ACCOTA

Embed Size (px)

Citation preview

  • 8/8/2019 ACCOTA

    1/53

    How to cooka quantum computer

    A. Cabello, L. Danielsen, A. Lpez Tarrida, P. Moreno,J. R. Portillo

    University of Seville, SpainUniversity of Bergen, Norway

    ACCOTA

    Playa del Carmen, Mexico. November 2010 09/12/10 04:52 AM

  • 8/8/2019 ACCOTA

    2/53

    How to cooka quantum graph state

    A. Cabello, L. Danielsen, A. Lpez Tarrida, P. Moreno,J. R. Portillo

    University of Seville, SpainUniversity of Bergen, Norway

    ACCOTA

    Playa del Carmen, Mexico. November 2010 09/12/10 04:52 AM

  • 8/8/2019 ACCOTA

    3/53

    Optimal preparationof quantum graph states

    A. Cabello, L. Danielsen, A. Lpez Tarrida, P. Moreno,J. R. Portillo

    University of Seville, SpainUniversity of Bergen, Norway

    ACCOTAPlaya del Carmen, Mexico. November 2010

    04:52 AM

  • 8/8/2019 ACCOTA

    4/53

    Some previous ideas

    Bit vs. qubit

  • 8/8/2019 ACCOTA

    5/53

    Some ideas

    Bit vs. qubit

    Quantum states: superposition and entaglementStabilizer statesgraph states

  • 8/8/2019 ACCOTA

    6/53

    Some ideas

    Bit vs. qubit

    Quantum states: superposition and entaglementStabilizer statesgraph states Oh! Graph TheoryOh! Graph Theory

  • 8/8/2019 ACCOTA

    7/53

    Some ideas

    Bit vs. qubit

    Entaglement measuresRepresentative graph state

    Quantum computers are made with graph states, but are unstable

    Quantum states: superposition and entaglementStabilizer states

    graph states Oh! Graph TheoryOh! Graph Theory

  • 8/8/2019 ACCOTA

    8/53

    Bit

    0 and 1 (on/off, true/false, yes/no).

  • 8/8/2019 ACCOTA

    9/53

    Qubit

    2-dimensional quantum physic system,

    Hilbert space isomorphic to C 2 .

    Schumacher, 1995

    spin particle.E.g.,

    Photon polarization.

    Two relevant states physic system.

    0

    1BASIC STATE VECTORS

  • 8/8/2019 ACCOTA

    10/53

    Qubit

    PHYSICS MATHEMATICS

    10

    = :0 C 2

    0

    1= :1 C 2

    isomorphic toC 2

    10

    = :0 C 2

    0

    1= :1 C 2

  • 8/8/2019 ACCOTA

    11/53

    Quantum Mechanics: superpositions

    If it is posible and

    then

    IRL

    Photons:

    Atoms:

    laser

  • 8/8/2019 ACCOTA

    12/53

    Qubit

    =0 1 C 2

    qubit INFINITE PURE STATES:

    Lineal superposition (coherent) of basic states:

    BLOCH's sphere =cos

    20 ei sen

    21

    Or:

    2

    2=1

  • 8/8/2019 ACCOTA

    13/53

    Complex SYSTEMS

    ENTAGLEMENT STATES:

    PRODUCT STATES:

    PHYSCIS MATHEMATICS

    10

    10

    = :00 C 2 C 2

    01

    01 = :11 C

    2 C

    2

    1

    0

    1

    0

    0

    1

    0

    1

    = :00 11 C 2 C 2

    H 1 H 2

  • 8/8/2019 ACCOTA

    14/53

    Classification of states by entaglement

    Entagled states CANNOTbe preparated with local dispositives .

    much stronger correlated than all possible classic systems.

    Quantum Mechanics => ENTAGLEMENTS

    Theory / Applications

    Pure state of a multipartite quantum system is ENTAGLED if it is NOT a product of states .

  • 8/8/2019 ACCOTA

    15/53

    Classification of states by entaglement

    CRITERIA(pure states, multipartites)

    L O C C L U L O C CInfinite classes, (bipartites too).

    Equivalent entaglement:

    S L O C C L U S L O C CInfinite classes, (three parts or more).

    Equivalent entaglement:

    W. Dr, G. Vidal and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).F. Verstraete et al ., Phys. Rev. A 65, 052112 (2002).

  • 8/8/2019 ACCOTA

    16/53

    n>3 qubits: INFINITE amountof different, INEQUIVALENT

    classes of ENTAGLED STATES

    Subsets of states:

    Graph states

    Classification of states by entaglement

  • 8/8/2019 ACCOTA

    17/53

    Stabilizer states

    n- qubits stabilizer state:Simultaneous by n independent operators of Pauli group of order n

    S

    Stabilizer state by an operator A if :

    A =

  • 8/8/2019 ACCOTA

    18/53

    Pauli group. Stabilizer state

    N -QUBITS STABILIZER STATE

    M jS =S M j= j M 1

    j M n

    j , j= 1, j= 1, , n.

