152
A brief history of the mean value theorem ´ Ad´ am BESENYEI Dept. of Applied Analysis E¨otv¨osLor´ and University, Budapest, Hungary [email protected] September 17, 2012 ´ A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 1 / 15

Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

A brief history of the mean value theorem

Adam BESENYEI

Dept. of Applied AnalysisEotvos Lorand University, Budapest, Hungary

[email protected]

September 17, 2012

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 1 / 15

Page 2: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Outline

1 The theorems of Rolle, Lagrange and CauchyThe mean value theoremRolle’s theoremCauchy’s theorem

2 How to prove it?The classical proofsPeano’s theoremApplication

3 Steps towards the modern formRolle’s theoremMean value theorem

4 Dispute between mathematiciansPeano and JordanPeano and Gilbert

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 2 / 15

Page 3: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy The mean value theorem

The theorem in classical form

Theorem (Mean value theorem)

Let f : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ) =f (b)− f (a)

b − a.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 15

Page 4: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy The mean value theorem

The theorem in classical form

Theorem (Mean value theorem)

Let f : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ) =f (b)− f (a)

b − a.

a b

f (a)

f (b)

f

Geometrically:

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 15

Page 5: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy The mean value theorem

The theorem in classical form

Theorem (Mean value theorem)

Let f : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ) =f (b)− f (a)

b − a.

a b

f (a)

f (b)

f

Geometrically:

• chord has slope f (b)−f (a)b−a

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 15

Page 6: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy The mean value theorem

The theorem in classical form

Theorem (Mean value theorem)

Let f : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ) =f (b)− f (a)

b − a.

a b

f (a)

f (b)

f

ξ

Geometrically:

• chord has slope f (b)−f (a)b−a

• there is a tangent line parallel to the chord

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 15

Page 7: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy The mean value theorem

The theorem in classical form

Theorem (Mean value theorem)

Let f : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ) =f (b)− f (a)

b − a.

a b

f (a)

f (b)

f

ξ

Geometrically:

• chord has slope f (b)−f (a)b−a

• there is a tangent line parallel to the chord

Physically:

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 15

Page 8: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy The mean value theorem

The theorem in classical form

Theorem (Mean value theorem)

Let f : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ) =f (b)− f (a)

b − a.

a b

f (a)

f (b)

f

ξ

Geometrically:

• chord has slope f (b)−f (a)b−a

• there is a tangent line parallel to the chord

Physically:

• at some instantinstantaneous velocity = average velocity

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 15

Page 9: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy The mean value theorem

The theorem in classical form

Theorem (Mean value theorem)

Let f : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ) =f (b)− f (a)

b − a.

Corollary (Mean value inequality)

Let f : [a, b] → R be continuous and differentiable on (a, b). Then

inf[a,b]

f ′ ≤ f (b)− f (a)

b − a≤ sup

[a,b]f ′.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 15

Page 10: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Rolle’s theorem

A special case: Rolle’s theorem

Theorem (Rolle, 1690, for polynomials)

Let f : [a, b] → R be continuous and differentiable on (a, b). Iff (a) = f (b), then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 15

Page 11: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Rolle’s theorem

A special case: Rolle’s theorem

Theorem (Rolle, 1690, for polynomials)

Let f : [a, b] → R be continuous and differentiable on (a, b). Iff (a) = f (b), then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

a b

f (a)=

f (b)

f

Geometrically:

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 15

Page 12: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Rolle’s theorem

A special case: Rolle’s theorem

Theorem (Rolle, 1690, for polynomials)

Let f : [a, b] → R be continuous and differentiable on (a, b). Iff (a) = f (b), then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

a b

f (a)=

f (b)

f

Geometrically:

• chord is parallel to x-axes

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 15

Page 13: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Rolle’s theorem

A special case: Rolle’s theorem

Theorem (Rolle, 1690, for polynomials)

Let f : [a, b] → R be continuous and differentiable on (a, b). Iff (a) = f (b), then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

a b

f (a)=

f (b)

f

ξ1 ξ2

Geometrically:

• chord is parallel to x-axes

• there is a tangent line parallel to thex-axes

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 15

Page 14: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Rolle’s theorem

A special case: Rolle’s theorem

Theorem (Rolle, 1690, for polynomials)

Let f : [a, b] → R be continuous and differentiable on (a, b). Iff (a) = f (b), then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

a b

f (a)=

f (b)

f

ξ1 ξ2

Geometrically:

• chord is parallel to x-axes

• there is a tangent line parallel to thex-axes

Physically:

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 15

Page 15: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Rolle’s theorem

A special case: Rolle’s theorem

Theorem (Rolle, 1690, for polynomials)

Let f : [a, b] → R be continuous and differentiable on (a, b). Iff (a) = f (b), then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

a b

f (a)=

f (b)

f

ξ1 ξ2

Geometrically:

• chord is parallel to x-axes

• there is a tangent line parallel to thex-axes

Physically:

• if initial and terminal velocity are equal,then at some instant acceleration = 0

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 15

Page 16: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Cauchy’s theorem

A generalization: Cauchy’s mean value theorem

Theorem (Cauchy, 1823)

Let f , g : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ)(g(b)− g(a)) = g ′(ξ)(f (b)− f (a)).

