AB2_13

Embed Size (px)

Citation preview

  • 8/9/2019 AB2_13

    1/4

    AB2.13: Separation of Variables: Use of Fourier Series

    Consider the boundary value problem for theone-dimensional wave equationdescribingvibrations of an elastic string fixed at its ends:

    2

    ut2 =c2

    2

    ux2 , u= u(x, t), t >0, 0< x < L,

    u(x, 0) =f(x),ut(x, 0) =g(x), (1)u(0, t) = 0, u(L, t) = 0, t 0.

    The solution is determined by the separation of variables (the Fourier method):

    u(x, t) =F(x)G(t).

    Then2u

    t2

    =F G, 2u

    x2

    =FG

    Substituting this into one-dimensional wave equation and separating variables,

    F G =c2FG

    G

    c2G=

    F

    F =const= k

    we obtain the differential equations forG(t) andF(x)

    G c2kG = 0,

    F kF = 0.

    Satisfy the boundary conditions:

    u(0, t) =F(0)G(t) = 0, u(L, t) =F(L)G(t) = 0, t 0.

    Thus,F(0) = 0, F(L) = 0.

    Fork 0, the solution of

    F kF = 0, F(0) = 0, F(L) = 0

    is identically zero.Fork = p2

  • 8/9/2019 AB2_13

    2/4

    F =Fn= sinpnx= sinn

    Lx (n= 1, 2, . . .).

    Fork = kn= p2n

    , the equation forG becomes

    G +2n

    G= 0, n=cn

    L .

    The general solution of this equation is

    G(t) =Gn(t) =Bncos nt+B

    nsin nt.

    Hence the solutions of2u

    t2 =c2

    2u

    x2, 0< x < L

    satisfyingu(0, t) = 0, u(L, t) = 0, t 0.

    are

    un(x, t) =Fn(x)Gn(t) = (Bncos nt+B

    nsin nt)sinn

    Lx (n= 1, 2, . . .).

    These functions are called eigenfunctionsand

    n=cn

    L

    are called eigenvalues.Now we can solve the entire problem by setting

    u(x, t) =n=1

    un(x, t) =n=1

    (Bncos nt+B

    nsin nt)sin

    n

    Lx.

    Satisfy the initial conditions:

    u(x, 0) =n=1

    Bnsinn

    Lx= f(x).

    Thus,

    Bn= 2

    L

    L

    0f(x)sin

    n

    Lxdx, n= 1, 2, . . . .

    u

    t

    t=0

    =

    n=1(Bnnsin nt+B

    nncos nt)sin

    n

    Lx

    t=0

    =

    n=1

    Bn

    nsinn

    Lx= g(x).

    Thus,

    Bn

    n= 2

    L

    L

    0g(x)sin

    n

    Lxdx,

    so that

    Bn

    = 2

    cn

    L

    0g(x)sin

    n

    Lxdx, n= 1, 2, . . . .

  • 8/9/2019 AB2_13

    3/4

    Analyze the solution in the case when the initial velocity g(x) 0. Then allBn

    = 0 and

    u(x, t) =n=1

    Bncos nt sinn

    Lx, n=

    cn

    L .

    We have

    coscnL

    t sinnL

    x= 12

    sinn

    L(x ct) + sinn

    L(x+ct)

    and

    u(x, t) =1

    2

    n=1

    Bnsinn

    L(x ct) +

    1

    2

    n=1

    Bnsinn

    L(x+ct)

    so that

    u(x, t) =1

    2[f(x ct) +f(x+ct)]

    EXAMPLE 1 Vibrating string if the initial deflection is triangular.

    Find the solution of the wave equation corresponding to the triangular initial deflection

    f(x) =

    2kL

    x if 0< x < L/2,2kL

    (L x) ifL/2< x < L.

    Solution. For the odd periodic extension off(x) the Fourier coefficients are

    Bn= 2

    L

    L

    0f(x)sin

    n

    Lxdx=

    8k

    n22sin

    n

    2 =

    0 ifn = 2l,(1)l+1 8k(2l1)22 ifn = 2l 1.

    , l= 1, 2, . . . .

    and the desired solution of the wave equation is

    u(x, t) =n=1

    Bncos nt sinn

    Lx=

    8k

    2

    l=1

    (1)l+1

    (2l 1)2cos 2l1t sin

    (2l 1)

    L x=

    8k

    2

    1

    1sin

    Lx cos

    c

    Lt

    1

    9sin

    3

    Lx cos

    3c

    L t+. . .

    .

  • 8/9/2019 AB2_13

    4/4

    PROBLEM 11.3.1

    Findu(x, t) of the string of length L = whenc2 = 1, the initial velocity is zero and the initialdeflection is

    f(x) =k(sin x1

    2sin 2x)

    Solution. f(x) is given in the form of a finite trigonometric series consisting of two sineterms with n = 1, 2 and corresponding coefficients

    B1= k, B2= k 12

    .Also, n= cnL

    =n,

    so that

    u(x, t) =n=1

    Bncos nt sinn

    Lx= B1cos 1t sin x+B2cos 2t sin2x= k(cos t sin x

    1

    2cos 2t sin2x)

    PROBLEM 11.3.7

    Find u(x, t) of the string of length L= when c2 = 1, the initial velocity is zero and theinitial deflection is triangular (k= 0.5, EX. 1),

    f(x) =

    1

    x if 0< x < /2,1

    (/2 x) if/2< x < .

    Solution. For the odd periodic extension off(x) the Fourier coefficients are

    Bn= 2

    0f(x)sin nxdx=

    4

    n22sin

    n

    2 ) =

    0 ifn= 2l,(1)l+1 4(2l1)22 ifn= 2l 1.

    , l= 1, 2, . . . .

    Also,n=

    cn

    L =n,

    so that the desired solution of the wave equation is

    u(x, t) =n=1

    Bncos nt sinn

    Lx=

    4

    2

    l=1

    (1)l+1

    (2l 1)2cos 2l1t sin

    (2l 1)

    L x=

    4

    2

    sin x cos t

    1

    9sin 3x cos3t+

    1

    25sin 5x cos5t . . .

    .