Tensile strength, mini = 586 MPa Elongation mini = 30%Yield Strength, mini = 241 MPa Hardness = – Brinell max

90 RCB max

INCOLOY alloy 825 has good mechanical properties from cryogenic temperatures to moderatelyhigh temperatures. Exposure to temperatures above about 1000 °F (540 °C) can result in microstruc-tural changes (phase formation) that significantly lower ductility and impact strength. For that reason,the alloy is not normally used at temperatures where creep-rupture properties are desing factors.

High-temperature tensile properties are shown. The tests were conducted on cold-drawn rod of0,75-in. (19-mm) diameter annealed at 1725 °F (940 °C)/1 h.

High temperature tensile properties of annealed bar.

825®

CATALOGO 14/11/05 13:35 Página 123

Page 124: Aceros y Aleaciones_TUBOS

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Some physical constants for INCOLOY alloy 825 are listed in Table 1. Values for thermal expansion,thermal conductivity, and electrical resistivity at various temperatures are in Table 2. Modulus of elas-ticity and Poisson’s ratio over a range of temperatures are given in Table 3. Modulus values, which we-re determined dynamically, were used to compute Posson’s ratio.

Thermal Properties. Table 2. Physical Constants. Table 1.

124

Temperature Coefficient Thermal Electricalof Expansiona Conductivity Resistivity

°F 10-6in/in-°F Btu-in/ft2-h-°F ohm-circ mil/ft

–250 – 55 ––200 – 59 ––100 – 66 –

0 – 72,6 –78 – 76,8 678

100 – 78,4 680200 7,8 85,0 687400 8,3 97,5 710600 8,5 109,6 728800 8,7 119,7 751

1000 8,8 130,9 7611200 9,1 141,8 7621400 9,5 154,9 7651600 9,7 171,8 7751800 – 192,0 7822000 – – 793

°F mm/m–°C W/m–°C mW–m

–150 – 7,9 ––100 – 8,9 –

0 – 10,7 –25 – 11,1 1,13

100 7,8 12,3 1,14200 8,2 13,8 1,18300 8,5 15,4 1,21400 8,6 16,9 1,24500 8,8 18,2 1,26600 8,9 19,6 1,27700 9,3 21,2 1,27800 9,6 23,1 1,28900 – 25,5 1,29

1000 – – 1,30

Temperature Young’s ShearModulus Modulus Poisson’s

°F 106psi 106psi Ratio

73 29,8 10,51 0,42200 29,2 10,28 0,42400 28,2 9,87 0,43600 27,2 9,48 0,43800 26,1 9,04 0,44

1000 25,0 8,60 0,451200 23,8 8,13 0,461400 22,5 7,64 0,471600 20,9 7,12 0,471800 19,0 6,48 0,472000 16,8 5,58 0,51

°C GPa GPa Poisson’sRatio

23 206 72,5 0,42100 201 70,7 0,42200 195 68,2 0,43300 188 65,6 0,43400 181 63,2 0,43500 175 60,3 0,45600 168 57,5 0,46700 160 54,5 0,47800 151 51,4 0,47900 141 48,0 0,47

1000 128 43,7 0,46

Density, Ib/in3 0,294MG/m3 8,14

Melting Range, °F 2500-2550°C 1370-1400

Specific Heat, Btu/Ib-°F 0,105J/kg-°C 440

Curie Temperature, °F <-320°C <-196

Permeability at 200 oersted (15,9 kA/m) 1.005

a Mean coefficient of linear expansion between 80°F (27°C) andtemperature shown.

Modulus of Elasticity. Table 3.

CATALOGO 14/11/05 13:35 Página 124

Page 125: Aceros y Aleaciones_TUBOS

44..ºº SSppeecciiffiiccaattiioonnss

DIN-2.4858 - Code NiCr21MoSeamless Pipes/Tubes: ASTM-B-423Welded Pipes/Tubes: ASTM-B-704/705Plates/sheets: ASTM-B-424Bars: ASTM-B-425Fittings: ASTM-B-366Flanges: ASTM-B-564

55..ºº AApppplliiccaattiioonnss,, cchhaarraacctteerriissttiiccss::

Alloy 825 is a thermally stabilized alloy which is resistant to both inorganic and organic acids. It hasexcellent resistance to oxidizing and nonoxidizing hot acid conditions and at temperatures up the boilingpoint it is resistant to many acids and alkaline solutions.

INCOLOY alloy 825 is a nickel-iron-chromium alloy with additions of molybdenum, copper, and tita-nium. The alloy´s chemical composition, is designed to provide exceptional resistance to many corrosi-ve environments. The nickel content is sufficient for resistance to chloride-ion stress.

Corrosion cracking. The nickel, in conjunction with the molybdenum and copper, also gives outstan-ding resistance to reducing environments such as those containing sulfuric and phosphoric acids. Themolydbenum also aids resistance to pitting and crevice corrosion. The alloy´s chromium content con-fers resistance to a variety of oxidizing substances such as nitric acid, nitrates, and oxidizing salts. Thetitanium addition serves, with an appropriate heat treatment, to stabilize the alloy against sensitizationto intergranular corrosion.

The resistance of INCOLOY alloy 825 to general and localized corrosion under diverse conditions gi-ves the alloy broad usefulness. Applications include chemical processing, polution control, oil and gasrecovery, acid production, pickling operations nuclear fuel reprocessing, and handling of radioactivewastes.

Corrosion Resistance

INCOLOY alloy 825 is well known for resistance to sulfide corrosion and chloride-ion stress-corrosioncracking, acid attack, and hydrogen embrittlement cracking. Because it combines corrosion resistan-ce and strength, INCOLOY alloy 825 makes an excellent choice for long-term use with sour crudes andgases.

Hydrogen Sulfide

INCOLOY alloy 825 is used to resist the corrosive conditions in sour gas and oil wells. The environ-ments include hydrogen sulfide and carbon dioxide in sour crude and gas at high temperatures andpressures. Table 4 shows the performance of the alloy in a test (NACE test) used to evaluate alloys forsuch service. The test consists of exposure of stressed, steel-coupled C-rings to a room-temperaturesolution of 5% sodium chloride whith 0,5% acetic acid and saturated with hydrogen sulfide. The speci-mens of INCOLOY alloy 825 were stressed at 100% of yield strength (0,2% offset). No failure occurredin the test period of 48 or 50 days.

The result of similar, but more severe tests are given in Table 5. Stressed C-rings were exposed tothe test solutions at high temperatures in pressurized autoclaves. The overpressure gas contained hy-drogen sulfide or hydrogen sulfide and carbon dioxide. No cracking of INCOLOY alloy 825 occured inthese tests with specimens stressed at 90% of yield strenght.

125

CATALOGO 14/11/05 13:35 Página 125

Page 126: Aceros y Aleaciones_TUBOS

Stress-Corrosion Cracking

An important property of INCOLOY alloy 825 is its relative freedom from stress-corrosion cracking.The resistance of austenitic alloys to chloride-ion stress-corrosion cracking depends on nickel content.INCOLOY alloy 825 contains sufficient nickel (42%) for a high degree of resistance to cracking in chlo-ride environments. Table 6 shows the performance of the alloy in boiling 45% magnesium chloride. Thetest were performed on stressed U-bend specimens.

Sea water

INCOLOY alloy 825 has good resistance to general corrosion, pitting, and crevice corrosion in seawater, although it is subject to biological fouling in continuous immersion. The alloy is also highly resis-tant to chloride-ion stress-corrosion cracking even in hot sea water.

126

Test StressMaterial Condition 1000psi MPa Results

27% cold work 105,0 724 No failure (48 days)27% cold work plus600 °F (315 °C)/1000h 111,9 772 No failure (48 days)49% cold work 114,2 787 No failure (48 days)49% cold work plus600°F (315°C) / 1000h 127,4 878 No failure (50 days)51% cold work 147,1 1014 No failure (48 days)63% cold work 133,4 920 No failure (48 days)63% cold work plus600 °F (315 °C)/1000 h 133,5 920 No failure (50 days)

NACE C-Ring Tests on Cold-Worked Tubing. Table 4.

Yield StrengthTests Environment Material Condition (0,2% Offset) Test Stress

1000psi MPa 1000psi MPa Results

25% sodium chloride,0,5% acetic acid, 27% cold work plus 111,9 772 101,0 696 No failure (43 days)1 g/L sulfursaturated with hydrogen sulfide, 600 °F (315 °C) 1000 h150psi (1,0 MPa)overpressure ofhydrogen sulfide, 49% cold work 114,2 787 103,0 710 No failure (43 days)350 °F (177 °C)15% sodium chloride,saturated with 27% cold work 105,0 724 94,5 652 No failure (47 days)hydrogen sulfide,1000 psi (6,9 MPa)overpressure ofnitrogenwith 1% hydrogensulfide and 20% carbondioxide, 49% cold work 111,9 772 100,0 690 No failure (47 days)400 °F (204 °C) 51% cold work 147,1 1014 132,4 913 No failure (47 days)

Autoclave Tests on Cold-Worked Tubing. Table 5.

CATALOGO 14/11/05 13:35 Página 126

Page 127: Aceros y Aleaciones_TUBOS

Stress-Corrosion Cracking tests in Boiling 45% Magnesium Chloride. Table 6.

127

Alloy Condition Test Results

INCONEL alloy 625 Annealed No cracking in 720 hINCONEL alloy 825 Annealed plus No cracking in 720 h

weldedType 316 Stainless Annealed Cracking in 24 hsteel

Intergranular Corrosion

Like other nickel-iron-chromium alloys, INCOLOY alloy 825 can be sensitized to intergranular corro-sion in some aggressive oxidizing media. However, INCOLOY alloy 825 contains an addition of titanium,which, during an appropriate heat treatment, stabilizes the alloy against such sensitization. The mecha-nisms of sensitization and stabilization for the alloy have been reported. Sensitization of unstabilized ma-terial can result from exposure to temperatures of 1200 to 1400 °F (650 to 760 °C) during weldingor service.

Susceptibility to intergranular attack is commonly measured by the Huey Test. It consists of expo-sure to boiling 65% nitric acid for five consecutive 48-h periods. An average corrosion rate of less than3 mils per month (36 mpy) (0,91 mm/y) for the five periods is considered to be satisfactory perfor-mance. Substantially higher rates indicate sensitization of the material.

FABRICATION

Hot and cold forming

The hot-working range for INCOLOY alloy 825 is 1600 to 2150 °F (870 °C to 1180 °C). For opti-mum corrosion resistance, final hot working should be done at temperatures between 1600 and 1800°F (870 and 980 °C)

Cooling after hot working should be air cool or faster. Heavy sections may become sensitized duringcooling from the hot-working temperature, and therefore be subject to intergranular corrosion in cer-tain media. A stabilizing anneal (see above) restores resistance to corrosion. If material is to be weldedor subjected to further thermal treatment and sudsequently exposed to an environment that may cau-se intergranular corrosion, the stabilizing anneal should be performed regardless of cooling rate fromthe hot-working

Cold-forming properties and practices are essentially the same for INCOLOY alloy 825 as for INCO-NEL alloy 600. Although workhardening rate is somewhat less than for the common grades of auste-nitic stainless steels, it is still relatively high. Forming equipment should be well powered and stronglybuilt to compensate for the increase in yield strength with plastic deformation.

Annealing

Work-hardened material can be softened completely by annealing. The treatment requires exposure toa sufficient temperature for a time long enough to cause full recrystallization of the workhardened grain stru-ture. That removes all of the stresses, softens the material, and decreases mechanical strength.

Recrystallization is a function of time, temperature and amount of cold work as well as alloy com-position.

Grain growth occurs when material is heated at higher temperatures or for longer times than tho-se required for recrystallization. Although that results in further softening, a coarse grain structure isunsuitable for some cold-forming operations and many service conditions (for example, a fine grain isusually required for good fatigue strength).

A coarse grain cannot be refined in the high-nickel alloys by thermal treatment alone. It can be re-moved only by cold working to a degree that will result in recrystallization to a finer grain during subse-quent annealing. If coarse grain is desired, or if maximum softness is required and coarse grain is notharmful to the application, the material can be given a solution anneal. Solution annealing, or solutiontreating, is performed by heating at temperatures in the upper part of the annealing range. The treat-ment is also used to dissolve the hardening elements in precipitation-hardenable alloys prior to aging.