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 5 / 15

Page 17: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Cauchy’s theorem

A generalization: Cauchy’s mean value theorem

Theorem (Cauchy, 1823)

Let f , g : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ)(g(b)− g(a)) = g ′(ξ)(f (b)− f (a)).

g(a) g(b)

f (a)

f (b)γ(b)

γ(a)

Geometrically:

• curve γ(t) = (g(t), f (t)) (t ∈ [a, b])

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 5 / 15

Page 18: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Cauchy’s theorem

A generalization: Cauchy’s mean value theorem

Theorem (Cauchy, 1823)

Let f , g : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ)(g(b)− g(a)) = g ′(ξ)(f (b)− f (a)).

g(a) g(b)

f (a)

f (b)γ(b)

γ(a)

Geometrically:

• curve γ(t) = (g(t), f (t)) (t ∈ [a, b])

• direction of chord is(g(b)− g(a), f (b)− f (a))

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 5 / 15

Page 19: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The theorems of Rolle, Lagrange and Cauchy Cauchy’s theorem

A generalization: Cauchy’s mean value theorem

Theorem (Cauchy, 1823)

Let f , g : [a, b] → R be continuous and differentiable on (a, b). Then there

exists ξ ∈ (a, b) such that

f ′(ξ)(g(b)− g(a)) = g ′(ξ)(f (b)− f (a)).

g(a) g(b)

f (a)

f (b)γ(b)

γ(a)

γ(ξ2)

γ(ξ1)

Geometrically:

• curve γ(t) = (g(t), f (t)) (t ∈ [a, b])

• direction of chord is(g(b)− g(a), f (b)− f (a))

• at some instant (g ′(ξ), f ′(ξ)) = 0 ortangent ‖ (g(b)− g(a), f (b)− f (a))

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 5 / 15

Page 20: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Rolle’s theorem (U. Dini, 1878). Geometrically:

a b

f (a)=

f (b)

f

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 21: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Rolle’s theorem (U. Dini, 1878).

• if f is constant, then f ′ = 0;

Geometrically:

a b

f (a)=

f (b)

f

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 22: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Rolle’s theorem (U. Dini, 1878).

• if f is constant, then f ′ = 0;

• otherwise f has (local) extremum at someξ ∈ (a, b),

Geometrically:

a b

f (a)=

f (b)

f

ξ1 ξ2

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 23: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Rolle’s theorem (U. Dini, 1878).

• if f is constant, then f ′ = 0;

• otherwise f has (local) extremum at someξ ∈ (a, b),

• by Fermat’s theorem (1638), f ′(ξ) = 0.

Geometrically:

a b

f (a)=

f (b)

f

ξ1 ξ2

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 24: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Rolle’s theorem (U. Dini, 1878).

• if f is constant, then f ′ = 0;

• otherwise f has (local) extremum at someξ ∈ (a, b),

• by Fermat’s theorem (1638), f ′(ξ) = 0.

Proof of the mean value theorem (O. Bonnet).

Geometrically:

a b

f (a)=

f (b)

f

ξ1 ξ2

a b

f (a)

f (b)

f

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 25: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Rolle’s theorem (U. Dini, 1878).

• if f is constant, then f ′ = 0;

• otherwise f has (local) extremum at someξ ∈ (a, b),

• by Fermat’s theorem (1638), f ′(ξ) = 0.

Proof of the mean value theorem (O. Bonnet).

• Let h(x) = f (x)− f (a)− f (b)−f (a)b−a

(x − a),

Geometrically:

a b

f (a)=

f (b)

f

ξ1 ξ2

a b

f (a)

f (b)

f

h(x)

f (x)

x

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 26: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Rolle’s theorem (U. Dini, 1878).

• if f is constant, then f ′ = 0;

• otherwise f has (local) extremum at someξ ∈ (a, b),

• by Fermat’s theorem (1638), f ′(ξ) = 0.

Proof of the mean value theorem (O. Bonnet).

• Let h(x) = f (x)− f (a)− f (b)−f (a)b−a

(x − a),

• then h(a) = h(b)(= 0),

Geometrically:

a b

f (a)=

f (b)

f

ξ1 ξ2

a b

f (a)

f (b)

f

h(x)

f (x)

x

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 27: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Rolle’s theorem (U. Dini, 1878).

• if f is constant, then f ′ = 0;

• otherwise f has (local) extremum at someξ ∈ (a, b),

• by Fermat’s theorem (1638), f ′(ξ) = 0.

Proof of the mean value theorem (O. Bonnet).

• Let h(x) = f (x)− f (a)− f (b)−f (a)b−a

(x − a),

• then h(a) = h(b)(= 0),

• therefore by Rolle’s theorem h′(ξ) = 0 atsome ξ ∈ (a, b),

Geometrically:

a b

f (a)=

f (b)

f

ξ1 ξ2

a b

f (a)

f (b)

f

h(x)

f (x)

x

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 28: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Rolle’s theorem (U. Dini, 1878).

• if f is constant, then f ′ = 0;

• otherwise f has (local) extremum at someξ ∈ (a, b),

• by Fermat’s theorem (1638), f ′(ξ) = 0.

Proof of the mean value theorem (O. Bonnet).

• Let h(x) = f (x)− f (a)− f (b)−f (a)b−a

(x − a),

• then h(a) = h(b)(= 0),

• therefore by Rolle’s theorem h′(ξ) = 0 atsome ξ ∈ (a, b),

• thus f ′(ξ)− f (b)−f (a)b−a

= 0.