    M = M M 1 M n M i{ 0 , x , y , z} M = 1, i

    PAULI GROUP

    0= =1 00 1

    X = X

    =0 11 0

    Y = Y =0 i

    i 0

    Z = Z

    =1 00 1

    PAULI MATRICES

  • 8/8/2019 ACCOTA

    19/53

    graph state

    An n-qubits graph state is a special kind of stabilizer state .

    S G

  • 8/8/2019 ACCOTA

    20/53

    graph state

    An n-qubits graph state isa pure quantum state asociated to a simple connected graph G(V,E).

    Each vertex represents a qubit and each edge a qubits entaglement

  • 8/8/2019 ACCOTA

    21/53

    graph state? Definition

    GOnly state satisfying:G V ,E

    giG =G , i=1,... ,n

    gi:= X i

    i , j E Z j Generator operator

    S= g1 ,.. . , gn ={s j}j=

    1

    2nstabilizer

    V = {1,... ,n} E V V

  • 8/8/2019 ACCOTA

    22/53

    graph state

    An n-qubits graph state isa pure quantum state asociated to a simple connected graph G(V,E).

    Each vertex represents a qubit and each edge a qubits entaglement

  • 8/8/2019 ACCOTA

    23/53

    graph state

    An n-qubits graph state isa pure quantum state asociated to a simple connected graph G(V,E).

    Each vertex represents a qubit and each edge a qubits entaglement

    Applications:Quantum computation based on measures (cluster states)Quantum correction of errorsSecret sharing protocolsProof of Bell's Theorem (e.g.; all-versus-nothing)Reduction of communication complexityTeletransportation...

    Theory of entaglement.

  • 8/8/2019 ACCOTA

    24/53

    graph states in REAL LIFE (lab)?

    6-qubits 4-photons graph states

    Now, we can:

    8-qubits 4-photons graph states

    10- qubits 5 -photons graph states

    n-qubits n-photons graph states up to n = 6 .

  • 8/8/2019 ACCOTA

    25/53

    graph states in REAL LIFE (lab)?

    Futur:

    30 qbits 10 teraflops

    1000 clasical computers

  • 8/8/2019 ACCOTA

    26/53

    graph state? Constructive definition

    G V ,E G

    STEP 1

    = 1 20 1

    Asociate each vertex with a qubit in the state:

  • 8/8/2019 ACCOTA

    27/53

    What is a graph state? CONSTRUCTIVE .

    G V ,E G

    C Z = 00 00 01 01 10 10 11 11 =

    1 0 0 0

    0 1 0 0

    0 1 1 0

    0 1 0 1

    STEP 2Apply, for each edge, controlled-Z to the qbits:

  • 8/8/2019 ACCOTA

    28/53

    What is a graph state? CONSTRUCTIVE .

    G V ,E G

    1 2

    3 4

    1

    2

    3

    4

    G

  • 8/8/2019 ACCOTA

    29/53

    Graph states equivalence

    LU (local unitary) equivalence: LU U =U 1 U n =U

    Graph states are entaglement-equivalent iff are LU-equivalent.

    LC (local Clifford) equivalence:

    LC C =C 1

    C n ,CiH ,S =C

    L U

    L C

    conjecture LU LC: H = 1 21 11 1

    , S= 1 00 i

  • 8/8/2019 ACCOTA

    30/53

    Graph states equivalence

    L U L C Conjecture LU LC: FALSEZ. Ji, J. Chen, Z. Wei y M. Ying; arXiv: 0709.1266

    But

    True for small n. Small known counterexamples: 27 qubits. Probably inferior limit .Z. Ji, J. Chen, Z. Wei y M. Ying; arXiv: 0709.1266

    True for some classes of graph states.

    M. Van den Nest et al ., Phys. Rev. A 71, 062323 (2005)

    B. Zeng et al ., Phys. Rev. A 75, 032325 (2007)

  • 8/8/2019 ACCOTA

    31/53

    LC equivalence and local complementation

    Theorem (M. Van den Nest et al ., Phys. Rev. A 69 022316 (2004) ):

    G LCG' There exists a sequence of local

    complementation operator that maps

    graph G into graph G .

    G'

    G G '

    LC

    LC LC LC LC

    G

  • 8/8/2019 ACCOTA

    32/53

    LC equivalence and local complementation

    j j

    Theorem (M. Van den Nest et al ., Phys. Rev. A 69 022316 (2004) ):

    G LCG' There exists a sequence of local

    complementation operator that maps graph G into graph G .

  • 8/8/2019 ACCOTA

    33/53

    RBIT (LC class)

    LC equivalence and local complementation. Orbit.