CATALOGO 14/11/05 13:35 Página 127

Page 128: Aceros y Aleaciones_TUBOS

Annealing temperatures are critical in maintaining the high degree of corrosion resistance for wichINCOLOY alloy 825 was designed. For this reason, material leaving the mill has been carefully proces-sed to provide maximum corrosion resistance. Therefore, during subsequent working, interstage andfinal anneals should be limited to the 1700 to 1800 °F (930 to 980 °C) range, consistent with selec-ted time and prior cold work. The optimum temperature for stabilization in considered to be 1725 °F(940 °C) whereas 1800 °F (980 °C) provides the optimum combination of softness and fine grainstructure without sacrificing corrosion resistance. Quenching is usually not necessary for parts of thincross section such as those from sheet, strip and wire, but rapid cooling may be desired to avoid sen-sitization in heavier sections.

Prior to any heat treatment, normal precautions should be taken to remove all lubricants, shop soil,and markings which could induce intergranular attack and embrittlement.

APPLICATIONS

Alloy 825 is employed for phosphoric acid evaporators, pickiling vats, plants for chemical proces-sing, propeller shafts, transportation means for corrosive media, polution control, oil and gas recovery,acid production and handling of radioactive wastes.

66..ºº WWeellddiinngg pprrooppeerrttiieess::

Welding methods: Arc welding, TIG, MIG, plasma, autogenous welding.Note: Take care that the surface is cleaned before welding.

77..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plates, sheets xx Tubes xx Fittings xx Bars xx Forgings xx Bolting

128

CATALOGO 14/11/05 13:35 Página 128

Page 129: Aceros y Aleaciones_TUBOS

129

Allloy: Incoloy-286®

(Ni. Cr. alloy)

UNS-S66286

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

286®

Ni Cr Mo Co Fe Cu C Mn Si P S Al Ti V Bo

Min. 24 13,5 1 1,9 0,10 0,0010

Max. 27 16 1,5 1 0,08 2 1 0,040 0,030 0,35 2,325 0,50 0,010

Balance X

Temp Ultimate 0,2% Yield Elong Red of Charpy°F Tensile Strength, in 2”, Area, % V-notch

Str, psi psi % ft-Ib

RT* 95,000* 50,000* 40* – –RT 145,000 95,000 24 43 –

400 143,000 93,000 21 53 59800 138,000 93,000 18 35 511000 131,000 87,000 18 31 451200 103,000 88,000 13 14 351400 64,000 62,000 18 23 –

Density Ib/in3 Melting Range °F

0.286 solution treated 2500-26000.287 aged

Coefficient of Modulus ofThermal Thermal Elasticity

Temp Expansiona, Conductivity Dynamic,°F in/in °F x 10-6 Btu•ft/ft2•hr•°F psi x 106

200 9,2 8,0 –800 9,6 9,8 –1000 9,8 13,0 23,71200 9,9 14,1 21,91400 10,3 - 20,1

Stress, psi to RuptureTemp in Indicated Time

°F 100 hrs 1,000 hrs

1000 99,000 88,0001100 81,000 71,0001200 61,000 46,000

a 70°F to indicated temperature

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Representative Tensile Properties Typical Rupture Strength1800°F/1325°F heat treat 1800°F/1325°F heat treat

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

*annealed

286®

CATALOGO 14/11/05 13:35 Página 129

Page 130: Aceros y Aleaciones_TUBOS

44..ºº SSppeecciiffiiccaattiioonnss::

130

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 1.4980

BS A-638

ASTM A-453 Gr660 A-638A-638 Gr660

ISO

AFNOR

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Profile

A-286 is an age-hardenable iron base superalloy for applications requiring high strength from -320°Fup to 1000°F long time, 1300-1500°F short time. Oxidation resistance is high for continuous service to1500°F, intermittent to 1800°F. Aqueous corrosion resistance is comparable to 316 L stainless.

Typical heat treatments are to solution anneal at either 1650°F 2 hours or 1800°F 1 hour, quench, fo-llowed by aging 1325°F for 16hours, air cool. The 1650°F solution treatment results in a finer grain sizeand superior short time tensile properties at room and elevated temperatures. A two cycle aging treat-ment is occasionally specified after the 1650°F solution treatment. This is 1300-1400°F 16 hours air co-ol plus 1200°F 8-12 hours air cool. It is intended to improve notch rupture strength. The 1800°F solutiontreatment develops a slightly coarser grain size with superior creep-rupture properties.

Features

• High strength to 1000°F• Oxidation resistant to 1500°F continuous• Aqueous corrosion resistance similar to 316L

Applications

• Jet engine components• High temperature fasteners, springs• Non-magnetic cryogenic equipment

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 3 Sea water: 2 Symbols:

Hydrocloric acid: 3 Salts: 3 1. Good to excellent

Hydrofluoric acid: 3 Alkalis: 3 2. Acceptable

Phosphoric acid: 3 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 1 Strength & Stability: 1Carburization resistance: 2 Nitriding resistance: –Sufidation resistance: 2 Carbonitriding resistance: 2

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

CATALOGO 14/11/05 13:35 Página 130

Page 131: Aceros y Aleaciones_TUBOS

Alloy: Incoloy-DS®

(Ni, Cr alloy)UNS-N08330

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

131

DS®

Ni Cr Mo Co Fe Cu C Mn Si P S Ti Pb Su

Min. 34 17 0,75

Max. 37 22 1 0,08 2 1,50 0,03 0,03 0,20 0,005 0,025

Balance X

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 483 MPa Elongation, mini: 30%Yield strength, mini: 207 MPa HRB= 70 to 90

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8 kg/dm3. Melting range: 1330 a 1400 °CSpecific heat: 452 J/Kg. KExpansion coefficient: 15,9 x 10-6/KThermal conductivity: 11,4 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 1.4862

BS NA17 3074 3072 3076 30733073

ASTM B-535 B-546 B-536 B-512 B-536 B-512 B-366

ISO

AFNOR Z12NCS35.16

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy DS is a nickel-iron-chromium solid-solution alloy with the addition of approximately 2% silicon.

This alloy is characterised by:

• excellent oxidation and scale resistance

• good resistance to carburisation and to alternating carburising and oxidising atmospheres

• good mechanical properties with high strength at elevated temperatures

DS®

CATALOGO 14/11/05 13:35 Página 131

Page 132: Aceros y Aleaciones_TUBOS

Applications

Alloy DS finds wide application in high-temperature processes:

• fans operating at high temperatures in carburising furnaces – resisting carburisation• boxes and baskets used in carburising – resisting carburisation and showing weight savings when

compared with cast boxes.• hangers, hooks and conveyor chains used to carry vitreous-enamelled components during firing – re-

sisting oxide spalling so that oxide does not fall on the enamel• combustion tubes – resisting oxidation and carburisation and alternating oxidising and carburising

conditions• jigs and fixtures used in furnace brazing and wire mesh belts to carry components in heat-treat-

ment processes• thermocouple sheaths – resisting carburisation and nitriding• flare-stack tips – resisting alternating conditions• components handling cracked ammonia

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Nitric acid: 1 Symbols:

Hydrocloric acid: 3 Sea water: 2 1. Good to excellent

Hydrofluoric acid: case dependent Alkalis: 2 2. Acceptable

Phosphoric acid: 2 Organic acids: 1 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 1 Strength & Stability: 1Carburization resistance: 1 Carbonitriding resistance: 1Sufidation resistance: 1

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

132

CATALOGO 14/11/05 13:35 Página 132

Page 133: Aceros y Aleaciones_TUBOS

Alloy: Inconel-600®

(Ni. Cr. alloy)UNS-N06600

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

133

600®

600®

Ni Cr Mo Co Fe Cu C Mn Si P S Ti

Min. 72 14 6

Max. 17 10 0,5 0,15 1 0,5 0,015

Balance

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2,4816 17742 17752 17750 17752 17750 17753 17754

BS NA14 3074 3072 3076 3073 3075 3076

ASTM B-167 B-516 B-168 B-166 B-168 B-166 B-564 B-366B-163 B-517 B-564

ISO NiCr15Fe8

AFNOR NC15Fe

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 550 MPa Elongation, mini: 30%Yield strength, mini: 240 MPa

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,42 kg/dm3. Melting range: 1370 to 1425 °CSpecific heat: 455 J/Kg. KExpansion coefficient: 14,4 x 10-6/K (20 a 300°C)Thermal conductivity: 14,8 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy 600 is a nickel-base alloy with excellent carburization, and good oxidation resistance at eleva-ted temperatures. The alloy has long been used in the heat treating industry for many of the same ap-plication as 330.

Alloy 600 has useful resistance to dry Cl2 and HCl gases at moderately elevated temperatures. Alloy600 is not suggested for use at red heat when sulfur is present.

Grades 200 and 201 nickel are normally preferred for handling concentrated, high temperaturecaustic. However, when sulfur compounds are present as well, or for ammonium hydroxide service,600 is suggested. Alloy 600 is subject to stress corrosion cracking in hot, concentrated caustic alka-lies. To avoid stress corrosion cracking, the 600 fabrication should be fully stress relieved prior to use.A minium treatment of 1650°F 1 hour is sugested, 1800-1850°F 1 hour preferred.

Alloy 600 shows moderate resistance to mineral acid and good resistance to acetic, formic, stea-ric and other organic acids.

CATALOGO 14/11/05 13:35 Página 133

Page 134: Aceros y Aleaciones_TUBOS

Excellent resistance is shown in high purity water, as used in the primary and secondary circuits ofsome nuclear reactors.

Alloy 600 is particularly resistant to attack by dry chlorine or hydrogen chloride, even at tempera-tures up to 650°C (1200°F).

At high temperatures in air the annealed and solution treated alloys show good resistance to oxidescaling and have high strength.

The alloy also resists ammonia bearing atmospheres, as well as nitrogen and carburising gases. Un-der alternating oxidising and reducing conditions this alloy may suffer from selective oxidation (greenrot).

Applications

Typical applications include:

• thermocouple sheathing in aggressive atmospheres• vinychloride monomer production; resistance to chlorine, hydrogen chloride, oxidation and carbu-

risation• conversion of uranium oxide to hexafluoride; resistance to attack by hydrogen fluoride• production and use of caustic alkalis, particularly in the presence of sulphur compounds• production of organic and inorganic chlorinated and fluorinated compounds, resistance to attack

by chlorine and fluorine• nuclear reactor components• heat treatment furnace retorts and components, particularly with carburising or nitriding at-

mospheres• catalyst regenerators in petrochemical production• production of titanium dioxide by the chlorine route.

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Sea water: 2 Symbols:

Nitric acid: 3 Salts: 1 1. Good to excellent

Hydrofluoric acid: 2 Alkalis: 1 2. Acceptable

Phosphoric acid: 2 Chlorydric acid: 2 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 1 Strength & Stability: 1Carburization resistance: 1 Nitriding resistance: 1Sufidation resistance: 3 Carbonitriding resistance: 1

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

134

CATALOGO 14/11/05 13:35 Página 134

Page 135: Aceros y Aleaciones_TUBOS

Alloy: Inconel-601®

(Ni. Cr. alloy)UNS-N06601

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

135

601®

601®

Ni Cr Mo Co Fe Cu C Mn Si P S Al

Min. 58 21 1

Max. 63 25 1 0,10 1,5 0,5 0,015 1,7

Balance X

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2.4851 17742 17751 17750 17752 17750

BS

ASTM B-167 B-168 B-564 B-168 B-166 B-564 B-366B-163 B-166

ISO NiCr23Fe15Al

AFNOR NC23FeA 9722 6207 6208 9723 6208 9724 9725

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 559 MPa Elongation, mini: 30%Yield strength, mini: 205 MPa RB = 70-95

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,1 kg/dm3. Melting range: 1300 to 1370 °CSpecific heat: 461 J/Kg. K RB – 70/95Expansion coefficient: 14,9 x 10-6/K (20 to 300°C)Thermal conductivity: 11,3 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy 601 is a nickel-chromium alloy, highly resistant to oxidation through 2200°F. Alloy 601 developsa tightly adherent oxide scale which resists spalling even under conditions of severe thermal cycling. Thealloy has good high temperature strength, and retains its ductility after long service exposure.