Geometrically:

a b

f (a)=

f (b)

f

ξ1 ξ2

a b

f (a)

f (b)

f

h(x)

f (x)

x

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 29: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Cauchy’s theorem (O. Bonnet).Geometrically:

g(a) g(b)

f (a)

f (b)γ(b)

γ(a)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 30: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Cauchy’s theorem (O. Bonnet).

• We may assume g(a) 6= g(b), then let

h(t) = f (t)− f (a)− f (b)−f (a)g(b)−g(a)(g(t)− g(a)),

Geometrically:

g(a) g(b)

f (a)

f (b)γ(b)

γ(a)

γ(t)

h(t)

f (t)

g(t)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 31: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Cauchy’s theorem (O. Bonnet).

• We may assume g(a) 6= g(b), then let

h(t) = f (t)− f (a)− f (b)−f (a)g(b)−g(a)(g(t)− g(a)),

• then h(a) = h(b)(= 0),

Geometrically:

g(a) g(b)

f (a)

f (b)γ(b)

γ(a)

γ(t)

h(t)

f (t)

g(t)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 32: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Cauchy’s theorem (O. Bonnet).

• We may assume g(a) 6= g(b), then let

h(t) = f (t)− f (a)− f (b)−f (a)g(b)−g(a)(g(t)− g(a)),

• then h(a) = h(b)(= 0),

• therefore by Rolle’s theorem h′(ξ) = 0 atsome ξ ∈ (a, b)

Geometrically:

g(a) g(b)

f (a)

f (b)γ(b)

γ(a)

γ(t)

h(t)

f (t)

g(t)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 33: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Cauchy’s theorem (O. Bonnet).

• We may assume g(a) 6= g(b), then let

h(t) = f (t)− f (a)− f (b)−f (a)g(b)−g(a)(g(t)− g(a)),

• then h(a) = h(b)(= 0),

• therefore by Rolle’s theorem h′(ξ) = 0 atsome ξ ∈ (a, b)

• thus f ′(ξ)− f (b)−f (a)g(b)−g(a)g

′(ξ) = 0.

Geometrically:

g(a) g(b)

f (a)

f (b)γ(b)

γ(a)

γ(t)

h(t)

f (t)

g(t)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 34: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? The classical proofs

The (nowadays) very straightforward proofs

Proof of Cauchy’s theorem (O. Bonnet).

• We may assume g(a) 6= g(b), then let

h(t) = f (t)− f (a)− f (b)−f (a)g(b)−g(a)(g(t)− g(a)),

• then h(a) = h(b)(= 0),

• therefore by Rolle’s theorem h′(ξ) = 0 atsome ξ ∈ (a, b)

• thus f ′(ξ)− f (b)−f (a)g(b)−g(a)g

′(ξ) = 0.

Geometrically:

g(a) g(b)

f (a)

f (b)γ(b)

γ(a)

γ(t)

h(t)

f (t)

g(t)

Remark.

h(t) =1

g(a)− g(b)

f (t) g(t) 1f (a) g(a) 1f (b) g(b) 1

.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 6 / 15

Page 35: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Peano’s theorem

A universal generalization: Peano’s mean value theorem

Theorem (Peano, 1884)

Let f , ϕ, ψ : [a, b] → R be continuous and differentiable on (a, b). Thenthere exists x1 ∈ (a, b) such that

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 7 / 15

Page 36: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Peano’s theorem

A universal generalization: Peano’s mean value theorem

Theorem (Peano, 1884)

Let f , ϕ, ψ : [a, b] → R be continuous and differentiable on (a, b). Thenthere exists x1 ∈ (a, b) such that

Proof of Peano’s theorem.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 7 / 15

Page 37: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Peano’s theorem

A universal generalization: Peano’s mean value theorem

Theorem (Peano, 1884)

Let f , ϕ, ψ : [a, b] → R be continuous and differentiable on (a, b). Thenthere exists x1 ∈ (a, b) such that

Proof of Peano’s theorem.

• Let h(t) =

f (t) ϕ(t) ψ(t)f (a) ϕ(a) ψ(a)f (b) ϕ(b) ψ(b)

,

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 7 / 15

Page 38: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Peano’s theorem

A universal generalization: Peano’s mean value theorem

Theorem (Peano, 1884)

Let f , ϕ, ψ : [a, b] → R be continuous and differentiable on (a, b). Thenthere exists x1 ∈ (a, b) such that

Proof of Peano’s theorem.

• Let h(t) =

f (t) ϕ(t) ψ(t)f (a) ϕ(a) ψ(a)f (b) ϕ(b) ψ(b)

,

• then h(a) = h(b)(= 0) (the determinant has identical rows),

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 7 / 15

Page 39: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Peano’s theorem

A universal generalization: Peano’s mean value theorem

Theorem (Peano, 1884)

Let f , ϕ, ψ : [a, b] → R be continuous and differentiable on (a, b). Thenthere exists x1 ∈ (a, b) such that

Proof of Peano’s theorem.

• Let h(t) =

f (t) ϕ(t) ψ(t)f (a) ϕ(a) ψ(a)f (b) ϕ(b) ψ(b)

,

• then h(a) = h(b)(= 0) (the determinant has identical rows),

• therefore by Rolle’s theorem h′(ξ) = 0 at some ξ ∈ (a, b).

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 7 / 15

Page 40: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Peano’s theorem

A universal generalization: Peano’s mean value theorem

Theorem (Peano, 1884)

Let f , ϕ, ψ : [a, b] → R be continuous and differentiable on (a, b). Thenthere exists x1 ∈ (a, b) such that

Remark.