    LC equivalence class. ORBIT:

    REPRESENTANTIVE?

  • 8/8/2019 ACCOTA

    34/53

    ORBIT

    LC equivalence and local complementation. Orbit.

    LC equivalence class = orbit:

    #Orbit: 802 non isomorphgraphs

  • 8/8/2019 ACCOTA

    35/53

    Entaglements in Graph states. Classification

    n

  • 8/8/2019 ACCOTA

    36/53

    Entaglements in Graph states. Classification

    n

  • 8/8/2019 ACCOTA

    37/53

    Entaglements in Graph states. Classification.

    n

  • 8/8/2019 ACCOTA

    38/53

    Sort criteria n

  • 8/8/2019 ACCOTA

    39/53

    Sort criteria n

  • 8/8/2019 ACCOTA

    40/53

    Sort criteria

    SCHMIDT RANKS

    Rank index (Schmidt rank of all bipartite splits).

    H A H B

    =i= 1 R

    i

    i

    A

    i

    B iC , i= 1, ,R

    i j

    H j

    , j= A,B

    r = Rm n= SR A G

    RI p= p p , , 1

    p =[ j p]j= p1

    j p # SR A G = j , with A= p.

    RANK INDEX

  • 8/8/2019 ACCOTA

    41/53

    Schmidt measure bounds

    MAXIMUM SCHMIDT RANK

    SRm x G E S G PP G V C G

    PAULI PERSISTENCE

    MINIMAL VERTEX COVER

  • 8/8/2019 ACCOTA

    42/53

    Graph states entaglement. Classifition

    n

  • 8/8/2019 ACCOTA

    43/53

    Graph states entaglements. Clasification

    n=8:

  • 8/8/2019 ACCOTA

    44/53

    Entrelazamiento en Graph states. Clasificacin

    NO DISTINCTION

    NO EQUIVALENT CLASS!

    ATTENTION:PROBLEM!!!!

    Solved (n

  • 8/8/2019 ACCOTA

    45/53

    Sort criteria n9)

    EXPERIMENTAL corresponds to: Minimum #controlled-Z gates . Minimum preparation deepth (time units).

    n Download Size8 entanglement8 101 graphs9 entanglement9 440 graphs10 entanglement10 3132 graphs (509 KB)11 entanglement11.bz2 40,457 graphs (1.2 MB compressed)12 entanglement12.bz2 1,274,068 graphs (45 MB compressed)

  • 8/8/2019 ACCOTA

    46/53

    Graph states entaglements. Clasification

    n

  • 8/8/2019 ACCOTA

    47/53

    Cooking graph states

    A few invariants for 9

  • 8/8/2019 ACCOTA

    48/53

  • 8/8/2019 ACCOTA

    49/53

    Cooking graph states

    If we need prepare a GRAPH STATE

  • 8/8/2019 ACCOTA

    50/53

    CONCLUSIONS

    Extended up to 12 qubits g raph states entaglement classification.

    Best (in the sense of minimum time preparation and/or minimum work)

    representative of each new 1300000+ LC equivalence class.

    An (almost) complete sort criteria and new invariants for labeling class.

    Help to new proofs (AVN type) of Bell's theorem .

    Research of non-locality.

  • 8/8/2019 ACCOTA

    51/53

    CONCLUSIONS

    Procedure for the optimal preparationof 1.65 101.65 10 1111 graph states with up to 12 qubits

    Procedure for the optimal preparationof 1.65 101.65 10 1111 graph states with up to 12 qubits

    OPTIMAL:minimum number of entangling gates

    minimum number of time steps

    OPTIMAL:minimum number of entangling gates

    minimum number of time steps

    Main goal:Main goal: to provide in a single package all thetools needed to rapidly identify the entanglement classthe target state belongs to, and then easily find thecorresponding optimal circuit(s) of entangling gates, andfinally the explicit additional one-qubit gates needed toprepare the target

    Main goal:Main goal: to provide in a single package all thetools needed to rapidly identify the entanglement classthe target state belongs to, and then easily find thecorresponding optimal circuit(s) of entangling gates, andfinally the explicit additional one-qubit gates needed toprepare the target

  • 8/8/2019 ACCOTA

    52/53

    PUBLISHED

    Arxiv: http://arxiv.org/abs/1011.5464Nov 24, 2010

    Arxiv: http://arxiv.org/abs/1011.5464Nov 24, 2010

    This workhas been submitted to Physical Review A

    Nov 25, 2010

    This workhas been submitted to Physical Review A

    Nov 25, 2010

    Slides: http://slidesha.re/eEauJgSlides: http://slidesha.re/eEauJg

    http://arxiv.org/abs/1011.5464http://arxiv.org/abs/1011.5464http://arxiv.org/abs/1011.5464
  • 8/8/2019 ACCOTA

    53/53

    Thanks for your attention!

    Gracias por escucharme!