Alloy 601 has good hot corrosion resistance, under oxidizing conditions. However 601 is not sug-gested for use in strongly reducing sulfur bearing environments.

For maximum oxidation resistance, alloy 601 should be welded with matching composition 601GTAW wire. For GMAW, 333 welding wire has been used. The weld fillers developed for alloy 602 CAcan provide a weld wich is stronger and more oxidation resistant than the 601 base metal.

Corrosion Resistance

An important property of Alloy 601 is resistance to oxidation at temperatures up to 1180°C(2160°F). Even under severe conditions, such as under cyling heating and cooling, Alloy 601 retains atightly adherent oxide layer which is very resistant to spalling.

CATALOGO 14/11/05 13:35 Página 135

Page 136: Aceros y Aleaciones_TUBOS

Resistance to carburisation is good. Alloy 601 has also shown good resistance to carbonitridingconditions.

Due to its high chromium and aluminium content, Alloy 601 shows good resistance to oxidising sulp-hur-bearing atmospheres at elevated temperatures.

Applications

Alloy 601 has found a wide variety of applications in industries as diverse as thermal and chemicalprocessing, pollution control and power generation.

• trays, baskets and fixtures for heat treatment plant• refractory anchors, strand-annealing and radiant tubes, high velocity gas burners, wire mesh

belts in industrial furnaces• insulating cans in ammonia reformers and catalyst support grids in nitric acid production• components in exhaust gas systems• combustion chambers in solid waste incinerators• tube supports and ash-handling components• components of waste-gas detoxification systems• oxygen preheaters

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Sea water: 2 Symbols:

Hydrocloric acid: 2 Salts: 1 1. Good to excellent

Hydrofluoric acid: 2 Alkalis: 1 2. Acceptable

Phosphoric acid: 2 Chloryhidric acid: 3 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 1 Strength & Stability: 1Carburization resistance: 1 Nitriding resistance: 1Sufidation resistance: 1 Carbonitriding resistance: 2

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

136

CATALOGO 14/11/05 13:35 Página 136

Page 137: Aceros y Aleaciones_TUBOS

Alloy: Inconel-625®

(Ni. Cr. Mo alloy)UNS-N6625

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

137

625®

625®

Ni Cr Mo Co Fe Cu C Mn Si P S Ti Al *

Min. 58 20 8

Max. 23 10 1 5 0,10 0,50 0,50 0,015 0,015 0,40 0,40

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2,4856 17744 17751 17750 17752 17750 17752

BS NA21 3072 3076 3072

ASTM B-444 B-704 B-443 B-446 B-443 B-564 B-366B-705 B-564

ISO NiCr22Mo9Nb

AFNOR NC22DNb

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 827 MPa Elongation, mini: 30%Yield strength, mini: 414 MPa

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,5 kg/dm3. Melting range: 1290 to 1350 °CSpecific heat: 415 J/Kg. K

(*) Nb+Ta=3,15 a 4,15

Density Ib/in3 Melting Range °F

0.305 2350-2460

Temp Coefficienta of Thermal Thermal Conductivity Modulus of Elasticity°F Expansion, in/in °F x 10-6 Btu•ft/ft2•hr•°F Dynamic, psi x 106

70 – 5.7 29.8400 7.3 7.2 28.4600 7.4 8.2 27.5800 7.6 9.1 26.61000 7.8 10.1 25.61200 8.2 11.0 24.41400 8.5 12.0 23.11600 8.8 13.2 –

ª 70ºF to indicated temperature

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy 625 shows excellent corrosion resistance in a wide range of media:

• outstanding resistance to pitting and crevice corrosion in chloride bearing media and to impin-gement corrosion or intergranular attack.

CATALOGO 14/11/05 13:35 Página 137

Page 138: Aceros y Aleaciones_TUBOS

• High resistance to corrosive attack by mineral acids, such as nitric phosphoric, sulphuric and hy-drochloric acids, as well as to alkalis and organic acids in both oxidising and reducing conditions.

Alloy 625 is used both for its high strength and outstanding aqueous corrosion resistance. The strengthof 625 is primarily a solid solution effect from molybdenum and columbium. Alloy 625 has excellent welda-bility, and is frequently used to weld AL-6XN®. Matching filler metals are also used to join dissimilar metals.

Alloy-625 is a low-carbon nickel-chromium-molybdenum-niobium alloy which shows excellent resistan-ce to a variety of corrosive media.

Due to its low carbon content and stabilising heat treatment, Alloy 625 shows little tendency to sen-sitisation even after 50 hours at temperatures in the range 650-900 ºC (1200-1650 ºF).

The alloy is supplied in the soft-annealed condition for applications involving wet corrosion, and is ap-proved by TUV for pressure vessels in the temperature range –196 to 450ºC (–321 to 840 ºF).

The mechanical properties of Alloy 625 can be increased by age-hardening.This alloy is characterised by:

• outstanding resistance to pitting, crevice corrosion, impingement corrosion and intergranular attack.• almost complete freedom from chloride-induced stress-corrosion cracking.• good resistance to mineral acids, such as nitric, phosphoric, sulphuric and hydrochloric acids.• good resistance to alkalis and organic acids.• good mechanical properties.• in special high-temperature applications where very high strength and creep values are required,

the high-carbon, solution treated version (Alloy 625, grade 2) should be used.• virtual immunity to chloride-induced stress-corrosion cracking.• practically no corrosive attack in marine and industrial atmospheres. High resistance to seawa-

ter and brackish water, even at high temperatures.• no sensitisation during welding.• good resistance to carburisation and to oxidation under static and cyclic conditions, and to chlo-

rine containing gases.

Applications

The soft annealed, low carbon Alloy 625 is widely used in chemical process technology, as its goodcorrosion resistance and high strength permit the use of thin structural parts. Alloy 625 is used forstructures in contact with seawater and subject to high mechanical stresses.

• flue gas scrubber components. • chimney linings.• superphosphoric acid production equipment. • nuclear waste reprocessing equipment.• sour gas production tubes. • product piping systems and sheathing of risers.• offshore industry, marine equipment.

For high-temperature applications, up to about 1000 ºC (1830 ºF), the solution-annealed, high car-bon version (Alloy 625, grade 2) is recommended, due to its excellent creep properties.

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 1 Sea water: 1 Symbols:Hydrocloric acid: 1 Salts: 1 1. Good to excellentHydrofluoric acid: 1 Alkalis: 1 2. AcceptablePhosphoric acid: 1 3. Inadequate

6.1. Corrosion data at high temperatures:Oxidation resistance: 1 Strength & Stability: 1Carburization resistance: 1 Nitriding resistance: 1Sufidation resistance: 2 Carbonitriding resistance: 1

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

138

CATALOGO 14/11/05 13:35 Página 138

Page 139: Aceros y Aleaciones_TUBOS

139

718®

Alloy: Inconel-718®

(Ni. Cr. alloy)

UNS-N07718

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

718®

Ni Cr Mo Co Fe Cu C Mn Si P S Ti Al Co Bo

Min. 50 17 2,80 4,75 0,65 0,20 (X)

Max. 55 21 3,30 5,50 0,30 0,08 0,35 0,35 0,015 0,015 1,15 0,80 1 0,006

X

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2,4668 NiCr19NbMo

ASTM B-637 B-670 B-637 B-670 B-637 B-637

ISO NiCr19Nb5-Mo3

AFNOR NC19FeNb AIR9165 AIR9165 AIR9165

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 1241 MPa Elongation, mini: 12%Yield strength, mini: 1034 MPa HRC = 40 max

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,2 kg/dm3. Melting range: 1260 to 1340 °CSpecific heat: 432 J/Kg. KExpansion coefficient: 12,6 x 10-6/KThermal conductivity: 11,1 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

(X) Cb + Ta=4,75 to 5,5

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy 718 is a precipitation hardenable nickel based alloy with high strength, good corrosion resis-tance, ease of formability and can be welded with good resistance to strain-age cracking. The majormelting route is vacuum induction melting followed by consumable electrode re-melting.

Alloy 718 was initially developed for the aerospace industry but the oil field technology companies re-alised its benefits of high strength and corrosion resistance and the alloy is now recognised as one ofthe most important nickel based alloys in this industry.

The aerospace specifications calls for heat treatments designed to give maximum strength, creeprupture resistance and hardness. This hardness of approximately 44-46 Rockwell C is in contraventionof the hardness limit of 40 Rockwell C imposed by the National Association of Corrosion Engineers in194 (NACE MR-01-75).

The mechanical properties on this page are typical of most oil field equipment companies' require-ments. In order to obtain the requirements of high strength with maximum hardness of 40 Rockwell C,specialised heat treatments and production processes, especially in the manufacture of bar below 2"diameter, are required.

CATALOGO 14/11/05 13:35 Página 139

Page 140: Aceros y Aleaciones_TUBOS

The major applications of Alloy 718 in the oil field industry are Gate Valves, Choke Stems, Fasteners,Tubing Hangers and Fire Safe Valves.

Alloy 718 i also used for hotworking shear blades, extrusion-dies and liners where conventional to-ol steels do not have sufficient strength at the high extrusion temperatures required.

Features

• Good mechanical properties –tensile, fatigue and creep-rupture• Oxidation resistant throughout its useful temperature range• Resistant to aqueous corrosion and chloride ion stress corrosion cracking

Heat Treatment

718 alloy is strengthened by a precipitation hardening reaction involving columbium, titanium, alumi-num and nickel, with a degree of solid solution strengthening by molybdenum. Two commonly used he-at treatments are:

Anneal 1700-1850 ºF air cool or faster. Age 1325 ºF 8 hr, furnace cool to 1150 ºF, hold at 1150ºF for a total aging time of 18 hr, air cool.

Size change in hardening –annealed 718 will show a contraction of 0.0008 inch/inch after precipi-tation hardening.

Anneal 1900-1950 ºF, air cool or faster. Age 1400 ºF 10 hr, furnace cool to 1200 ºF, hold at1200 ºF for a total aging time of 18 hr, air cool.

The 1700-1850 ºF treatment is optimum for rupture and notch rupture strength, and rupture duc-tility. This treatment develops the highest room temperature tensile and yield strengths, but with so-mewhat reduced transverse ductility. Because of a fine grain size this anneal is used for high cycle fa-tigue strength.

The 1900-1950 ºF treatment improves transverse tensile ductility, impact strength and low-tem-perature notch tensile strength. The disadvantages of this treatment are notch brittleness in stressrupture and, because the higher temperature anneal develops a coarser grain size, reduced fatiguestrength.

Applications:

Gas turbine engine parts. Liquid fuel rocket motor components, springs, fasteners, cryogenic tanks.

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Sea water: 1 Symbols:

Hydrocloric acid: 2 Salts: 1 1. Good to excellent

Hydrofluoric acid: Alkalis: 1 2. Acceptable

Phosphoric acid: 2 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 1 Strength & Stability: 1Carburization resistance: 1 Nitriding resistance: 1Sufidation resistance: 2 Carbonitriding resistance: 1

77..ºº WWeellddaabbiilliittyy::

Excellent welding characteristics, resistant to postweld age cracking.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

140

CATALOGO 14/11/05 13:35 Página 140

Page 141: Aceros y Aleaciones_TUBOS

Alloy: Inconel X-750®

(Ni. Cr. alloy)UNS-N07750

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

141

X-750®

X-750®

Ni Cr Mo Co Fe Cu C Mn Si P S Al Ti

Min. 70 14 0,7 5 0,4 2,25 (x)

Max. 17 1,20 1 9 0,50 0,08 1 0,50 0,01 1 2,75

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2,4669

ASTM B-637 B-637 B-637 B-637 B-366

ISO NiCr15Fe5Ti2Al

AFNOR NC15TNbA

(X) Nb+Ta = 0,7 to 1,20

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: see ASTM-B-637 Elongation, in 2”: see ASTM-B-637Yield strength, mini: see ASTM-B-637

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,3 kg/dm3. Melting range: 1395 to 1430 °CSpecific heat: 430 J/Kg. KExpansion coefficient: 12,9 x 10-6/K (20 to 100°C)Thermal conductivity: 12 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy X750 is a precipitation hardenable nickel-chromium alloy used for its corrosion and oxidationresistance and high strength at temperatures to 704 ºC (1300 ºF). Although much of the effect of pre-cipitation hardening is lost with increasing temperature over 704 ºC (1300 ºF), heat- treated materialhas useful strength up to 982 º C (1800 º F). Alloy X-750 also has excellent properties down to cryo-genic temperatures.