• ψ = 1 is Cauchy’s theorem

• ψ = 1, ϕ(x) = x is the mean value theorem

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 7 / 15

Page 41: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 42: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

Proof.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 43: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

Proof.

If f (c) 6= f (d) for some c , d ∈ (a, b),

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 44: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

Proof.

If f (c) 6= f (d) for some c , d ∈ (a, b), then

0 6= f (c)− f (d)

c − d

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 45: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

Proof.

If f (c) 6= f (d) for some c , d ∈ (a, b), then

0 6= f (c)− f (d)

c − d= f ′(ξ) = 0.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 46: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

Theorem (L’Hospital’s rule, 1696, J. Bernoulli)

If f , g : (a, b) → R are differentiable, g ′ 6= 0, lima+ f = lima+ g = 0 and

lima+ f ′/g ′ exists, then

lima+

f /g = lima+

f ′/g ′.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 47: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

Theorem (L’Hospital’s rule, 1696, J. Bernoulli)

If f , g : (a, b) → R are differentiable, g ′ 6= 0, lima+ f = lima+ g = 0 and

lima+ f ′/g ′ exists, then

lima+

f /g = lima+

f ′/g ′.

Proof.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 48: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

Theorem (L’Hospital’s rule, 1696, J. Bernoulli)

If f , g : (a, b) → R are differentiable, g ′ 6= 0, lima+ f = lima+ g = 0 and

lima+ f ′/g ′ exists, then

lima+

f /g = lima+

f ′/g ′.

Proof.

f (x)

g(x)=

f (x)− f (a)

g(x)− g(a)=

f ′(ξ)

g ′(ξ)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 49: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

Theorem (L’Hospital’s rule, 1696, J. Bernoulli)

If f , g : (a, b) → R are differentiable, g ′ 6= 0, lima+ f = lima+ g = 0 and

lima+ f ′/g ′ exists, then

lima+

f /g = lima+

f ′/g ′.

Proof.

f (x)

g(x)=

f (x)− f (a)

g(x)− g(a)=

f ′(ξ)

g ′(ξ), x → a+ =⇒ ξ → a+

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 50: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

How to prove it? Application

Who needs the mean value theorem, anyway?

Theorem

If f : (a, b) → R is differentiable and f ′ = 0, then f is constant.

Theorem (L’Hospital’s rule, 1696, J. Bernoulli)

If f , g : (a, b) → R are differentiable, g ′ 6= 0, lima+ f = lima+ g = 0 and

lima+ f ′/g ′ exists, then

lima+

f /g = lima+

f ′/g ′.

Remark.

It is not difficult to avoid the mean value theorems (Bers, Cohen, Boas).

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 8 / 15

Page 51: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

Prehistory:

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 52: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

Prehistory:

• Bashkara (1114–1185), Parameshvara (1380–1460)• astronomical calculations (inverse sine)• traces of Rolle’s and mean value theorem(?)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 53: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1652–1719)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 54: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1652–1719)

• Traite d’algebre (1690)Demonstration d’une methode pourresoudre les egalitez de tous les degrez(1691) (theorem found in 1910)

• f ′(x) = 0 has at least one root betweentwo consecutive roots of f (x) = 0(method of cascades for polynomials)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 55: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1698–1746)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 56: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1698–1746)

• A second letter...concerning the roots ofequations (1729)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 57: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1707–1783)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 58: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1707–1783)

• Institutiones calculi differentialis (1755)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 59: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1736-1813)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 60: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1736-1813)

• Traite de la resolution des equationsnumeriques de tous les degres (1798)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 61: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1798)

• Moritz Wilhelm Drobisch (1802-1896)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 62: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1798)

• Moritz Wilhelm Drobisch (1802-1896)

• Grundzuge der Lehre von den hoherennumerischen Gleichungen (1843)

Proof details

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 63: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1798)

• Moritz Wilhelm Drobisch (1802-1896)

• Grundzuge der Lehre von den hoherennumerischen Gleichungen (1843)

Proof details

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 64: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1798)

• Moritz Wilhelm Drobisch (1843)

• Joseph Liouville (1809–1882)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 65: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1798)

• Moritz Wilhelm Drobisch (1843)

• Joseph Liouville (1809–1882)

• Extension du theoreme de Rolle aux racinesimaginaires des equations (1864)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 66: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1798)

• Moritz Wilhelm Drobisch (1843)

• Joseph Liouville (1864)

• Joseph-Alfred Serret (1819–1885)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 67: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1798)

• Moritz Wilhelm Drobisch (1843)

• Joseph Liouville (1864)

• Joseph-Alfred Serret (1819–1885)

• Cours d’algebre superieure(1866)

• every continuous functionis differentiable

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 68: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1798)

• Moritz Wilhelm Drobisch (1843)

• Joseph Liouville (1864)

• Joseph-Alfred Serret (1819–1885)

• Cours d’algebre superieure(1866)

Proof details

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 69: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Rolle’s theorem

Historical development of Rolle’s theorem

• Michel Rolle (1691)

• Colin Maclaurin (1729)

• Leonhard Euler (1755)

• Joseph-Louis Lagrange (1798)

• Moritz Wilhelm Drobisch (1843)

• Joseph Liouville (1864)

• Joseph-Alfred Serret (1866)

and Rolle’s theorem became well-known...