Depending on the application and the properties desired, various heat treatments are employed. Forservice above 593 º C (1100 º F), particulary where loads are to be sustained for long times, optimumproperties are achieved by solution treating (1148 ºC, 2100 º F) plus stabilization treating (843 ºC,1550 º F) plus precipitation treating (ageing) (704 º C, 1300 ºF).

Applications:

The major oil field application for Alloy X-750 is seal rings for connectors and fire safe valves andchoke stems. The mechanical properties detailed are typical of the major oil field equipment companies'

CATALOGO 14/11/05 13:35 Página 141

Page 142: Aceros y Aleaciones_TUBOS

requirements and are achieved after an extensive 47 hour heat treatment operation. Other applicationsare heatreating fixtures, forming tools, extrusion dies, and test machine grips. For springs and faste-ners, Alloy X-750 is used from sub-zero to 648 ºC, (1200 º F).

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Sea water: 2 Symbols:

Hydrocloric acid: 2 Salts: 1 1. Good to excellent

Hydrofluoric acid: Alkalis: 1 2. Acceptable

Phosphoric acid: 2 Nitric acid: 3 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 1 Strength & Stability: 1Carburization resistance: 1 Nitriding resistance: 1Sufidation resistance: 2 Carbonitriding resistance: 1

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

142

CATALOGO 14/11/05 13:35 Página 142

Page 143: Aceros y Aleaciones_TUBOS

Alloy: Monel-400®(Ni. Cu. alloy)UNS-N04400

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

143

400®

400®

Ni Cr Mo Co Fe Cu C Mn Si P S Al Ti

Min. 63 28

Max. 2,5 34 0,30 2 0,5 0,024

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2.4360 17743 17751 17750 17752 17750 17753 17754

BS NA13 3074 3072 3076 3073 3075

ASTM B-163 B-725 B-127 B-164 B-127 B-164 B-564 B-366B-165 B-730 B-564

ISO NICU30 9722 6207 6208 9723 6208 9724 9725

AFNOR NU30

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 485 MPa Yield strength 0.2: 195 MPa min.Elongation A5 = 35 % min. HRB = 68 to 83

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,85 Kg/dm3. Melting range: 1300 to 1350 ºCSpecific heat: 430 J/Kg.KExpansion coefficient: 15,8 x 10-6/KThermal conductivity: 26 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

This alloy is characterised by:

• corrosion resistance in a wide range of marine and chemical environments• freedom from chloride induced stress-corrosion cracking• good mechanical properties from sub-zero temperatures up to about 550 ºC (1020 ºF)• approval for pressure vessels with wall temperatures form -10 to 425 ºC (14 to 800 ºF) accor-

ding to VdTÜV-Wbl.263 and up to 900 ºF (480 ºC) according to ASME Boiler and Pressure Ves-sel Code

• good workability.

Corrosion Resistance

Alloy 400 has outstanding resistance to neutral and alkaline salts. It has been a standard materialfor salt plants for many years.

CATALOGO 14/11/05 13:35 Página 143

Page 144: Aceros y Aleaciones_TUBOS

This alloy is one of the few metallic materials which can be used in contact with fluorine, hydrofluo-ric acid, hydrogen fluoride or their derivatives.

Alloy 400 shows very high resistance to caustic alkalies. Behaviour in seawater is also excellent,with improved resistance to cavitation corrosion compared with copper-base alloys. It can be used incontact with dilute solutions of mineral acids such as sulphuric and hydrochloric acids, particularly ifthey are air-free. However, as the alloy contains no chromium, corrosion rates may be increased sig-nificantly in oxidising conditions.

Whilst Alloy 400 can be considered immune to chloride-ion stress cracking, it can stress crack inthe presence of mercury or in most aerated HF vapours. A stress relieving heat treatment is applied insuch cases.

Applications

• feed-water and steam generator tubing in power plants• brine heaters and evaporator bodies in salt plants• sulphuric and hydrofluoric acid alkylation plants• industrial heat exchangers• cladding for crude oil distillation columns• splash-zone sheathing in offshore structures• propeller and pump shafts for seawater service• plants for uranium refining and isotope separation in the production of nuclear fuel.• pumps and valves used in the manufacture of chlorinated hydrocarbons• monoethanolamine (MEA) reboiler tubes

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 1 Sea water: 1 Symbols:

Hydrocloric acid: 1 Salts: 1 1. Good to excellent

Hydrofluoric acid: 1 Alkalis: 1 2. Acceptable

Phosphoric acid: 1 Nitric acid: 3 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 3 Strength & Stability: 3Carburization resistance: 3 Nitriding resistance: –Sufidation resistance: – Carbonitriding resistance: –

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

144

CATALOGO 14/11/05 13:35 Página 144

Page 145: Aceros y Aleaciones_TUBOS

Alloy: Monel K-500®(Ni. Cu. alloy)UNS-N05500

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

145

K500®

K500®

Ni Cr Mo Co Fe Cu C Mn Si P S Al Ti

Min. 63 27 2,3 0,35

Max. 2 33 0,18 1,5 0,50 0,010 3,15 0,85

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2.4375 17743 17743 17743 17752 17754

BS NA18 3074 3072 3076 3073 3075

ASTM B-865 B-865 B-865

ISO NICU30Al3Ti

AFNOR NU30AT

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 965 MPa Yield strength 0.2: 690 MPa miniElongation A5 = 20 % min HRC = 27 mini

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,9 Kg/dm3. Melting point: 1310 to 1350 ºCSpecific heat: 456 J/Kg.KExpansion coefficient: 14,9 x 10-6/KThermal conductivity: 17,4 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy K-500 is a nickel-copper alloy with age-hardening properties imparted by alloying additions ofaluminium and titanium. Its basic composition is similar to that of Alloy 400 but the alloying additionsmake it age hardenable under controlled conditions of temperature and time.

The alloy can be delivered in the annealed, stress equalised, hot finished or age-hardened conditions.

This alloy is characterised by:

• excellent corrosion resistance in an extensive range of natural and chemical environments• excellent resistance to chloride-ion stress-corrosion cracking• very high strength and hardness

Corrosion Resistance

In general the corrosion resistance of Alloy K-500 is similar to that of Alloy 400.

CATALOGO 14/11/05 13:35 Página 145

Page 146: Aceros y Aleaciones_TUBOS

Excellent resistance is shown to a wide range of media from pure water to mineral acids, salts andalkalis. Alloy K-500 is virtually immune to chloride-ion stress corrosion cracking. In the aged condition,the alloy may be susceptible to stress-corrosion cracking in moist, aerated hydrofluoric acid vapour atstresses near the yield strength.

In high velocity seawater and in marine atmospheres, good resistance is shown but, in slow moving orstagnant seawater, pitting may occur. Alloy K-500 also shows good resistance in sour-gas environments.

Applications

Alloy K-500 finds wide application in the marine, chemical, petrochemical and shipbuilding industries.

• valve seals, pump sleeves and wear rings in marine environments – high strength and resistanceto seawater

• pump shafts for fire-fighting pumps – high strength (resulting in smaller diameter shafts) and re-sistance to flowing seawater

• propeller shafts – high strength (resulting in smaller diameter shafts and thus smaller bearings)and resistance to seawater

• fasteners e.g. bolts, used in marine atmospheres and tidal waters – resistance to chloride – con-taining environments

• doctor blades and scrapers• towing cable armouring – high strength, non-magnetic properties and resistance to seawater• springs – resistance to a variety of corrosive media• oil well drilling equipment such as non-magnetic drill collars, valves and instrumentation sleeves –

resistance to chloride-containing media and sour gas environments• aviation instrument components – non-magnetic properties

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 1 Sea water: 1 Symbols:

Hydrocloric acid: 1 Salts: 1 1. Good to excellent

Hydrofluoric acid: – Alkalis: 1 2. Acceptable

Phosphoric acid: 1 Nitric acid: 3 3. Inadequate

6.1. Corrosion data at high temperatures:

Oxidation resistance: 3 Strength & Stability: 3Carburization resistance: 3 Nitriding resistance: –Sufidation resistance: Carbonitriding resistance: –

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

146

CATALOGO 14/11/05 13:35 Página 146

Page 147: Aceros y Aleaciones_TUBOS

Alloy: Nickel-200

(Ni alloy)

UNS-N02200

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

147

NICKEL-200

NICKEL-200

Ni Cr Mo Co Fe Cu C Mn Si P S

Min. 99

Max. 0,40 0,25 0,15 0,35 0,35 0,010

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2.4066 17740 17751 17751 17750 17752 17750 17753 17754

BS NA11/12 3074 3072 3076 3073 3075

ASTM B161 B725 B162 B160 B162 B160 B564 B366B163 B730 B564

ISO Ni99.0

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 380 MPa Yield strength 0.2: 100 MPa miniElongation A5 = 40 % mini

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 8,9 Kg/dm3. Specific heat: 456 J/Kg.KExpansion coefficient: 14,3 x 10-6/K (20 to 300°C) Thermal conductivity: 74 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy 200 is technically pure nickel with good mechanical properties and excellent resistance to al-kali hydroxides, dry halogen hydrides as well as organic compositions. Even when exposed to high tem-peratures, alloy 200 retains its strength and is ductile at low temperatures. Alloy 200 is a multipur-pose grade and is used in applications where alloys are not essential. It also has good magnetic andmagnet ostrictive properties, high thermal and electrical conductivity as well as low gas content in theelectronics industry.

Applications:

Chemical and food industry, loading plants, electrical and electronical parts, parts and equipmentfor aircrafts and rockets, transducers, textile industry, glass industry, soap industry, handling of fattyacids, etc.

CATALOGO 14/11/05 13:35 Página 147

Page 148: Aceros y Aleaciones_TUBOS

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Sea water: 1 Symbols:

Hydrocloric acid: 2 Salts: 1 1. Good to excellent

Hydrofluoric acid: 1 Alkalis: 1 2. Acceptable

Phosphoric acid: 2 Nitric acid: 3 3. Inadequate

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

148

CATALOGO 14/11/05 13:35 Página 148

Page 149: Aceros y Aleaciones_TUBOS

Alloy: Nickel-201(Ni alloy)UNS-N02201

11..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

149

NICKEL-201

NICKEL-201

Ni Cr Mo Co Fe Cu C Mn Si P S

Min. 99

Max. 0,40 0,25 0,02 0,35 0,35 0,01

Norms Material Chemical Pipes-Tubes Plates Rounds, Strips Wires Forgings Fittings

composit Seamless Welded. Sheets Bars

DIN 2.4068 17740 17751 17750 17752 17750 17753 17754

BS NA12 3074 3072 3076 3073 3075

ASTM B-161 B-725 B-162 B-160 B-162 B-564 B-366B-163 B-730 B-564

ISO LcNi.99

22..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

Tensile strength, mini: 380 MPa Yield strength 0.2: 100 MPa miniElongation = 40 % mini

33..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: 9,89 Kg/dm3. Melting range: 1435 to 1445 °CSpecific heat: 440 J/Kg.K Expansion coefficient: 13,5 x 10-6/KThermal conductivity: 76 W/mK

44..ºº SSppeecciiffiiccaattiioonnss::

55..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Alloy 201 is an alloy similar to Nickel 200. The carbon content of the former is a little above thatof Nickel 200. Due to this difference, alloy 201 is preferred in caustic soda above 300 ºC. Alloy 201disposes of the same high thermal and electrical conductivity and of the same magnetic and magnetos-trictive properties as the grade Nickel 200.

Applications:

Caustic evaporators, plating rods, combustion boats, chemical plants with operating temperaturesabove 300 ºC, for example in caustic soda manufacturing plants.

CATALOGO 14/11/05 13:35 Página 149

Page 150: Aceros y Aleaciones_TUBOS

66..ºº CCoorrrroossiioonn ddaattaa::

Sulphuric acid: 2 Sea water: 1 Symbols:

Hydrocloric acid: 2 Salts: 1 1. Good to excellent

Hydrofluoric acid: 1 Alkalis: 1 2. Acceptable

Phosphoric acid: 2 Nitric acid: 3 3. Inadequate

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

150

CATALOGO 14/11/05 13:35 Página 150

Page 151: Aceros y Aleaciones_TUBOS

Metal: TANTALUM

It is a industrialy pure metal.

CChheemmiiccaall ccoommppoossiittiioonn::

Average composition in mg/g:

151

TANTALUM

TANTALUM

Ta Ta+Nb Ag C Cd Co Cr Cu Fe H K Mg Mn Mo N Na Nb

99,85 99,90 <5 15 <10 <10 <10 <10 50 <1 <5 <5 <5 50 5 <5 150

Ni O Pb S Ti W Zn Zr

30 20 <10 <5 <15 200 <5 <5

Ta Ta+Nb Ag C Cd Co Cr Cu Fe H K Mg Mn Mo N Na Nb

99,98 As previous

Ni O Pb S Ti W Zn Zr

200

IInnttrroodduuccttiioonn::

The tantalum has been accepted as a preferred material for a wide variety of applications.Tantalum is not a new material. Its first commercial use at the turn of the century was as filaments

in light bulbs. Later, when it became apparent that tantalum was practically inert to attack by mostacids, applications in the laboratory and in the chemical and medical industries were developed. Therise of the electronics industry accelerated the development of many new applications.

Much of this growth can be attributed to a broader range of tantalum powders and mill productsavailable from the producers and increasing utilization of tantalum's unique properties – high meltingpoint, ability to form a dielectric oxide film and chemical inertness. Encouraging these applications, newreduction, melting, and fabrication techniques have led to higher purities, higher reliabilities and impro-ved yields to finished products.

PPhhyyssiiccaall PPrrooppeerrttiieess::

Pure tantalum has a body centered cubic crystal lattice. There is no allotropic transformation to themelting point which means that unalloyed tantalum cannot be hardened by heat treatment. Additions ofoxygen, carbon or nitrogen above normal levels, either purposefully or accidentally, are considered asalloying additions no matter what the concentration.

Grades = ASTM-B-364 and 365.

K alloy (average composition):

CATALOGO 14/11/05 13:35 Página 151

Page 152: Aceros y Aleaciones_TUBOS

MMeecchhaanniiccaall pprrooppeerrttiieess::

The room temperature mechanical properties of tantalum are dependent on chemical purity,amount of reduction in cross-sectional area and temperature of final annealing. Annealing time doesnot appear to be critical. Close control over the many parameters which affect mechanical propertiesare mandatory to insure reproducible mechanical behavior.

152

Atomic Weight 180.9

Density 16,6 gm/cc, 0.601 Ib/in3

Melting Point 2996 ºC, 5432 ºF

Vapor Pressure at 1727 ºC 9.525 x 10-11 mmHg

Linear Coefficient of Expansion 1135 ºK 5.76 x 10-6/ºC1641 ºK 9.53 x 10-6/ºC2030 ºK 12.9 x 10-6/ºC2495 ºK 16.7 x 10-6/ºC

Thermal Conductivity 20 ºC 0.130 cal/cm-sec ºC100 ºC 0.131 cal/cm-sec ºC1430 ºC 0.174 cal/cm-sec ºC1630 ºC 0.186 cal/cm-sec ºC1830 ºC 0.198 cal/cm-sec ºC

Specific Heat 100 ºC 0.03364 cal/gm

Electrical Conductivity 13.9 % IACS

Electrical Resistivity -73ºC 9.0 micro-ohm/cm

75ºC 12.4 micro-ohm/cm127ºC 18.0 micro-ohm/cm1000ºC 54.0 micro-ohm/cm1500ºC 71.0 micro-ohm/cm2000ºC 87.0 micro-ohm/cm

TABLE I Physical Properties of Tantalum:

Ultimate Hardness.2% Yield Tensile Rockwell

Thickness Strength PSI Strength PSI Elongation % 15 T B

0.005 Deep Draw 29,000 41,000 22 – –0.005 Regular 44,000 55,000 18 – –0.010 Regular 40,000 52,000 32 – –0.030 Regular 35,000 45,000 40 75 –0.060 Regular 35,000 45,000 42 75 48

TABLE II Typical Mechanical Properties Annealed Tantalum Sheet

Tantalum can be strengthened only by cold work with resulting loss in ductility. As certain residual im-purities have pronounced effects on ductility levels and metallurgical behaviour, the purpose of most con-solidation techniques is to make the material as pure as possible. Cold working methods are used almostwithout exception to preclude the possibility of embrittlement by exposure to oxygen, carbon, nitrogen andhydrogen at even moderate temperatures. Temperatures in excess of 800ºF should be avoided.

CATALOGO 14/11/05 13:35 Página 152

Page 153: Aceros y Aleaciones_TUBOS

METALLURGICAL CONDITION ... There are basically three structures which can be ordered: (1)unannealed, (2) stress-relieved, and (3) annealed.

Unannealed ... In the unannealed condition, the structure will be typically wrought fibrous. Yield andtensile strength will be increased with corresponding decreases in elongation as shown in Table III. Theamount of work-hardening will be dependent on the amount of cold reduction since the last anneal. Therate of work-hardening is rapid for the first 30% of reduction. The rate then diminishes so that therewill be no appreciable strengthening until reductions of over 90% are taken. There is actually no limitto the amount of cold work which the metal can take; there are only equipment limitations or mecha-nical limitations, such as, poor shape control in rolling or excessive thinning when forming which dicta-te periodic heat treatment in vacuum to soften the metal.

Unannealed tantalum may be preferred for machinability although our provider’s machinists indicateno preference. Corrosion behavior is not affected nor is the susceptibility to interstitial contaminationchanged. Unannealed sheet .030" thick and under can make a 1 x thickness bend, but the annealedcondition is preferred when bending since the metal is not as stiff or as springy.

153

UltimatePercent .2% Yield Tensile Hardness

Cold Work Strength PSI Strength PSI Elongation % VHN

30 70,600 74,200 18 18950 82,200 86,000 9 19280 100,500 109,200 4 23590 117,800 123,400 2 23995 127,000 135,500 1 26598 – 135,500 1 280

TABLE III Typical Mechanical Properties. Tantalum Sheet with Increasing Cold Work

Stress-Relieved ... Stress-relieving at 1850 ºF in vacuum reduces yield and tensile strengths and rai-ses elongation levels. These properties will be intermediate between annealed and unannealed. Stress-relieving has been used more as a matter of expediency than design. Fabricators need some ductilityto allow them to roll tubes into tube sheets. Until recently, the only tubular heat treating vacuum fur-naces were limited to 1850 ºF maximum. This equipment limitation dictated the use of stress-relieving.As newer furnaces allowing full annealing in vacuum are now on stream, stress-relieving may graduallyfall into disuse.

Annealed ... Tantalum specified in the annealed condition is in its softest, most ductile condition. Theusual objective of the procedure is to choose an annealing temperature which will result in compIeterecrystallization but avoid excessive grain growth. This temperature will be about 2150 ºF ±75 ºF. Thetemperature for recrystallization is, however, considerably affected by the purity and amount of coldwork prior to annealing.

When the amount of reduction is limited, complete recrystallization is very difficult unless the annealingtemperature is substantially increased. Purity is at the core of this problem. Unless sufficient work (about75% reduction) is put into the material, tantalum does not have the impurities present to act as nuclea-tion sites for grain growth unless an inordinate amount of energy in the form of annealing heat is added.This will result in recrystallization, but to a very large grain size. The larger the cross-section, the more se-vere is this problem. Recrystallization to a finer grain size becomes more readily obtainable. The tensiletest is normally used to determine the state of anneal. ASTM specifications for annealed tantalum areshown in Table IV.

This test is backed by hardness tests, Olsen cups, and grain size determinations to insure productquality. The Olsen test is particularly effective for thin sheet as tensile test elongations decrease as afunction of material thickness. The Olsen cup has the added advantage of detecting any strong directio-nality tendencies or to show “orange peel” indicating a coarse grain. (See Table V).

CATALOGO 14/11/05 13:35 Página 153

Page 154: Aceros y Aleaciones_TUBOS

Tantalum sheet develops directionality if a producer does not choose his rolling and annealing sche-dules with care. Directionality is a term used to describe non-uniform sheet properties in the rolling di-rection and transverse to the rolling direction. Sheet with directionality has reduced elongations in thetransverse direction which may affect performance in spinning and deep drawing operations. Whenthese metal working functions are to be performed, it is helpful for the user to so specify when orde-ring the material.

154

Ultimate PSI Yield PSI Elongated HardnessMinimum Maximun Maximun Minimum % Maximum

Cold Worked 75,000 – – 2 –

Stress-Relievedany section exceeding .021" 55,000 – – 10 –any section less than .021" 55,000 – – 7,5 –

Annealedany section exceeding .021” – 55,000 45,000 25 80 15Tany section less tahn .021" to – 55,000 45,000 15 –.005 minimum

TABLE IV ASTM Specification Limits for Tensile Properties. Test Procedure ASTM E8-61T

Depth Force (Ibs.)Typical Specification Typical

Minimum

.030 Regular .450 – 3920

.020 Regular .425 – 3200

.010 Regular .350 .320 1540

.005 Deep Draw .380 .320 820

.005 Regular .250 – 504

TABLE V Annealed Tantalum Sheet. Olsen Cup Data 7/8" Ball

FORMING ... Tantalum in the annealed condition is an extremely ductile material. Unusually high re-ductions without annealing are possible because of its low rate of work hardening characteristics. Tu-bing 11/16" diameter with a 1/8" wall by 16" long has been drawn from circular blanks without annea-ling in a series of seven draws. It is nevertheless recommended that the producer be advised whenspinning or drawing is planned.

Spinning ... Successful tantalum spinning can be accomplished using conventional spinning techni-ques. The slow work hardening rate permits repeated drafts without in process anneals, unless unu-sually severe formations are to be attempted. Spinning thinner material such as .010" or .020" thickmay have to be annealed more often.

Mandrels should be made of steel or aluminum bronze. Hardwood and composition mandrels areusually too soft to permit sufficient ironing for good surface finish. If steel mandrels are used, bottomsshould be faced with aluminium bronze to prevent galling of the blank. Steel roller wheels or yellowbrass tools are used with generous amounts of yellow soap. A commercial compound, Warren's Spin-ning Compound #1, has been found to offer good lubricating characteristics for tantalum.

Deep Drawing ... Although tantalum is a soft, ductile metal, certain precautions are suggested foroptimum results. Conventional reductions are possible provided due allowance is made for tantalum'sgalling characteristics. The metal will have more of a tendency to seize on the punch and/or draw ring.This friction may result in premature failure unless lubrication is generous. Aluminum bronze is recom-mended for the draw ring when justified.

CATALOGO 14/11/05 13:35 Página 154

Page 155: Aceros y Aleaciones_TUBOS

The metal can be stretched and ironing is feasible with aluminum bronze dies. As in any deep dra-wing operation, some experimentation with holddown, punch and draw ring radii and clearance may benecessary to prevent wrinkling. Initial reductions of 50% are possible. Drawing may be continued al-though gradually decreasing the amount of reduction per draw is recommended.

Niobium and tantalum can be clad onto other metals such as steel, aluminum and copper to pro-duce cost effective composites.

Niobium and tantalum can be machined using standard equipment and cutting tools. Water solubleoil is used as a cutting fluid for turning, drilling, milling and sawing. Chlorothane is used as an assist fortapping.

Niobium and tantalum can be welded to themselves and to several other metals by resistance wel-ding, tungsten-inert gas, plasma welding and electron beam welding. Formation of brittle intermetallicphases is likely with many metals and must be avoided. Surfaces to be heated above 300 °C shouldbe protected by and inert gas (argon or helium) to prevent embrittlement.