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 9 / 15

Page 70: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

Prehistory:

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 10 / 15

Page 71: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

Prehistory:

• Bonaventura Cavalieri (1598-1647)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 10 / 15

Page 72: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

Prehistory:

• Bonaventura Cavalieri (1598-1647)

• Geometria indivisibilibus (1635)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 10 / 15

Page 73: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

Prehistory:

• Bonaventura Cavalieri

• Geometria indivisibilibus (1635)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 10 / 15

Page 74: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1736-1813)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 75: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1736-1813)

• Lecons sur le calcul des fonctions (1801)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 76: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1775–1836)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 77: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1775–1836)

• Recherches sur quelques point de la theoriedes fonctions derivees (1806)

• every function is differentiable(?)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 78: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1789–1857)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 79: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1789–1857)

• Resume des lecons sur le calcul infinitesimal(1823)

Proof details

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 80: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1789–1857)

• Resume des lecons sur le calcul infinitesimal(1823)

Proof details

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 81: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1819–1892)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 82: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1819–1892)

• Serret, Cours de calcul infinitesimal (1868)

Proof details

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 83: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1819–1892)

• Serret, Cours de calcul infinitesimal (1868)

Proof details

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 84: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1868)

• Ulisse Dini (1845–1918)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 85: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1868)

• Ulisse Dini (1845–1918)

• Fondamenti per la teorica delle funzioni devariabli reali (1878)

• perfect proof (and perfect book)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 86: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1868)

• Ulisse Dini (1878)

• Carl Gustav Axel Harnack (1851–1888)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 87: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1868)

• Ulisse Dini (1878)

• Carl Gustav Axel Harnack (1851–1888)

• Die Elemente der Differential- undIntegralrechnung (1881)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 88: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1868)

• Ulisse Dini (1878)

• Carl Gustav Axel Harnack (1851–1888)

• Die Elemente der Differential- undIntegralrechnung (1881)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 89: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1868)

• Ulisse Dini (1878)

• Carl Gustav Axel Harnack (1881)

• Moritz Pasch (1843–1930)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 90: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1868)

• Ulisse Dini (1878)

• Carl Gustav Axel Harnack (1881)

• Moritz Pasch (1843–1930)

• Einleitung in die Differential- undIntegralrechnung (1882)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 91: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Steps towards the modern form Mean value theorem

Historical development of the mean value theorem

• Joseph-Louis Lagrange (1801)

• Andre-Marie Ampere (1806)

• Augustin-Louis Cauchy (1823)

• Pierre-Ossian Bonnet (1868)

• Ulisse Dini (1878)

• Carl Gustav Axel Harnack (1881)

• Moritz Pasch (1882)

and the theorem seemed to be perfectly clear...

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 11 / 15

Page 92: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 93: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Cours d’analyse (1882) contains an erroneous proof

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 94: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Cours d’analyse (1882) contains an erroneous proof

Proof of the mean value inequality.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 95: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Cours d’analyse (1882) contains an erroneous proof

Proof of the mean value inequality.

Take a = a0 < a2 < · · · < an = b.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 96: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Cours d’analyse (1882) contains an erroneous proof

Proof of the mean value inequality.

Take a = a0 < a2 < · · · < an = b. Then

f (ai )− f (ai−1) = (ai − ai−1)[f′(ai−1) + εi ].

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 97: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Cours d’analyse (1882) contains an erroneous proof

Proof of the mean value inequality.

Take a = a0 < a2 < · · · < an = b. Then

f (ai )− f (ai−1) = (ai − ai−1)[f′(ai−1) + εi ].

Thus, with M = max[a,b]

|f ′|,m = min[a,b]

|f ′|, ε = maxi=1,...,n

|εi |, aftersummation

(m − ε)(b − a) ≤ f (b)− f (a) ≤ (M + ε)(b − a).

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 98: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Cours d’analyse (1882) contains an erroneous proof

Proof of the mean value inequality.

Take a = a0 < a2 < · · · < an = b. Then

f (ai )− f (ai−1) = (ai − ai−1)[f′(ai−1) + εi ].

Thus, with M = max[a,b]

|f ′|,m = min[a,b]

|f ′|, ε = maxi=1,...,n

|εi |, aftersummation

(m − ε)(b − a) ≤ f (b)− f (a) ≤ (M + ε)(b − a).

Let n → ∞, then ε→ 0.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 99: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 100: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

• Giuseppe Peano (1858–1932)

Letter to Jordan (Nouv. Ann. Math., 1884)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 101: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

• Giuseppe Peano (1858–1932)

Letter to Jordan (Nouv. Ann. Math., 1884)

Problem.

If f (x) = x2 sin 1x, a0 = 0, a1 = 1/2nπ, a2 = 1/(2n + 1)π

then f (a1) = f (a2) = 0, f ′(a1) = −1 and so ε2 = 1.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 102: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

• Giuseppe Peano (1858–1932)

Letter to Jordan (Nouv. Ann. Math., 1884)

Problem.

The continuity of the derivative is used implicitly in yourproof. (Exactly the same error made in Jules Houel’s Coursde calcul infinitesimal (1879).)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 103: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

• Giuseppe Peano (1858–1932)

Letter to Jordan (Nouv. Ann. Math., 1884)

Problem.

However, the theorem can be easily proved withoutassuming the continuity of the derivative.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 104: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Reply to Peano (1884).

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 105: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Reply to Peano (1884).

I know that my proof requires the continuity of thederivative. I will correct the error in Volume 3 of my book.