CCoorrrroossiioonn rreessiissttaannccee::

Selecting any material for corrosive service can be fraught with hazards. Operating conditions canbe substantially different from the conditions used in the laboratory to establish base line data. Whene-ver possible, a welded sample should be exposed to the expected operating environment. The followingcomments are based on laboratory data which should be used only as a guide for preliminary screeningwhen material selection problems exist.

Tantalum is extremely resistant to corrosion by most acids. Like glass, one of the few exceptions toits general acid resistance is hydrofluoric acid which will attack tantalum readily. Any solution containingthe fluoride ion should be avoided. Concentrated sulfuric acid and to a lesser degree, hot 85% phosp-horic acid will attack tantalum. Hydrochloric, nitric and 80% phosphoric acid provided fluorine is keptbelow 5 ppm, chromic, oxalic and organic acids should not be detrimental.

Tantalum is less resistant to alkaline solutions. Boiling solutions of strong alkalies will rapidly attackthe metal. This attack is somewhat temperature and concentration dependent, but in general, servicein strong alkalies above room temperature should be avoided.

The material is not usually attacked by salt solutions except those which contain or will hydrolyze tostrong alkalies or by fluorides. Chlorides and bromides such as ferric chloride, mercuric and stannouschloride up to 350 ºF should be satisfactory.

Great care should be exercised to prevent hydrogen embrittlement by electrolytic action in practicallyall electrolytes particularly at elevated temperature. Embrittlement may result from either galvanic cou-pling or because of stray electric currents. To prevent this embrittlement from occurring, tantalumshould be insulated from other metals in the equipment and any stray currents should be located andeliminated.

At temperatures not exceeding 300 ºF and in the absence of fluorine, free SO3 or strong alkalies,most organic and inorganic liquids will not effect tantalum. The same is true of nearly all corrosive ga-ses including either wet or dry chlorine or bromine. Temperatures in excess of 300 ºF could lead to lon-ger term embrittlement problems unless there is protection from interstitial contamination. Tantalumhas shown excellent resistance to attack by such liquid metals as sodium, lithium, magnsium, potas-sium and mercury in temperatures to 2000 ºF.

Corrosion rates for tantalum, miobium, titanium and 304 stainless steel are listed for comparisonin table VI.

155

CATALOGO 14/11/05 13:35 Página 155

Page 156: Aceros y Aleaciones_TUBOS

156

Medium Temp. Corrosion Rate (mils/yr.)

s.s.ºC ºF Ta Nb Ti 304 Pt

Acetic Acid 100 212 nil –(a) nil 20 nilAlCl3 (10% soln) 100 212 nil – nil 20 nilNH4Cl(10% soln) 100 212 nil nil <0.5 >20 nilHCl, 20% 21 70 nil 0.04 – – nil

100 212 nil – 175 high –, conc. 21 70 nil 0.1 – – –

100 212 nil 4(b) rapid rapid 1HNO3, 20% 100 212 nil nil nil – nil

, 70% 100 212 nil nil nil 7 nil, 65% 170 338 < 1 – < 5 > 50 –

H3PO4, 85% 25 76 nil < 1 8 > 50 –100 212 nil 3(b) 40 – –

H2SO4, 10% 25 76 nil nil 7 > 50 nil, 40% 25 76 nil 0.1 60 >> 50 nil, 98% 25 76 nil 0.2 – – nil, 98% 50 122 nil 0.8 (b) – – nil, 99% 100 212 nil 115(b) high – nil, 98% 200 392 3 rapid rapid – –, 98% 250 482 rapid – – – –

H2SO4, fuming (15% So3) 23 73 0.5 (assume rapid) – –70 158 rapid – – – –

Aqua regia 25 78 nil nil 35 – 800Chlorine, wet 75 167 nil nil nil – 0.1H2O, Cl2 sat 25 76 nil nil 5 > 50 nil

, sea 25 76 nil nil nil 50 nilOxalic acid 21 70 nil 0.6(b) – – –

96 205 0.1 – – – –NaOH, 5% 21 70 nil 1.1 – – –

100 212 0.7 rapid – < 1 nil, 10% 100 212 < 1 – 8 < 1 nil, 40% 80 176 rapid – 5 5 nil

HF, 40 % 25 76 rapid rapid rapid – nil

TABLE VI Comparison of corrosion rates for Tantalum, Niobium, Titanium, 304 Stainless Steel andPlatinum

(a) indicates no data(b) embrittled

CATALOGO 14/11/05 13:35 Página 156

Page 157: Aceros y Aleaciones_TUBOS

IInnttrroodduuccttiioonn::

Niobium and tantalum are members of the refractory metals family, characterized by their very highmelting points.

The similarity of these two metals goes far beyond their occurrence and discovery. Their chemicalproperties are so similar that it was difficult to positively establish their individual identities in early work.Both tantalum and niobium are tough, ductile metals which can be formed into almost any shape. Be-cause of their resistance to chemical attack, and their excellent formability, they are often used in co-rrosion resistant applications for environments which no other metals can withstand. Their major limi-tation is reactivity with oxygen and nitrogen in the air at temperatures above 300 to 400 ºC.

Tantalum and niobium have many unique applications as pure metals, and form the basis for a familyof alloys having similar chemical, physical and high temperature properties.

MMaatteerriiaall pprrooppeerrttiieess::

Niobium and tantalum are tough, ductile, silvery gray metals with a unique combination of mechani-cal and physical properties. Physical property data for both metals are summarized in Table I. Niobiumhas a density close to that of copper, but only about half the density of tantalum and tungsten. The go-od thermal conductivity values for both tantalum and niobium make them good candidate materials forheat transfer applications.

Mechanical property data for niobium and tantalum are summarized in Table II. They have modera-te strengths and can be work hardened to a considerable degree. In addition, both tantalum and nio-bium display good toughness at very low temperatures. Alloys of these metals are available with impro-ved elevated temperature tensile and creep properties to temperatures as high as 1650 ºC.

Regarding chemical characteristics,5 Niobium resists most organic acids and mineral acids at allconcentrations below 100 ºC, except HF. Tantalum is more corrosion resistant to these at higher con-centrations and at higher temperatures (190ºC). Resistance to many liquid metals makes them can-didates for applications ranging from metallurgical process equipment to liquid metal cooled nuclear re-actors. Niobium and tantalum are resistant to attack in many liquid metals: Li<1000 ºC, Na, K + NaK<1000 ºC, ThMg<850 ºC, U<1400 ºC, Zn<450ºC, Pb<850 ºC, Bi<500 ºC, and Hg<600 ºC. Becau-se of their ability to form stable, passive oxide films niobium and tantalum can provide unique solutionsto many corrosion problems. A good example is the use of niobium heat components in fluoride cataly-zed chrome plating operations. Neither metal, however, can be used in air at temperatures above 200ºC for niobium or 300 ºC for tantalum. Typical comparative corrosion data for niobium and tantalumare presented in Table III.

Because of their bcc crystal structure, niobium and tantalum are very ductile metals which can under-go cold reductions of more than 95% with out failure. Heavy sections can be heated for forging to ~450ºC without protection. Both metals can be rolled, drawn, and extruded to produce a wide range of pro-ducts. Tantalum and niobium have a tendency to stick to tooling during metal forming operations. As a re-sult, specific lubricant and die material combinations are required in high pressure forming operations.

Niobium and tantalum –two refractory metals with unique properties that dictate a number of highperformance applications– are often used in areas where long range cost effectiveness becomes a pri-mary consideration. By illustrating some of niobium and tantalum's similarities, and by contrasting so-me of their differences, this paper provides some interesting and new insights into the metals themsel-ves. It is intended as a guide to metallurgists, applications engineers and others concerned with findinglong range solutions to specialized and highly demanding materials selection problems.

Niobium and tantalum can be clad onto other metals such as steel, aluminum and copper to pro-duce cost effective composites.

Niobium and tantalum can be machined using standard equipment and cutting tools. Water soluble oil isused as a cutting fluid for turning, drilling, milling and sawing. Chlorothane is used as an assist for tapping.

Niobium and tantalum can be welded to themselves and to several other metals by resistance wel-ding, tungsten-inert gas, plasma welding and electron beam welding. Formation of brittle intermetallicphases is likely with many metals and must be avoided. Surfaces to be heated above 300 ºC shouldbe protected by an inert gas (argon or helium) to prevent embrittlement.

157

NIOBIUM AND TANTALUM IN MATERIALS SELECTION

CATALOGO 14/11/05 13:35 Página 157

Page 158: Aceros y Aleaciones_TUBOS

158

Niobium Tantalum

Atomic Weight 92.9064 180.95Density 8.66g/cc 16.6g/ccMelting Point 2468 ºC 2996 ºCBoiling Point 4927 ºC 5431 ºCCoefficient of Thermal Expansion (RT) 7,1 x 10-6/ºC 6.5 x 10-6/ºCElectrical Resistivity 15 /cm 13.5 /cmElectrical Conductivity 13.2% IACS 13.9% IACSSpecifie Heat .126 J/g .140 J/gThermal Conductivity .523 J .544 JCrystal Structure bcc bccThermal Neutron Cross Section 1.1 b 21.3 b

Table I. Physical Properties of Niobium and Tantalum

Annealed: Niobium: Tantalum:Ultimate Tensile Strength 195 M Pa(28 ksi) 285 M Pa(41 ksi)Yield Strength 105 M Pa(15 ksi) 170 M Pa(25 ksi)% Elongation 30 % + 30 % +% Reduction in Area 80 % + 80 % +

Cold Worked: Ultimate Tensile Strength 585 M Pa(85 ksi) 650 M Pa(95 ksi)% Elongation 5 % 5 %

Hardness: Annealed 60 HV 90 HVCold Worked 150 HV 210 HV

Poisson's Ratio .38 .35

Strain Hardening Exponent .24 .24

Elastic Modulus Tension 103 G Pa(15 x 106psi) 186 G Pa(27 x 106psi)Shear 37.5 G Pa(5.4 x 106psi)

Ductile Brittle. Transition Temperature <147 ºK <75 º K

(Significantly affectedby increasing interstitial contents.)

Recrystallization Temperature 800-1100 ºC 900-1200 ºC

Table II. Mechanical Properties of Niobium and Tantalum

Media Concentration Temp. Nb Ta Ti Zr

Acetic Acid 50% Boiling Nil Nil Nil NilBromine Dry 200 F Nil Nil attacked NilChlorine Wet 220 F Nil Nil Nil 10mpyChromic Acid 50 % Boiling 1mpy Nil 5mpy 5mpyHydrochloric Acid 5 % 200 F 1mpy Nil >100mpy NilHydrochloric Acid 30 % 200 F 5mpy Nil rapid NilNitric Acid 65 % Boiling <2mpy <2mpy <2mpy <2mpySodium Hydroxide 10 % Room (1) (1) Nil NilSulfuric Acid 40 % Boiling 20mpy Nil rapid 3mpySulfuric Acid 98 % Boiling attacked <2mpy rapid <200

Table III. Comparative Corrosion Resistance Of Refractory Metals

Material may become brittle due to hydrogen attack.

CATALOGO 14/11/05 13:35 Página 158

Page 159: Aceros y Aleaciones_TUBOS

Both niobium and tantalum are more expensive than other specialty engineering materials. However,when the metal costs are incorporated into finished equipment costs, the cost differences are not ne-arly as great as one might expect. The cost premium associated with niobium and tantalum chemicalprocess equipment can be justified in many applications requiring long life and low maintainance costs.

NNiioobbiiuumm aanndd ttaannttaalluumm aapppplliiccaattiioonnss::

The most common application for niobium is as an alloy addition to steels and superalloys for eleva-ted temperature service, particularly in aerospace applications. Niobium itself is used in many applica-tions, including heat exchangers for chromeplating solutions, cathodic protection systems, electroniccomponents and nuclear applications.

Niobium's combination of strength, melting point, resistance to chemical attack and low neutron ab-sorption cross-section promotes its use in the nuclear industry. Tantalum does not have a low neutronabsorption cross-section and is used for radiation shielding. Niobium has been identified as the prefe-rred construction material for the first reactors in the space power systems programs.

Although the electronics industry consumes the majority of tantalum produced (approximately 60%)for capacitors, other industries concerned with corrosion, especially the chemical processing industry,are accounting for an increasingly large percentage of the market.

Superconductivity may be the most exciting future application for niobium. Niobium itself beco-mes superconductive at temperatures less than 9.1K, but the niobium 48% titanium alloy is themost widely used superconducting material. Magnetic fields of up to 10 tesla have been achievedusing the Nb-48Ti alloy at temperatures below 18K. These magnets can be used in medical diag-nostic equipment, nuclear fusion power systems, high energy physics research, energy storagesystems, magnetic separation of minerals and scrap, superconducting motors and generators andmany other applications.

Tantalum and niobium mill products are used in the fabrication of corrosion resistant process equip-ment, including reaction vessels, columns, bayonet heaters, shell and tube heat exchangers, U-tubes,thermowells, spargers, rupture diaphragms and orifices.

Three basic types of construction are used to fabricate tantalum or Niobium into vessels and othercomponents for the chemical process industry: loose-lined, integrally-clad and solid.

In loose-lined construction, the tantalum or niobium liners are fabricated and formed into the shellwithout bonding. This "loose-lined" construction is the most economical and most widely used met-hod of fabrication. Although economical, this type of construction has some disadvantages such asunsuitability for use in vacuum service and poor heat transfer qualities due to air space between theliner and shell.

Because of niobium's chemical inertness, strength, and heat transfer capability, a compact andmaintenance free unit can replace the teflon unit without the need for a steam desuperheating sys-tem at a significantly lower cost. Again, tantalum's corrosion resistance, strength and heat transfercapability combine to make the tantalum unit a very cost effective replacement for the graphite heatexchanger.

WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

Performed as standard but it must be protected with and inert gas such as Argon/Helium or anindustrial mixture, during thewhole process. If the weld becomes contaminated it will be fragile.

PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars Forgings xx Nuts & Bolts

159

CATALOGO 14/11/05 13:35 Página 159

Page 160: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 160

Page 161: Aceros y Aleaciones_TUBOS

161NIOBIUM

GGeenneerraall::

Niobium [or columbium] metal is more resistant to corrosion than most common materials, but isconsiderably poorer than tantalum. Niobium has the advantages of lower density and a low thermalneutron cross section.

CCoorrrroossiioonn RReessiissttaannccee ooff NNiioobbiiuumm ((CCoolluummbbiiuumm))::

At room tempe rature niobium metal is inert to almost all salt solutions and to the mineral acids. Aswith tantalum, the exceptions are hydrofluoric acid, fuming sulfuric acid and strong alkalis. As the tempe-rature is raised, niobium's corrosion resistance falls rapidly. At 100 ºC noticeable corrosion of the metaloccurs in acid media, with the exception of nitric acid to which it remains inert. Acids will often cause hy-drogen embrittlement at moderate temperatures, although the corrosion rate may still be quite low. Thelist of materials to which niobium is resistant at 100°C, is shown in Table 1. Niobium is very corrosionresistant when compared to most metals. Data on the corrosion rate of niobium are given in Table 2; thetendency toward hydrogen embrittlement is noted. Even dilute alkalis attack niobium. 5% caustic attacksniobium at 20°C more rapidly than it does tantalum at 100 ºC. (Compare data in Table 2)

Oxidation of niobium at high temperatures by air, oxygen and nitrogen is about the same as for tan-talum. Little data are available for other gases.

NIOBIUM

AirChlorine gas, wetHydrochloric acid, dilute

Nitric acid, conc.NitrogenOxigen

Sulfuric acid, 20%Tartaric acid

TABLE 1. Materials to which Niobium is completely inert up to 100 ºC (212 ºF)

Miscellaneous Corrosion Information

Both niobium and tantalum are resistant to mass transport and corrosion by many liquid metals athigh temperatures.

Tantalum-niobium alloys containing more than about 5-10% Nb are much less corrosion resistantthan tantalum itself.

Tantalum-tungsten alloys containing more than 18 percent tungsten are inert to 20 percent hydro-fluoric acid at room temperature. Little data are available on the 90Ta-10W alloy. It is known to be so-mewhat more oxidation resistant (e.g. to air at higher temperatures) than tantalum. The indication isthat it has about the same corrosion resistance to acids as tantalum itself.

Comparison of Tantalum and Niobium to 304 Stainiess Steel, Titanium and Platinum

Corrosion rates for tantalum, niobium, titanium and 304 stainless steel are listed for comparison inTable 2. Titanium is very resistant to many industrial chemical environments and has a considerable pri-ce advantage over tantalum and niobium. However, the data clearly show the superiority of niobiumand especially of tantalum at high acid concentrations and higher temperatures. While platinum is re-sistant to hydrofluoric acid and alkalis, tantalum is much better in aqua regia and hot, concentrated hy-drochloric acid.

SSuuggggeesstteedd AApppplliiccaattiioonnss::

Due to its relatively high price, tantalum can only be recommended for use in extremely corrosivemedia, in areas where no corrosion of the part can be tolerated or where very high purity materials arebeing processed. While some plastics and even glass fill these requirements to a large extent, tanta-lum is a structurally sound material of construction, can take considerable mechanical abuse and hasa much higher heat transfer coefficient. Tantalum should be used as a material of construction in lo-cations and for equipment where hot, concentrated hydrochloric, sulfuric or phosphoric acid will be pre-sent. Tantalum is used by the medical profession for instruments and for metal implants in the body.

CATALOGO 14/11/05 13:35 Página 161

Page 162: Aceros y Aleaciones_TUBOS

In the manufacture of high purity chemicals and pharmaceuticals, tantalum insures that no impuritiesare introduced from the container or reactor.

Niobium lies between titanium and tantalum in price, density and corrosion resistance. Thus far, itsmain use has been in the nuclear reactor field. It has the great advantage of a low nuclear cross sec-tion. That, combined with its good corrosion resistance to hot aqueous systems and capability of hand-ling molten metals, has made it an important material of construction in the nuclear field.

162

Medium Temp. Corrosion Rate (mils/yr.)

ºC ºF Ta Nb Ti 304 Pt

Acetic Acid 100 212 nil –(a) nil 20 nilAlCl3 (10% soln) 100 212 nil – nil 20 nilNH4Cl(10% soln) 100 212 nil nil <0.5 >20 nilHCl, 20% 21 70 nil 0.04 – – nil

100 212 nil – 175 high –,conc. 21 70 nil 0.1 – – –

100 212 nil 4(b) rapid rapid 1HNO3, 20% 100 212 nil nil nil – nil

, 70% 100 212 nil nil nil 7 nil, 65% 170 338 < 1 – < 5 > 50 –

H3PO4, 85% 25 76 nil < 1 8 > 50 –100 212 nil 3(b) 40 – –

H2SO4, 10% 25 76 nil nil 7 > 50 nil, 40% 25 76 nil 0.1 60 >> 50 nil, 98% 25 76 nil 0.2 – – nil, 98% 50 122 nil 0.8 (b) – – nil, 99% 100 212 nil 115(b) high – nil, 98% 200 392 3 rapid rapid – –, 98% 250 482 rapid – – – –

H2SO4, fuming (15% So3) 23 73 0.5 (assume rapid) – –70 158 rapid – – – –

Aqua regia 25 78 nil nil 35 – 800Chlorine, wet 75 167 nil nil nil – 0.1H2O, Cl2 sat 25 76 nil nil 5 > 50 nil

, sea 25 76 nil nil nil 50 nilOxalic acid 21 70 nil 0.6(b) – – –

96 205 0.1 – – – –NaOH, 5% 21 70 nil 1.1 – – –

100 212 0.7 rapid – < 1 nil, 10% 100 212 < 1 – 8 < 1 nil, 40% 80 176 rapid – 5 5 nil

HF, 40 % 25 76 rapid rapid rapid – nil

(a) indicates no data; (b) embrittled

TABLE 2 Comparison of corrosion rates for Tantalum, Niobium, Titanium, 304 Steel and Platinum

WWeellddiinngg pprrooppeerrttiieess::

Good weldability.

PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars Forgings xx Nuts & Bolts

CATALOGO 14/11/05 13:35 Página 162

Page 163: Aceros y Aleaciones_TUBOS

Metal = Titanium

11..ºº GGeenneerraall

Titanium as an industrially pure metal has a great resistance to aggresive environments due to aself-healing coating that naturally forms, together with its workability and machinability make it a very in-teresting metal for many situations.

22..ºº PPhhyyssiiccaall pprrooppeerrttiieess::

Density: see table 1 Melting point: see table 1Specific heat: 520 J/Kg.xºK Thermal conductivity: see table 1

33..ºº CChheemmiiccaall ccoommppoossiittiioonn iinn %%::

163TITANIUM

TITANIUM

Grado ASTM C≤ H≤ N≤ O Ti Fe≤ Others DIN

1 B-381GrF1 0,08 0,0125 0,05 0,10 balance 0,20 – 17864

B-348Gr1

2 B-348Gr2 0,08 0,0125 0,06 025 balance 0,25 – 17864

B-381GrF2

3 B-348Gr3 0,10 0,013 0,06 .025 balance 0,30 – 17864

B-381GrF3

4 B-348Gr4 0.10 0,013 0,06 0,25 balance 0,30 – 17864

B-38GrF4

5 B-384Gr5 0,08 0,0125 0,05 < balance 0,30 Al 17864

B-381GrF5 0,20 5,5 a 6,5

V3,5 a 4,5

7 B-265 0,08 0,0125 0,03 0,25 balance 0,30 0,12 a 0,12 a 0,25 Pd

12 B-265 0,08 0,0125 0,03 0,25 balance 0,30 0,6 a 0,9 Ni y 0,2 a 0,4 Mo

44..ºº SSppeecciiffiiccaattiioonnss::

Tubes: ASTM B337/B338 Plates: ASTM B265 Fittings: ATSME B366

55..ºº CChhaarraacctteerriiccss aanndd aapppplliiccaattiioonnss

The reafter strength diminishes rapidly while oxidization increases.Titanium does not become brittle at low temperatures, as is the case with steel. It retains its tough-

ness down to -270 ºC. Titanium is also one of the few materials which becomes superconductive near ab-solute zero. For this reason superconductive magnets are wound titanium-niobium alloy at -269 ºC.

The rate of diffusion of oxygen and hydrogen in titanium is high, which is a factor that limits the ran-ge of applications at high temperatures.

Chemically, titanium is distinguished by its high reactivity which is only surpassed by metals such asmagnesium, calcium and sodium. In fact, titanium metal is produced through reduction with thesehighly reactive metals. That titanium can be employed under circumstances where most other struc-tural material would be subject to severe corrosion is entirely dependent upon the properties of its oxi-de, TiO. It is highly resistant and forms a self-healing coating which is normally only about 0.01 mmthick. If the coating is damaged and the environment contains oxygen in some form, e.g. water, the ti-tanium reacts with the oxygen and rebuilds the oxide. On the other hand in deoxidated or reduction en-vironments the oxide protection is weakened and the metal becomes exposed to corrosion. Corrosion

CATALOGO 14/11/05 13:35 Página 163

Page 164: Aceros y Aleaciones_TUBOS

resistance can be improved through the introduction of an oxidation agent into the environment or th-rough thickening of the existing oxide coating. Alternatively, an alloy with Mo or Pd can be considered.

Current applications

Aero Engines Components operating up to 600 ºC, discs, blades, spacer rings, struc-tural parts, auxiliary equipment, etc.

Air Frames Fastenings, struts and ties, skins, main structural components in airfra-mes, landing gear, hydraulic equipment, airducting, firewalling, floors,etc.

Performance Engineering Racing cars, motorcycles and cycles, reciprocating parts where inertialoss is significant. Ultracentrifuges. Applications requiring stability with ti-me, e.g. geophysical equipment.

Chemical and Vessels, plate and tubular heat exchangers, mixers, stirrers filter bodies, Petrochemical Engineering driers, conveyors, pumps and valves. Thermowells, probes, level con-

trols, analyser, etc. especially for crude oil handling and processing andplant for production of urea, ammonium nitrate and ammonia, fibre andfertilizer products, chlorine and synthetic resins.