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 106: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Reply to Peano (1884).

However, I would be very happy if you send me a proofwithout that assumption, because I do not know any.

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 107: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

• Giuseppe Peano (1858–1932)

Reply to Jordan (1884).

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 108: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

• Giuseppe Peano (1858–1932)

Reply to Jordan (1884).

I learned it from my teacher Angelo Genocchi. It is due toO. Bonnet, see Serret (with imperfections) and Dini,Harnack, Pasch (perfectly).

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 109: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Jordan

Correspondence of Peano and Jordan

• Camille Jordan (1838–1922)

Jordan’s book is modified accordingly (1887).

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 12 / 15

Page 110: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

Chair of analysis at Universite Catholique de Louvain(and cousin of Charles de la Vallee Poussin)

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 111: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

Reply to Peano (1884).

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 112: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

Reply to Peano (1884).

Without continuity of the derivative, the theorem is false.

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 113: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

Reply to Peano (1884).

If f (x) =√2x (x ∈ (0, a)) and f (x) =

2(2a− x)(x ∈ (a, 2a)), then f (a+ h)− f (a− h) = 0 but there is noξ for which f ′(ξ) = 0.

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 114: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

Reply to Peano (1884).

f

a 2a

√2a

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 115: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

• Giuseppe Peano (1858–1932)

Reply to Gilbert (1884).

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 116: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

• Giuseppe Peano (1858–1932)

Reply to Gilbert (1884).

Your function is not differentiable at some point.Differentiability means equal left and right derivative.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 117: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

• Giuseppe Peano (1858–1932)

Reply to Gilbert (1884).

The proof is easy, I learned it from my teacher A. Genocchi.It is due to Bonnet, see Serret (with imperfections) andDini, Harnack, Pasch (perfectly).

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 118: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

• Giuseppe Peano (1858–1932)

Reply to Gilbert (1884).

And, without malice, I give you an exercise: show that if fis differentiable then for all ε > 0 there is a partitiona = a0 < · · · < an = b such that

f (ai+1)−f (ai )ai+1−ai

− f ′(ai )∣

∣ < ε.

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 119: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

Reply to Peano (1884).

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 120: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

Reply to Peano (1884).

I misunderstood your concept of discontinuity of derivative.Of course, I knew Bonnet’s proof.

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 121: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Dispute between mathematicians Peano and Gilbert

Correspondence of Peano and Gilbert

• Louis-Philippe Gilbert (1832–1892)

Reply to Peano (1884).

Your exercise is not interesting for me at all, however, Iprovide you a solution.

• Giuseppe Peano (1858–1932)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 13 / 15

Page 122: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

References

Judith V. Grabiner, The Origins of Cauchy’s Rigor in Calculus, MITPress, Cambridge, 1981.

June Barrow-Green, From cascades to calculus: Rolle’s Theorem, In:Robson, Eleanor and Stedall, Jacqueline eds. The Oxford Handbook ofthe History of Mathematics, Oxford Handbooks in Mathematics,Oxford University Press, Oxford, 737-754., 2009.

Jean Mawhin, Some contributions of Peano to analysis in the light ofthe work of Belgian mathematicians, In: Fulvia Skof, Giuseppe Peanobetween mathematics and logic, Springer Italia, Milan, 13-28., 2009.

Gallica, Bibliotheque nationale de France

Internet Archive (Digital Library)

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 14 / 15

Page 123: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

The End

Thank you for your attention!

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 15 / 15

Page 124: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Drobisch’s proof

Drobisch’s proof of Rolle’s theorem

Proof.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 1 / 5

Page 125: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Drobisch’s proof

Drobisch’s proof of Rolle’s theorem

Proof.

Let f (x) = (x − α1) . . . (x − αn)ϕ(x) where α1 < · · · < αn and ϕ > 0.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 1 / 5

Page 126: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Drobisch’s proof

Drobisch’s proof of Rolle’s theorem

Proof.

Let f (x) = (x − α1) . . . (x − αn)ϕ(x) where α1 < · · · < αn and ϕ > 0.Then

f ′(α1) = (α1 − α2)(α1 − α3) . . . (α1 − αn)ϕ(α1),

f ′(α2) = (α2 − α1)(α2 − α3) . . . (α2 − αn)ϕ(α2),

f ′(α3) = (α3 − α1)(α3 − α2) . . . (α3 − αn)ϕ(α3),...

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 1 / 5

Page 127: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Drobisch’s proof

Drobisch’s proof of Rolle’s theorem

Proof.

Let f (x) = (x − α1) . . . (x − αn)ϕ(x) where α1 < · · · < αn and ϕ > 0.Then

f ′(α1) = (α1 − α2)(α1 − α3) . . . (α1 − αn)ϕ(α1),

f ′(α2) = (α2 − α1)(α2 − α3) . . . (α2 − αn)ϕ(α2),

f ′(α3) = (α3 − α1)(α3 − α2) . . . (α3 − αn)ϕ(α3),...

Therefore, f ′(αi ) and f ′(αi+1) have different signs

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 1 / 5

Page 128: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Drobisch’s proof

Drobisch’s proof of Rolle’s theorem

Proof.

Let f (x) = (x − α1) . . . (x − αn)ϕ(x) where α1 < · · · < αn and ϕ > 0.Then

f ′(α1) = (α1 − α2)(α1 − α3) . . . (α1 − αn)ϕ(α1),

f ′(α2) = (α2 − α1)(α2 − α3) . . . (α2 − αn)ϕ(α2),

f ′(α3) = (α3 − α1)(α3 − α2) . . . (α3 − αn)ϕ(α3),...