Heat Exchangers and Titanium will provide protection against environmental pollution and cross Surface Condensers pollution form process streams as well as metal ion loss in cooling waters. (Especially for Power Titanium tubes are currently available in several extended surface configu-Generation and Desalination) rations, including fine integral fin, roped and clad high fin. Design for corro-

sion resistance and optimum heat transfer with all liquid systems, liquid/airsystems, condensing and evaporating is therefore possible.

Brewing, Dairy, Food and The inert nature of titanium aids product purity, provides ease of cleaning Pharmaceuticals Manufacture and sterilisation, etc.

Metal Finishing Industry Jigs and fixtures for anodizing of aluminium and electroplating anode bas-kets for containing nickel and copper chips and residues, hooks for nic-kel anodes, heating and cooling coils for plating tanks, baskets and jigsfor pickling and descaling, supports and hangers for articles for hot dipgalvanizing.

Pollution Control Titanium resists attack form a wide range of corrosive media. Waste and Waste Processing processors handle materials of widely varying composition both as input

and end product. Titanium offers the designer the opportunity to achieveall round protection.

Specialised Surgical implants for the human body, including hip prostheses, bone pla-Applications tes and screws, denture posts. Precision instrument manufacture, pres-

sure sensitive transducers, transistors etc. Artistic and architectural ap-plications, personal jewellery, plaques, dart shafts, etc.

66..ºº DDeessiiggnn ssttrreessss vvaalluueess aatt 2200 ººCC aanndd hhiigghheerr

Even at 20 ºC, titanium's creep properties must taken into considera-tion in the calculation of design strength values. The following values arebased on creep-rupture ratings for 100,000 hours.

From a strength perspective the maximum temperature for the usageof unalloyed titanium grades is approximately 350 ºC. For components notsubject to stress oxidation sets a limit at aproximately 500 ºC.

164

Temp. ºC Gr.2 N/mm

-40 + 20 17350 17375 167100 153150 126200 102250 85

CATALOGO 14/11/05 13:35 Página 164

Page 165: Aceros y Aleaciones_TUBOS

165

Material Density Melting Point Thermal Thermal Electrical ElasticityKg/m3 ºC Expansion Conductivity Resistance Modulus

Coefficient W/(m.K) Ohm x m MPa

Titanium 4505 1688 8.4 x 10-6 17 55 x 10-8 106.4 x 103

Iron 7900 1530 12 x 10-6 63 9.7 x 10-8 206.0 x 103

Aluminum 2700 660 23 x 10-6 205 2.7 x 10-8 69.2 x 103

Nickel 8900 1453 15 x 10-6 92 9.5 x 10-8 206.0 x 103

Copper 8900 1083 17 x 10-6 385 1.7 x 10-8 107.9 x 103

Stainless Steel 18-8 7900 1410 17 x 10-6 16 72 x 10-8 200.1 x 103

Brass 8400 970 18.5 x 10-6 100 7.5 x 10-8 107.9 x 103

Monel 8800 1325 14 x 10-6 26 48 x 10-8 179.5 x 103

Table 1. Comparative Values

77..ºº TTiittaanniiuumm && TTiittaanniiuumm AAllllooyy SSppeecciiffiiccaattiioonnss

Grade/ ASTM DIN Aerospace Specifications Remarks

Ref. N.º British American American

Standard A.M.S. MIL–T–

TA 9046 9047

Ti35A/115 1 3.7025 1 – – –Ti50A/125 2 3.7035 2,3,4,5 4902, 4941 1A –

4942, 4951 CommerciallyTi65A/130 3 3.7055 – 4900 1C – Pure TitaniumTi75A/160 4 3.7065 6,7,8,9 4901 1B Comp

1.2Ti0.2% Pd 7.11 – – – – – Industrial AlloysTi-Code 12 12 – – – – – with superior

corrosion resitanceTi-6Al-4V/318 5 3.7165 10,11,12, 4911, 4928 3C Comp

28.56 3.6Ti-4Al-4Mo-2.5Sn – – 45-51 – – – Aerospace/Engineering(550) and 57 Alloys having highTi-6Al-2Sn- – – – 4975, 5976 3G Comp strength developed4Zr-2Mo 11 by heat treatmentTi-6Al-2Sn- – – – 4981 – Comp4Zr-6Mo 14

CATALOGO 14/11/05 13:35 Página 165

Page 166: Aceros y Aleaciones_TUBOS

99..ºº PPrrooppeerrttiieess aatt hhiigghh tteemmppeerraattuurreess aanndd ccoorrrroossiioonn rreessiissttaannccee::

166

1 4 4 4 3 5 3 1 5 5 1 1 1 240 170 24 70 265-337-338-348-363-367

2 4 4 4 3 5 3 1 5 5 1 1 1 345 275 20 80 265-337-338-348-363-367

3 4 4 4 3 5 3 1 5 5 1 1 1 450 380 18 90 265-337-338-348-363-367

4 4 4 4 3 5 3 1 5 5 1 1 1 550 485 15 100 265-337-338-348-363-367

5 4 4 4 3 5 3 2 5 5 2 2 1 895 830 10 * 265-348; W.3.7165

7 4 4 4 1 5 3 1 5 5 1 1 1 345 275 20 80 265-338-348-W.3.7235

Titan

io Gr

ade

Oxida

tion

Temperatureresistance>540 °C

Corrosion resistance Mechanicalproperties aprox.

Carb

uriza

tion

Stre

nght

Sta

bility

Sulph

uric

Acid

Chlor

hydr

ic Ac

id

Fluor

hydr

ic Ac

id

Phos

foric

Acid

Nitri

c Acid

Orga

nic A

cids

Alka

lies

Salts

Sea

Wat

er

Tens

ile S

.MPA

Yield

S.02

,%M

PA

Elong

ation

%

Brine

ll Har

dnes

s

ASTM

-B N

orm

s

Key: 1 = Good or excellent; 2 = Acceptable; 3 = Inadequate; 4 = Non applicable; 5 = Case dependent

* =36 HRC

Grade/Ref. N.º 0.1 % Proof Stress Ultimate Tensile Elongation Youngs Density Weldability(see above) Strength Modulus Rating

tons/sq.in kg/mm2 tons/in2 kg/mm2 % tons/in2 kg/mm2 Ib/in3 gm/cc

Ti35A/115 13 min 20 min 26 max 41 max 25 min 6,650 10,500 .163 4.51 Excellent

Ti50A/125 18 min 28 min 25-35 39-55 20 min 6,650 10,500 .163 4.51 Excellent

Ti65A/130 22 min 34 min 30-40 46-62 20 min 6,650 10,500 .163 4.51 Excellent

Ti75A/160 25 min 39 min 35-45 55-71 18 min 6,650 10,500 .163 4.51 Excellent

Ti0.2% Pd (Gr. 7) 13 min 20 min 25-35 39-55 20 min 6,650 10,500 .163 4.51 Excellent

Ti Code 12 22 min 35 min 27 min 34 min 20 min 6,800 10,700 .163 4.51 Excellent

Ti-6Al-4V/318 54 min 85 min 58 min 92 min 10 min 7,360 11,600 .161 4.45 Good

Ti-4Al-4Mo-2.5 Sn 56 min 88 min 68 min 107 min 10 min 7,500 11,800 .167 4.60 Poor

Ti-6Al-2Sn-4Zr-2Mo 54 min 85 min 58 min 92 min 10 min 7,370 11,600 .164 4.54 Good

Ti-6Al-2Sn-4Zr-6Mo 58 min 92 min 67 min 106 min 10 min 7,370 11,600 .168 4.65 Fair

88..ºº RRoooomm TTeemmppeerraattuurree MMeecchhaanniiccaall aanndd ootthheerr PPooppeerrttiieess

For comparison of corrosion rates for Tantalum, Niobium, Titanium, 304 stainless steel and Plati-num see Niobium (table 2).

1100..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability. Performed as standard but it must be protected with an inert gas such asArgon/Helium or an industrial mixture, during the whole process. If the weld becomes contaminatedit will be fragile.

1111..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars xx Forgings xx Nuts & Bolts

CATALOGO 14/11/05 13:35 Página 166

Page 167: Aceros y Aleaciones_TUBOS

167

ZIRCONIUM

Metal: ZIRCONIUM

11..ºº GGeenneerraall

It is a very reactive metal that reacts naturally with the atmospheric oxygen forming a protecting co-at that adheres to the metal as a self-healing layer.

22..ºº MMaacchhiinniinngg::

Good machinability, but shavings must be kept in water.

33..ºº CChheemmiiccaall ccoommppoossiittiioonn::

There are 4 grades (2 pures and 2 alloyed).

ZIRCONIUM

Grade/composition Grade 702 Grade 704 Grade 705 Grade 706

ASTM R60702 R60704 R60705 R60706Zr+Hf mini 90,2 97,5 95,5 95,5Hf max. 4,5 4,5 4,5 4,5Fe+Cr max. 0,20 0,2 a 0,4 0,2 0,2H. max. 0,0005 0,005 0,005 0,005N. max. 0,025 0,025 0,025 0,025C. max. 0,05 0,05 0,05 0,05Nb- – – 2 a 3 2 a 3O max. 0,16 0,18 0,18 0,16

Grade 702 Grade 704 Grade 705 Grade 706

Tensile S. MPa mini 379 413 552 510Yield S. MPa mini 207 241 379 345Elongation % mini 16 14 16 20Density Kg/dm3 6,51 6,57 6,64 6,64

44..ºº MMeecchhaanniiccaall pprrooppeerrttiieess::

55..ºº SSppeecciiffiiccaattiioonnss::

Plates B551 Tubes-B523 seamless and weldedBar B550 Fittings B653 elbows, tees, …Forgings B493 wires Welding material = AWS A5.24 electrodes and fils.

66..ºº CChhaarraacctteerriissttiiccss aanndd aapppplliiccaattiioonnss::

Zirconium is highly resistant to a wide range of acids and bases, both organic and inorganic, whichmakes it an interesting and exceptional long life alternative to other materials in highly demanding ap-plications. The seamless tube zirconium grade, produced for heat exchanger applications, is Zirconium702*, which offers the process industry a high quality and competitive product concept.

CATALOGO 14/11/05 13:35 Página 167

Page 168: Aceros y Aleaciones_TUBOS

Zirconium 702 seamless tubing is characterized by:

• High heat transfer efficiency• Very low thermal expansion• Immunity to stress corrosion cracking• High resistance to localized (pitting and crevice) forms of corrosion• Very good corrosion resistance in most organic acids• Exceptional corrosion resistance to mineral acids• Good corrosion resistance in strong alkalis• Interchangeability between acid and alkali conditions

Main application areas

• Acetic acid• Urea• Formic acid• Sulphuric acid• Citric acid• Methyl methacrylate• Nitric Acid

* As per ASTM/ASME B, SB523 or equivalent.

77..ºº WWeellddiinngg pprrooppeerrttiieess::

Good weldability. Performed as standard but it must be protected with an inert gas such asArgon/Helium or an industrial mixture, during the whole process. If the weld becomes contaminatedit will be fragile.

88..ºº PPrroodduuccttss,, wwee ssuuppppllyy::

xx Plate-strip xx Pipes-tubes xx Accessories xx Bars Forgings xx Nuts & Bolts

168

CATALOGO 14/11/05 13:35 Página 168

Page 169: Aceros y Aleaciones_TUBOS

DISCLAIMER:

TECNOCOMMERZ EUROPA, S.L. makes no warranty of anykind with respect to the subject matter or accuracy of theinformation contained herein. Specifically disclaims allwarranties, expressed, implied or otherwise, includingwithout limitation, all warranties of merchantability andfitness for a particular purpose.

In no event shall be liable for any special, incidental, indirector consequential damages of any kind or any damageswhatsoever resulting from loss of use, data, profits, whetheror not advised of the possibility of damage, and on anytheory of liability, arising out of or in connection with the useof the information contained herein.

This publication may include technical inaccuracies ortypographical errors. Changes may be periodically made tothe information herein.

CATALOGO 14/11/05 13:35 Página 169

Page 170: Aceros y Aleaciones_TUBOS

CATALOGO 14/11/05 13:35 Página 170