Therefore, f ′(αi ) and f ′(αi+1) have different signs thus f ′ has a rootbetween αi and αi+1.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 1 / 5

Page 129: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Serret’s proof

Serret’s proof of Rolle’s theorem

Proof.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 2 / 5

Page 130: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Serret’s proof

Serret’s proof of Rolle’s theorem

Proof.

Let f (a) = f (b) = 0 and f > 0 on (a, b).

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 2 / 5

Page 131: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Serret’s proof

Serret’s proof of Rolle’s theorem

Proof.

Let f (a) = f (b) = 0 and f > 0 on (a, b). Since

f (a+ h)

f ′(a + h)=

hf ′(a) + 12h

2f ′′(ξ)

f ′(a) + hf ′′(η)= h

1 + small

1 + small,

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 2 / 5

Page 132: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Serret’s proof

Serret’s proof of Rolle’s theorem

Proof.

Let f (a) = f (b) = 0 and f > 0 on (a, b). Since

f (a+ h)

f ′(a + h)=

hf ′(a) + 12h

2f ′′(ξ)

f ′(a) + hf ′′(η)= h

1 + small

1 + small,

thus f (a+h)f ′(a+h) > 0 for small h and so f ′(a+ h) > 0.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 2 / 5

Page 133: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Serret’s proof

Serret’s proof of Rolle’s theorem

Proof.

Let f (a) = f (b) = 0 and f > 0 on (a, b). Since

f (a+ h)

f ′(a + h)=

hf ′(a) + 12h

2f ′′(ξ)

f ′(a) + hf ′′(η)= h

1 + small

1 + small,

thus f (a+h)f ′(a+h) > 0 for small h and so f ′(a+ h) > 0. Similarly, f ′(b− h) < 0

for small h.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 2 / 5

Page 134: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Serret’s proof

Serret’s proof of Rolle’s theorem

Proof.

Let f (a) = f (b) = 0 and f > 0 on (a, b). Since

f (a+ h)

f ′(a + h)=

hf ′(a) + 12h

2f ′′(ξ)

f ′(a) + hf ′′(η)= h

1 + small

1 + small,

thus f (a+h)f ′(a+h) > 0 for small h and so f ′(a+ h) > 0. Similarly, f ′(b− h) < 0

for small h. Therefore, f ′ has a root between a+ h and b − h.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 2 / 5

Page 135: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the mean value inequality

Proof.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 5

Page 136: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the mean value inequality

Proof.

Let ε > 0 and δ > 0 be such that if 0 < i < δ (i=indeterminate), then

f ′(x)− ε <f (x + i)− f (x)

i< f ′(x) + ε.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 5

Page 137: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the mean value inequality

Proof.

Let ε > 0 and δ > 0 be such that if 0 < i < δ (i=indeterminate), then

f ′(x)− ε <f (x + i)− f (x)

i< f ′(x) + ε.

Take a = x0 < x1 < · · · < xn−1 < xn = b such that xi − xi−1 < δ,

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 5

Page 138: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the mean value inequality

Proof.

Let ε > 0 and δ > 0 be such that if 0 < i < δ (i=indeterminate), then

f ′(x)− ε <f (x + i)− f (x)

i< f ′(x) + ε.

Take a = x0 < x1 < · · · < xn−1 < xn = b such that xi − xi−1 < δ, then

min[a,b]

f ′ − ε ≤ f ′(xi )− ε <f (xi )− f (xi−1)

xi − xi−1< f ′(xi ) + ε ≤ max

[a,b]f ′ + ε,

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 5

Page 139: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the mean value inequality

Proof.

Let ε > 0 and δ > 0 be such that if 0 < i < δ (i=indeterminate), then

f ′(x)− ε <f (x + i)− f (x)

i< f ′(x) + ε.

Take a = x0 < x1 < · · · < xn−1 < xn = b such that xi − xi−1 < δ, then

min[a,b]

f ′ − ε ≤ f ′(xi )− ε <f (xi )− f (xi−1)

xi − xi−1< f ′(xi ) + ε ≤ max

[a,b]f ′ + ε,

and so by averaging with weights (xi − xi−1) one obtains

min[a,b]

f ′ − ε <f (b)− f (a)

b − a< max

[a,b]f ′ + ε.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 5

Page 140: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the mean value inequality

Proof.

Let ε > 0 and δ > 0 be such that if 0 < i < δ (i=indeterminate), then

f ′(x)− ε <f (x + i)− f (x)

i< f ′(x) + ε.

Take a = x0 < x1 < · · · < xn−1 < xn = b such that xi − xi−1 < δ, then

min[a,b]

f ′ − ε ≤ f ′(xi )− ε <f (xi )− f (xi−1)

xi − xi−1< f ′(xi ) + ε ≤ max

[a,b]f ′ + ε,

and so by averaging with weights (xi − xi−1) one obtains

min[a,b]

f ′ − ε <f (b)− f (a)

b − a< max

[a,b]f ′ + ε.

The assertion follows by ε→ 0.Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 5

Page 141: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the mean value inequality

Remark.

• Problem: δ depends on x

(one needs the continuity of the derivative, as later noted Peano).

• The notion of mean (moyenne) was introduced by Cauchy in Analysealgebrique (1821).

• Cauchy proved rigorously the intermediate value theorem in Analysealgebrique (1821) so the mean value thereom also follows.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 3 / 5

Page 142: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the generalized mean value theorem

Proof.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 5

Page 143: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the generalized mean value theorem

Proof.

Assume g ′ > 0 and let A := min[a,b] f′/g ′, B := max[a,b] f

′/g ′.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 5

Page 144: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the generalized mean value theorem

Proof.

Assume g ′ > 0 and let A := min[a,b] f′/g ′, B := max[a,b] f

′/g ′. Then

f ′(x)− Ag ′(x) ≥ 0 and Bg ′(x)− f ′(x) ≥ 0 (x ∈ (a, b)).

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 5

Page 145: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the generalized mean value theorem

Proof.

Assume g ′ > 0 and let A := min[a,b] f′/g ′, B := max[a,b] f

′/g ′. Then

f ′(x)− Ag ′(x) ≥ 0 and Bg ′(x)− f ′(x) ≥ 0 (x ∈ (a, b)).

Therefore (f − Ag) and (Bg − f ) are increasing

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 5

Page 146: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the generalized mean value theorem

Proof.

Assume g ′ > 0 and let A := min[a,b] f′/g ′, B := max[a,b] f

′/g ′. Then

f ′(x)− Ag ′(x) ≥ 0 and Bg ′(x)− f ′(x) ≥ 0 (x ∈ (a, b)).

Therefore (f − Ag) and (Bg − f ) are increasing thus

f (b)−f (a)−A(g(b)−g(a)) ≥ 0 and B(g(b)−g(a))−(f (b)−f (a)) ≥ 0.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 5

Page 147: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the generalized mean value theorem

Proof.

Assume g ′ > 0 and let A := min[a,b] f′/g ′, B := max[a,b] f

′/g ′. Then

f ′(x)− Ag ′(x) ≥ 0 and Bg ′(x)− f ′(x) ≥ 0 (x ∈ (a, b)).

Therefore (f − Ag) and (Bg − f ) are increasing thus

f (b)−f (a)−A(g(b)−g(a)) ≥ 0 and B(g(b)−g(a))−(f (b)−f (a)) ≥ 0.

SoA(g(b)− g(a)) ≤ f (b)− f (a) ≤ B(g(b)− g(a)),

andA ≤ f (b)− f (a)

g(b)− g(a)≤ B

which is Cauchy’s mean value inequality.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 5

Page 148: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Cauchy’s proof

Cauchy’s proof of the generalized mean value theorem

Proof.

Assume g ′ > 0 and let A := min[a,b] f′/g ′, B := max[a,b] f

′/g ′. Then

f ′(x)− Ag ′(x) ≥ 0 and Bg ′(x)− f ′(x) ≥ 0 (x ∈ (a, b)).

Therefore (f − Ag) and (Bg − f ) are increasing thus

f (b)−f (a)−A(g(b)−g(a)) ≥ 0 and B(g(b)−g(a))−(f (b)−f (a)) ≥ 0.

SoA(g(b)− g(a)) ≤ f (b)− f (a) ≤ B(g(b)− g(a)),

andA ≤ f (b)− f (a)

g(b)− g(a)≤ B

which is Cauchy’s mean value inequality. Cauchy’s mean value theoremfollows by the intermediate value theorem and the continuity of f ′/g ′.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 4 / 5

Page 149: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Bonnet’s proof

Bonnet’s proof of the mean value theorem

Proof.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 5 / 5

Page 150: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Bonnet’s proof

Bonnet’s proof of the mean value theorem

Proof.

Denote A = f (b)−f (a)b−a

and ϕ(x) = [f (x)− Ax ]− [f (a)− Aa].

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 5 / 5

Page 151: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Bonnet’s proof

Bonnet’s proof of the mean value theorem

Proof.

Denote A = f (b)−f (a)b−a

and ϕ(x) = [f (x)− Ax ]− [f (a)− Aa]. Thenϕ(a) = ϕ(b) = 0. Therefore, if ϕ is not constant, it has an extremum atsome x1 ∈ (a, b) and there ϕ′(x1) = 0. Otherwise, ϕ′ = 0.

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 5 / 5

Page 152: Abriefhistoryofthemeanvaluetheorem Ad´am BESENYEIThe theorems of Rolle, Lagrange and Cauchy Rolle’s theorem Aspecialcase: Rolle’stheorem Theorem(Rolle,1690,forpolynomials) Let

Appendix Bonnet’s proof

Bonnet’s proof of the mean value theorem

Proof.

Denote A = f (b)−f (a)b−a

and ϕ(x) = [f (x)− Ax ]− [f (a)− Aa]. Thenϕ(a) = ϕ(b) = 0. Therefore, if ϕ is not constant, it has an extremum atsome x1 ∈ (a, b) and there ϕ′(x1) = 0. Otherwise, ϕ′ = 0.

Remark.

• No reference to Rolle’s theorem, but a complete proof.

• minor “imperfection” (as criticized by Peano):

“if ϕ is not constant, then it should increase or decrease at a”

is not true, for instance, x2 sin 1xat x = 0.

• Analogous proof for Cauchy’s mean value theorem: A = f (b)−f (a)g(b)−g(a) and

ϕ(x) = [f (x)− Ag(x)]− [f (a)− Ag(a)].

Return

A. Besenyei (ELTE Budapest) History of the mean value theorem September 17, 2012 5 / 5